Analysis in one complex variable Lecture 5 – The problem

Gil Cavalcanti

Utrecht University

May 2020 Utrecht

L05P03 - The problem

Recall

• Given a group *G*, the commutator subgroup of *G*, [*G*, *G*] is generated by elements of the form

$$ghg^{-1}h^{-1}$$

 $[G,G] \lhd G$ is a normal subgroup and G/[G,G] is Abelian.

If *f* : *U* → ℂ is holomorphic and *γ*₀, *γ*₁ : [0, 1] → ℂ are two loops which are homotopic, then

$$\int_{\gamma_0} f \, dz = \int_{\gamma_1} f \, dz$$

$$\int_{\gamma} f dz = ?$$

L05P03 - The problem

$$\int_{\gamma} f dz = ?$$

L05P03 - The problem

For example, take

$$f \colon \mathbb{C} \setminus \{0\} \to \mathbb{C}, \qquad f(z) = 1/z$$

and

$$\begin{aligned} \gamma \colon [0,1] \to \mathbb{C} \setminus \{0\} \\ \gamma(t) &= 3\sin(2\pi t) + i(4\cos(2\pi t) + \sin(4\pi t)) \end{aligned}$$

L05P03 - The problem

$$\int_{\gamma} f dz = ?$$

L05P03 - The problem

$$\int_{\gamma} f dz = ?$$

L05P03 - The problem

$$\int_{\gamma} f dz = ?$$

$$\int_{\gamma} f dz = ?$$

$$\int_{\gamma_0} f dz = \int_{\gamma_1} f dz + \int_{\gamma_3} f dz + \int_{\gamma_1} f dz - \int_{\gamma_3} f dz$$

$$\int_{\gamma} f dz = ?$$

L05P03 - The problem

$$\int_{\gamma} f dz = ?$$

L05P03 - The problem

L05P03 - The problem

$$\int_{\gamma_0} f dz = \int_{\gamma_1} f dz + \int_{\gamma_2} f dz$$

L05P03 - The problem

$$\int_{\gamma_0} f dz = ?$$

where $\gamma_0 = \gamma_1 * \gamma_2 * \gamma_1^{-1} * \gamma_2^{-1}$

ν

$$\int_{\gamma_0} f dz = \int_{\gamma_1} f dz + \int_{\gamma_2} f dz - \int_{\gamma_1} f dz - \int_{\gamma_2} f dz = 0$$

where $\gamma_0 = \gamma_1 * \gamma_2 * \gamma_1^{-1} * \gamma_2^{-1}$

- The space of base-point loops in *U* up to homotopy is a group with concatenation of loops as group operation.
- This group is called the fundamental group of *U* and denoted by π₁(*U*; x₀).
- $\pi_1(U; x_0)$ is often not Abelian.

• Integration of a holomorphic function gives a group homormophism:

$$\int f dz \colon \pi_1(U; x_0) \to \mathbb{C}, \qquad \gamma \mapsto \int_{\gamma} f dz.$$

Since C is Abelian, any commutator γ₁ * γ₂ * γ₁⁻¹ * γ₂⁻¹ is mapped to 0.

$$\int f \, dz \colon \pi_1(U; x_0) / [\pi_1(U; x_0), \pi_1(U; x_0)] \to \mathbb{C}$$

But $\pi_1(U; x_0) / [\pi_1(U; x_0), \pi_1(U; x_0) = H_1(U)$, so in fact we have

Theorem (Global Cauchy Theorem)

Given a holomorphic function $f: U \to \mathbb{C}$ *, integration induces a map in homology*

$$\int f\,dz\colon H_1(U)\to\mathbb{C},\gamma\mapsto\int_{\gamma}fdz,$$

that is, if γ_0 and γ_1 are homologous, then

$$\int_{\gamma_0} f \, dz = \int_{\gamma_1} f dz$$