Analysis in one complex variable Lecture 3 – Integration

Gil Cavalcanti

Utrecht University

April 2020 Utrecht

Definition

- A (*smooth*) *curve* in a vector space V is a smooth map $\gamma \colon [a,b] \to V$.
- A *piecewise smooth curve* on V is a continuous map $\gamma \colon [a,b] \to V$ for which there is a collection of points $a=a_0 < a_1 < \cdots < a_k = b$ such that the restriction of γ to each interval $[a_i,a_{i+1}]$ is a smooth curve.

Definition

- A topological space X is *connected* if whenever we have $X = A \cup B$ with A and B open and $A \cap B = \emptyset$, then either $A = \emptyset$ or $B = \emptyset$.
- A topological space X is *path-connected* if for any two points $p, q \in X$ there is a continuous path $\gamma \colon [a, b] \to X$ such that $\gamma(a) = p$ and $\gamma(b) = q$.

The truth: An open set in a vector space is connected if and only if it is smooth path-connected.

Theorem

If a holomorphic function $f: U \to \mathbb{C}$ *satisfies* $f' \equiv 0$, *then* f *is locally constant. If* U *is connected, then* f *is constant.*

Proof.

Let $p, q \in U$ be two points that can be connected by a path γ and consider the composition Re \circ $f \circ \gamma \colon [a, b] \to \mathbb{R}$. Taking the derivative we have

$$\operatorname{Re} \circ df|_{\gamma(t)} \gamma'(t) = 0$$
 for all t .

Hence Re $\circ f \circ \gamma \colon [a,b] \to \mathbb{R}$ is constant and the same applies to the imaginary part. Therefore f(p) = f(q).

Since in an open set $U \subset C$ any point p has a connected neighbouhood we conclude that f is locally constant. The argument also makes clear that f is constant on path-connected components of U.

Theorem

- If $f: U \to \mathbb{C}$ is analytic and not constant and U is connected, then the zeros of f are isolated.
- If $f,g: U \to \mathbb{C}$ are analytic and the set $S = \{z: f(z) = g(z)\}$ has an acummulation point in U, then f = g.

Proof.

Clearly the first claim implies the second.

If f is not constant in a neighbouhood of z_0 , then, by a Lemma from last lecture, there is an analytic isomorphism φ such that

$$f \circ \varphi(z - z_0) = a_n (z - z_0)^n,$$

showing that z_0 is the only point mapped to 0 in that open set.

Proof.

Therefore, either $f \equiv 0$ in a neighbourhood of z_0 or z_0 is an isolated zero.

If $f \equiv 0$ in a neighbourhood of some point z_0 , let

$$S = \{z \in U : f \equiv 0 \text{ in a neighbourhood of } z\}.$$

S is open.

The complement of *S* is also open by the previous argument.

Definition

Given $F: [a, b] \to \mathbb{C}$ with F(t) = u(t) + iv(t) we define

$$\int_{a}^{b} F(t)dt = \int_{a}^{b} u(t)dt + i \int_{a}^{b} v(t)dt$$

Theorem (Fundamental Theorem of Calculus)

Given $F: [a,b] \to \mathbb{C}$ *continuous, define*

$$I: [a,b] \to \mathbb{C}, \qquad I(t) = \int_a^t F(\tau) d\tau.$$

Then $\frac{dI}{dt} = F$.

Definition

Given $f: \mathbb{C} \to \mathbb{C}$ and $\gamma: [a, b] \to \mathbb{C}$, we define the *integral of f* over γ to be

$$\int_{\gamma} f := \int_{a}^{b} f(\gamma(t)) \gamma'(t) dt.$$

This does not depend on the parametrization of γ .

Example

Take f(z) = 1/z and $\gamma : [0, 2\pi] \to \mathbb{C}$, $\gamma(t) = e^{it}$. Then

$$\int_{\gamma} f = \int_0^{2\pi} \frac{1}{e^{it}} i e^{it} = 2\pi i.$$

Definition

A *primitive* of a continuous function $f: U \to \mathbb{C}$ is a holomorphic function $g: U \to \mathbb{C}$ such that $\frac{dg}{dz} = f$.

Theorem

Let g *be a primitive of* f *and let* $\gamma: [a,b] \to U$ *be a curve. Then*

$$\int_{\gamma} f = g(\gamma(b)) - g(\gamma(a)).$$

Proof.

Consider $G: [a, b] \to \mathbb{C}$, given by $G(t) = g(\gamma(t))$. Then

$$\frac{dG}{dt} = g'(\gamma(t))\gamma'(t) = f(\gamma(t))\gamma'(t).$$

Integrating we obtain

$$g(\gamma(b)) - g(\gamma(a)) = \int_a^b \frac{dG}{dt} dt = \int_a^b f(\gamma) \gamma' dt = \int_{\gamma}^b f(\gamma) \gamma' dt$$

Example

Take $f(z) = z^k$ for $k \neq -1$ and $\gamma \colon [0, 2\pi] \to \mathbb{C}$, $\gamma(t) = e^{it}$. Then $g(z) = \frac{z^{k+1}}{k+1}$ is a primitive of f, hence

$$\int_{\gamma} f = \int_{0}^{2\pi} \frac{1}{e^{it}} i e^{it} = g(e^{2\pi i}) - g(1) = 0.$$

Theorem

Let $f: U \to \mathbb{C}$ *be a continuous function and assume that for every path* $\gamma: [a,b] \to U$ *with* $\gamma(a) = \gamma(b)$ *we have*

$$\int_{\gamma} f = 0.$$

Then f has a primitive g : $U \to \mathbb{C}$.

Proof.

Fix $z_0 \in U$ and define

$$g(z) = \int_{z_0}^{z} f$$

By hypothesis, this integral is independent of the path chosen connecting z_0 to z.

We have

$$\frac{g(z+h)-g(z)}{h} = \frac{1}{h} \int_{z}^{z+h} f.$$

Proof.

Define φ by the equatility $f(w) = f(z) + \varphi(w)$, so $\varphi(z) = 0$. Then

$$\frac{1}{h} \int_{z}^{z+h} f = \frac{1}{h} \int_{z}^{z+h} f(z) + \varphi$$
$$= f(z) + \frac{1}{h} \int_{z}^{z+h} \varphi$$

But

$$\left| \frac{1}{h} \int_{z}^{z+h} \varphi \right| < \frac{1}{h} \int_{z}^{z+h} |\varphi|$$

$$< \max |\varphi||_{[z,z+h]}$$

$$< \epsilon.$$