Analysis in one complex variable Lecture 6 – Global Cauchy

Gil Cavalcanti

Utrecht University

May 2020 Utrecht

L06P02 - Winding number

Cavalcanti

Theorem (Cauchy)

If two cycles γ_0 *and* γ_1 *on* U *are homologous and* $f: U \to \mathbb{C}$ *is holomorphic, then*

$$\int_{\gamma_0} f dz = \int_{\gamma_1} f dz.$$

Theorem (Cauchy equivalent)

Let γ *be a null homologous cycle on* U *and let* $f: U \to \mathbb{C}$ *be holomorphic. Then*

$$\int_{\gamma} f \, dz = 0.$$

L06P02 - Winding number

Global Cauchy Integral Formula

Theorem (Global Cauchy Integral Formula)

Let γ *be a null homologous cycle on* $U \subset \mathbb{C}$ *and let* $f : U \to \mathbb{C}$ *be a holomorphic function. Let* $z_0 \in U$ *be a point which is not in* γ *, then*

$$\frac{1}{2\pi i}\int_{\gamma}\frac{f(z)}{z-z_0}dz=W(\gamma,z_0)f(z_0).$$

Global Cauchy Integral Formula

Proof.

Since $\frac{f(z)}{z-z_0}$ is only defined in $U \setminus \{z_0\}$ we should not consider γ as a path on U but on $U^* = U \setminus \{z_0\}$. From last lecture, we have that γ is homologous to $W(\gamma, z_0)\gamma_0$ on U^* , where γ_0 is a small circle around z_0 traced counterclockwise.

By Cauchy's theorem

$$\begin{split} \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z - z_0} dz &= W(\gamma, z_0) \frac{1}{2\pi i} \int_{\gamma_0} \frac{f(z)}{z - z_0} dz \\ &= W(\gamma, z_0) f(z_0) \end{split}$$

Idea of the proof.

- subdividing a path that is part of cycle does not change the homology class of the cycle.
- any path is homotopic to a rectangular path: a finite concatenation of horizontal and vertical paths.
- **③** if a rectangular cycle, *γ* is null homologous, there are finitely many rectangles, *R_i*, and complex numbers, *m_i*, such that $γ = \sum_{i=1}^{n} m_i ∂R_i$.

Idea of the proof.

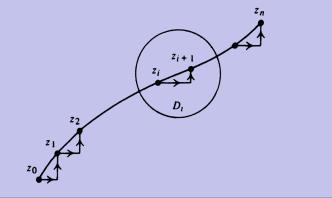
1. Subdividing a path that is part of cycle does not change the homology class of the cycle. The winding number is given by

$$\int_{\gamma} \frac{1}{z - \alpha} dz$$

And integrals can be computed by splitting the domain in two and adding the result.

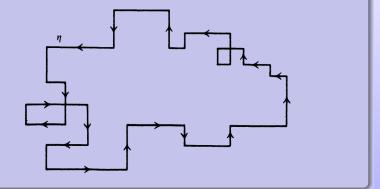
Idea of the proof.

2. Any path is homotopic to a rectangular path: a finite concatenation of horizontal and vertical paths.



Idea of the proof.

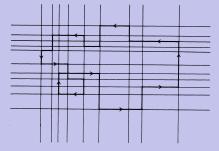
2. Any path is homotopic to a rectangular path: a finite concatenation of horizontal and vertical paths.



Idea of the proof.

3. If a rectangular cycle, γ is null homologous, there are finitely many rectangles, R_i , and complex numbers, m_i , such that $\gamma = \sum_{i=1}^n m_i \partial R_i$.

Use the vertical and horizontal part of the cycle to split the plane into a finite collection of rectangles plus infinite strips.



Idea of the proof.

- Pick $z_i \in R_i$ and let $m_i = W(\gamma, z_i)$.
- Only finitely many *m_i* are nonzero.
- Check that $\gamma = \sum_{i=1}^{n} m_i \partial R_i$.

Idea of the proof.

$$\int_{\gamma} f \, dz = \int_{\sum_{i=1}^{n} m_i \partial R_i} f \, dz.$$
$$= \sum_{i=1}^{n} m_i \int_{\partial R_i} f \, dz.$$
$$= 0$$

L06P02 - Winding number

Cavalcanti