Analysis in one complex variable Lecture 7 - Logarithm

Gil Cavalcanti

Utrecht University

May 2020
Utrecht

Logarithms

- Using existence of primitives on simply connected sets we defined

$$
\log z=\int_{0}^{z} \frac{1}{\xi} d \xi
$$

where the integral is over any path γ that does not cross the negative real numbers.

- Basic property:

$$
e^{\log z}=z
$$

Logarithms

- For $n \in \mathbb{Z}$, adding $2 \pi i n$ to \log will still give

$$
e^{\log z+2 \pi i n}=z
$$

The principal value of \log is characterised by $\log 1=0$.

- Instead of removing the negative real numbers, we could have removed any path from 0 whose complement is simply connected.

Logarithms

Basic facts

- For $\theta \in(-\pi, \pi), \log \left(r e^{i \theta}\right)=\log r+i \theta$,
- $\log (z w)=\log z+\log w \bmod 2 \pi i$,
- $\log e^{z}=z \bmod 2 \pi i$.

Logarithms

The open sets $U_{0}=\mathbb{C} \backslash \mathbb{R}_{-}$and $U_{1}=\mathbb{C} \backslash \mathbb{R}_{+}$have the properties

- $\exp ^{-1}\left(U_{i}\right)=\cup_{j} V_{i j}$ is a disjoint union of open sets.

- exp: $V_{i j} \rightarrow U_{i}$ is a diffeomorphism for all j.
- $\exp : \mathbb{C} \rightarrow \mathbb{C}^{*}$ is a (smooth) covering space.

Logarithms

Given $f: U \rightarrow \mathbb{C} \backslash\{0\}$, can we define $\log f$?
Yes, if $f(U) \subset \mathbb{C} \backslash \mathbb{R}_{-}$, for example.

Proposition

If U is simply connected and f is continuous, there is a function $\log f: U \rightarrow \mathbb{C}$ such that

$$
e^{\log f}=f .
$$

Any other function $g: U \rightarrow \mathbb{C}$ with this property satisfies

$$
g=\log f \bmod 2 \pi i
$$

Logarithms

Proof.

Particular case 1 : f is holomorphic.
Since $f \neq 0$, the function $\frac{f^{\prime}}{f}$ is holomorphic in U. Since U is simply connected, $\frac{f^{\prime}}{f}$ has a primitive:

$$
\log f(z):=\log f\left(z_{0}\right)+\int_{z_{0}}^{z} \frac{f^{\prime}}{f} d z
$$

Consider the function

$$
F: U \rightarrow \mathbb{C}, \quad F(z)=\frac{e^{\log f(z)}}{f(z)}
$$

Notice

$$
F\left(z_{0}\right)=\frac{e^{\log f\left(z_{0}\right)}}{f\left(z_{0}\right)}=1
$$

Logarithms

Proof.

$$
F: U \rightarrow \mathbb{C}, \quad F(z)=\frac{e^{\log f(z)}}{f(z)}
$$

Then

$$
\begin{aligned}
\frac{d F}{d z} & =\frac{f(z) \frac{f^{\prime}(z)}{f(z)} e^{\log f(z)}-e^{\log f(z)} f^{\prime}(z)}{f(z)} \\
& =0
\end{aligned}
$$

Hence $F(z)=F\left(z_{0}\right)=1$. (recall $F(z)=\frac{e^{\log f(z)}}{f(z)}$)
And $F(z)=1 \Rightarrow e^{\log f(z)}=f(z)$.

Logarithms

Proof.

Particular case $2: U$ is an interval and f is differentiable. Then $\frac{f^{\prime}}{f}$ has a primitive (both real and imaginary parts of $\frac{f^{\prime}}{f}$ have primitives).
Then repeat the previous argument.

Logarithms

Example

Given $\gamma:[0,1] \rightarrow \mathbb{C}, \gamma(t)=e^{2 \pi i n t}$, since $[0,1]$ is simply connected, $\log \gamma$ exists.

Logarithms

Proof.

Particular case 3: f is differentiable. Then $\frac{d f}{f}$ satisfies $d \frac{d f}{f}=\frac{\left(d^{2} f\right) f-d f \wedge d f}{f^{2}}=0$, that is it is closed. Since U is simply connected, it has a primitive. Then repeat the previous argument.

Logarithms

Proof.

General case: Pick a point $x_{0} \in U$ and choose an arbitrary inverse $z_{0}=\log \left(f\left(x_{0}\right)\right)$.
If $f\left(x_{0}\right) \in U_{0}$ then x_{0} has a neighbouhood \tilde{U} that maps to U_{0}.

Let $V_{0 j}$ be the open set on \mathbb{C} containing z_{0} that maps diffeomorphically to U_{0}, then define

$$
\log f(z)=\exp ^{-1} f(z), \quad z \in \tilde{U}
$$

${ }_{\text {Lo7p01 }}$ Repeat this changing from U_{0} to U_{1} as needed.

Logarithms

Proof (The grown up version).

Want to find a lift \tilde{f}

There is one if and only if $f_{*} \pi_{1}(U) \subset \exp _{*} \pi_{1}(\mathbb{C})=\{0\}$.

