Analysis in one complex variable Lecture 7 - Laurent Series

Gil Cavalcanti

Utrecht University

May 2020
Utrecht

Recall

- If $f=\sum_{n=0}^{\infty} a_{n} z^{n}$ is analytic, its radius of convergence satisfies $\frac{1}{r}=\lim \sup \left|a_{n}\right|^{1 / n}$.
- If f is holomorphic, then it is analytic,

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}
$$

where

$$
a_{n}=\frac{1}{2 \pi i} \int_{\partial D} \frac{f(\xi)}{\left(\xi-z_{0}\right)^{n+1}} d \xi
$$

If D is centered at z_{0} and has radius r, then the radius of convergence of the series is at least r.

Laurent series

- If $f=\sum_{n=0}^{\infty} a_{n} z^{n}$ is analytic, with radius of convergence r, then $g(z):=f(1 / z)=\sum_{n=0}^{\infty} a_{n} z^{-n}$ converges for $|z|>1 / r$.
- Given a series $f=\sum_{n=-\infty}^{\infty} a_{n} z^{n}$, we let

$$
f_{+}=\sum_{n=0}^{\infty} a_{n} z^{n} \quad \text { and } \quad f_{-}=\sum_{n=-1}^{-\infty} a_{n} z^{n}
$$

Laurent series

Lemma

If the radius of convergence of f_{+}is R and of $f_{-}(1 / z)$ is $1 / r$ then f is analytic on the annulus $A=\{z \in \mathbb{C}: r<|z|<R\}$.

Proof.

For each $z_{0} \in A$, we have $z=z_{0}+\left(z-z_{0}\right)$ and

$$
\begin{aligned}
\frac{1}{z} & =\frac{1}{z_{0}+\left(z-z_{0}\right)}=\frac{1}{z_{0}} \frac{1}{1+\frac{1}{z_{0}}\left(z-z_{0}\right)} \\
& =\frac{1}{z_{0}} \sum_{n=0}^{\infty}(-1)^{n} \frac{\left(z-z_{0}\right)^{n}}{z_{0}^{n}}
\end{aligned}
$$

So can re-write f as a power series in $\left(z-z_{0}\right)$.

Laurent series

Theorem

Iff is holomorphic in the annulus $A=\left\{z \in \mathbb{C}: r<\left|z-z_{0}\right|<R\right\}$, then

$$
f(z)=\sum_{n=-\infty}^{\infty} a_{n}\left(z-z_{0}\right)^{n}
$$

where

$$
a_{n}=\frac{1}{2 \pi i} \int_{\partial D} \frac{f(\xi)}{\left(\xi-z_{0}\right)^{n+1}} d \xi
$$

and the series converges in A.

Proof.

The same as in the previous case, but now split in two parts: one for the positive and one for the negative parts.

Laurent series

Theorem

Iff is holomorphic in the annulus $A=\left\{z \in \mathbb{C}: r<\left|z-z_{0}\right|<R\right\}$, with

$$
f(z)=\sum_{n=-\infty}^{\infty} a_{n}\left(z-z_{0}\right)^{n}
$$

then

$$
f^{\prime}(z)=\sum_{n=-\infty}^{\infty} n a_{n}\left(z-z_{0}\right)^{n-1}
$$

Laurent series

Example

Consider $f(z)=\frac{1}{z(1-z)}$.
Using

$$
\begin{gathered}
\frac{1}{1-z}=\sum_{n=0}^{\infty} z^{n} \quad \text { for }|z|<1 \\
f(z)=\sum_{n=-1}^{\infty} z^{n}
\end{gathered}
$$

Laurent series

Example

Consider $f(z)=\frac{1}{z(1-z)}$.
Using

$$
\frac{1}{1-z}=-\frac{1}{z} \frac{1}{1-1 / z}=-\frac{1}{z} \sum_{n=0}^{\infty} z^{-n}=-\sum_{n=0}^{\infty} z^{-n-1}
$$

We have

$$
f(z)=-\sum_{n=0}^{\infty} z^{-n-2}, \quad \text { for }|z|>1
$$

