Analysis in one complex variable Lecture 5 – Local Cauchy Theorem

Gil Cavalcanti

Utrecht University

May 2020 Utrecht

L05P01 - Cauchy I

Recall

•
$$\int_{S^1} \frac{dz}{z} = 2\pi i$$

If *f* : *U* → ℂ is holomorphic and γ₀, γ₁ : *S*¹ → *U* are homotopic, then

$$\int_{\gamma_0} f \, dz = \int_{\gamma_1} f \, dz$$

Theorem

Let $f: U \to \mathbb{C}$ be a holomorphic function defined on an open set. Let $z_0 \in U$ and D be a disc with

 $z_0 \subset D \subset \overline{D} \subset U.$

Let $\gamma : [0,1] \rightarrow U$ *be the boundary of D traced counterclockwise. Then*

$$f(z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z - z_0} dz.$$

L05P01 - Cauchy I

Proof.

- Topological: homotope γ to the boundary of a smaller disc, D_r, centred at z₀,
- Analytical: estimate and integral over ∂D_r ,
- Easy: compute a simpler integral.

Proof.

Homotopy

Homotope γ to the boundary of a smaller disc, D_r , centred at z_0 For r small enough, the disc of radius r centred at z_0 , D_r is inside D.

It is visually clear that ∂D_r and ∂D are homotopic within $U \setminus \{z_0\}$. The homotopy is obtain by picking the rays from z_0 and seeing where they meet ∂D_r and ∂D .

Proof.

The function $g(z) = \frac{f(z)-f(z_0)}{z-z_0}$ is holomorphic on $U \setminus \{z_0\}$. By homotopy invariance

$$\int_{\partial D} g \, dz = \int_{\partial D_r} g \, dz.$$

L05P01 - Cauchy I

Proof.

The estimate

Since *f* is holomorphic, *g* is bounded on *D*, say $|g(z)| \le B$. Then

$$0 \leq \left| \int_{\partial D} g \, dz \right| = \left| \int_{\partial D_r} g \, dz \right| \leq \int_{\partial D_r} |g| \, |dz| \leq B 2 \pi r.$$

Since r > 0 is arbitrary (small) we conclude that

$$\int_{\partial D} g \, dz = 0.$$

L05P01 - Cauchy I

Proof.

Simple integral

$$0 = \int_{\partial D_r} \frac{f(z) - f(z_0)}{z - z_0} dz$$
$$\int_{\partial D} \frac{f(z)}{z - z_0} dz = \int_{\partial D_r} \frac{f(z)}{z - z_0} dz = \int_{\partial D_r} \frac{f(z_0)}{z - z_0} dz = 2\pi i f(z_0).$$

L05P01 - Cauchy I