Analysis in one complex variable Lecture 6 – Global Cauchy

Gil Cavalcanti

Utrecht University

May 2020 Utrecht

L06P01 - Winding number

Cavalcanti

Recall

Claim

If two loops γ_i : $[0,1] \rightarrow U$, i = 0, 1 *are homotopic and* $f : U \rightarrow \mathbb{C}$ *is holomorphic, then*

$$\int_{\gamma_0} f dz = \int_{\gamma_1} f dz.$$

Quest

Get away from homotopies and into a more general setting.

Definition

Given a loop $\gamma \colon [0,1] \to \mathbb{C}$ and a point $\alpha \notin \gamma([0,1])$, the *winding number of* γ *with respect to* α is

$$W(\gamma, \alpha) = \frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z - \alpha}.$$

Cavalcanti

Example

Let γ be the unit circle traced counterclowise *n* times, that is

$$\gamma \colon [0,1] \to \mathbb{C}, \qquad \gamma(t) = e^{2\pi i n t}$$

The winding number of γ with respect to the origin is

V

$$\begin{aligned} I(\gamma,0) &= \frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z} \\ &= \frac{1}{2\pi i} \int_{0}^{1} \frac{\gamma'}{\gamma} dt \\ &= \frac{1}{2\pi i} \int_{0}^{1} \frac{2\pi i n e^{2\pi i n t}}{e^{2\pi i n t}} dt \\ &= \int_{0}^{1} n dt \end{aligned}$$

L06P01 - Winding number

Cavalcanti

Example

Let γ be the unit circle traced counterclowise *n* times, that is

$$\gamma \colon [0,1] \to \mathbb{C}, \qquad \gamma(t) = e^{2\pi i n t}$$

The winding number of γ with respect to 2 is

$$W(\gamma,0) = \frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z-2} = 0,$$

by homotopy invariance of the integral.

Lemma

The winding number is an integer.

Proof.

Define

$$F: [0,1] \to \mathbb{C}, \qquad F(t) = \int_0^t \frac{\gamma'(t)}{\gamma(t) - \alpha} dt$$

So $F(1) = 2\pi i W(\gamma, \alpha)$.

Proof.

$$F: [0,1] \to \mathbb{C}, \qquad F(t) = \int_0^t \frac{\gamma'(t)}{\gamma(t) - \alpha} dt$$

Consider the path $(\gamma(t) - \alpha)e^{-F(t)}$. We have

$$\frac{d}{dt}((\gamma - \alpha)e^{-F}) = (\gamma' - (\gamma - \alpha)\frac{\gamma'}{\gamma - \alpha})e^{-F} = 0$$

L06P01 - Winding number

Proof.

Therefore $(\gamma - \alpha)e^{-F} = C$ for some constant *C*. Since $\gamma(0) = \gamma(1)$, we have

$$Ce^{F(0)} = (\gamma(0) - \alpha) = (\gamma(1) - \alpha) = Ce^{F(1)}$$

Hence

$$e^{F(1)-F(0)} = 1 \Rightarrow F(1) - F(0) = 2\pi i n,$$

for some $n \in \mathbb{Z}$. Then

$$W(\gamma, \alpha) = \frac{1}{2\pi i} F(1) = n.$$

Lemma

For any given loop γ *, winding number is a continuous function on* α *.*

Proof.

Follows from continuous dependence of integrals on parameters

$$W(\gamma, \alpha) = \frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z - \alpha}.$$

Lemma

For any given loop γ , winding number is constant on connected components of $\mathbb{C} \setminus \gamma([0, 1])$.

Lemma

For any given loop γ , if $\alpha \in \mathbb{C} \setminus \gamma([0,1])$ is a point in an unbounded component of $\mathbb{C} \setminus \gamma([0,1])$ then $W(\gamma, \alpha) = 0$.

Proof.

Just look at

$$W(\gamma, \alpha) = \frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z - \alpha}.$$

Lemma

For any given point, α , $W(\gamma, \alpha)$ does not change under sufficiently small deformations of γ .

Proof.

Just look at

$$W(\gamma, \alpha) = \frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z - \alpha}$$

Definition

- The *space of 1-chains* in *U*, *C*₁(*U*; C) is the vector space generated by all the paths in *U*.
- A *1-chain* is an element of $C_1(U; \mathbb{C})$, that is, it is a finite formal combination of paths:

$$\sigma = \sum_{i=1}^n \lambda_i \gamma_i, \qquad \lambda_i \in \mathbb{C}.$$

• Extend integration to 1-chains by linearity: if $\sigma = \sum \lambda_i \gamma_i$

$$\int_{\sigma} f \, dz = \sum_{i} \lambda_i \int_{\gamma_i} f \, dz$$

Definition

- The *space of 0-chains* in *U*, *C*₀(*U*; C) is the vector space generated by all the points in *U*.
- A *0-chain* is an element of $C_0(U; \mathbb{C})$, that is, it is a finite formal combination of points:

$$\sigma = \sum_{i=1}^n \lambda_i p_i, \qquad \lambda_i \in \mathbb{C}.$$

Definition

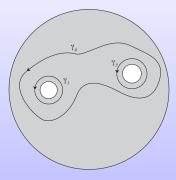
The *boundary* is a linear operation $\partial \colon C_1(U; \mathbb{C}) \to C_0(U; \mathbb{C})$ defined by

$$\partial \gamma = \gamma(1) - \gamma(0).$$

Definition

A 1-chain σ is a *cycle* if $\partial \sigma = 0$.

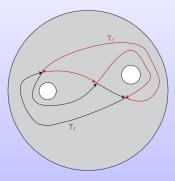
The problem



Want: $\gamma_0 = \gamma_1 + \gamma_2$

L06P01 - Winding number

The problem



Want: $\gamma_0 = \gamma_1 + \gamma_2$

L06P01 - Winding number

Definition

Given a set U ⊂ C, two 1-chains σ₀, σ₁: [0, 1] → U are homologous if for every α ∈ C\U

$$W(\sigma_0, \alpha) = W(\sigma_1, \alpha).$$

• A chain σ is *null homologous* if for all $\alpha \in \mathbb{C} \setminus U$

$$W(\sigma,\alpha)=0.$$

Theorem

Given two loops $\gamma_0, \gamma_1 \colon [0,1] \to U \subset \mathbb{C}$

- If γ_0 and γ_1 are homotopic, then they are homologous.
- If γ_0 and γ_1 are close together, then they are homologous.

Theorem

- Let U be an open set and σ a closed chain which is null homologous in U. Let z₁,..., z_n be a finite number of distinct points of U.
- Let γ_i (i = 1,...,n) be the boundary of a closed disc V_i contained in U, containing z_i and oriented counterclockwise.
- Assume that V_i does not intersect V_j if $i \neq j$.
- Let $m_i = W(\sigma, z_i)$.
- Let U^* be the set obtained by deleting $z_1 \dots, z_n$ from U.

Then σ is homologous to $\sum m_i \gamma_i$ in U^* .

Example

The homology class of a chain σ on $\mathbb{C} \setminus \{z_1, \ldots, z_k\}$ is determined by the winding numbers of σ around each of the points $\{z_1, \ldots, z_k\}$.

Proof.

Compute the winding numbers of both σ and $\sum m_i \gamma_i$ for points $\alpha \in \mathbb{C} \setminus U^*$.

- for $\alpha \notin U$, both winding numbers vanish.
- for $\alpha \in \{z_1, \ldots, z_n\}$, both winding numbers agree.