Analysis in one complex variable Lecture 8 – Singularities

Gil Cavalcanti

Utrecht University

May 2020 Utrecht

Definition

A holomorphic function $f: U \to \mathbb{C}$ has a *singularity* at $z_0 \in \mathbb{C}$ if there is a disc $D \subset \mathbb{C}$ centered at z_0 such that $D \setminus \{z_0\} \subset U$, that is f is defined in all points of the disc except z_0 .

Notice that if *f* has a singularity at a point z_0 , then z_0 is *not* in the domain of *f*.

Theorem

Let $f: U \to \mathbb{C}$ be holomorphic and let z_0 be a singularity of f. If f is bounded in a neighbourhood of z_0 , then there is a unique continuous extension of f to z_0 and this extension is holomorphic.

Proof.

Say $z_0 = 0$. Since *f* is analytic in the annulus it has a Laurent expansion

$$f(z) = \sum_{n = -\infty}^{\infty} a_n z^n,$$

 ∞

where

$$a_n = \frac{1}{2\pi i} \int_{\partial D_r} \frac{f(\xi)}{\xi^{n+1}} d\xi.$$

Proof.

We want to show that $a_n = 0$ for n < 0. Since *f* is bounded, say |f| < M, we have:

$$egin{aligned} a_n|&=rac{1}{2\pi}\left|\int_{\partial D_r}rac{f(\xi)}{\xi^{n+1}}d\xi
ight|\ &\leqrac{1}{2\pi}\int_{\partial D_r}rac{|f(\xi)|}{r^{n+1}}d|\xi\ &\leqrac{1}{2\pi}\int_{\partial D_r}rac{M}{r^{n+1}}d|\xi|\ &\leqrac{1}{2\pi}2\pi rrac{M}{r^{n+1}}\ &\leqrac{M}{r^n}=Mr^{-n}. \end{aligned}$$

Proof.

We want to show that $a_n = 0$ for n < 0.

 $|a_n| \leq Mr^{-n}.$

where *r* is an arbitrary positive number. For n < 0 we conclude that $a_n = 0$.

Definition

A point z_0 is a *removable singularity* of a meromorphic function $f: U \to \mathbb{C}$ if is a singularity of f and one can extend f to z_0 to obtain a function holomorphic at z_0 .

That is, a removable singularity is not really a singularity.

Example

Let $f: U \to \mathbb{C}$ be holomorphic and $f(z_0) = 0$. Define

$$g: U \setminus \{z_0\} \to \mathbb{C}, \qquad g(z) = \frac{f(z)}{z - z_0}.$$

Then *g* has a removable singularity at z_0 . Indeed, the power series expansion of *f* is $\sum_{n=1}^{\infty} a_n (z - z_0)^n$, hence

$$g(z) = \sum_{n=1}^{\infty} a_n (z - z_0)^{n-1}$$

Extend $g(z_0) = a_1$.

L08P01 - Singularities

Definition

A point z_0 is a zero of order m of a holomorphic function $f: U \to \mathbb{C}$ if f and its first m - 1 derivatives vanish at z_0 but $\frac{d^m f}{dz^m}|_{z_0} \neq 0$.

Example

Let $f: U \to \mathbb{C}$ be holomorphic and z_0 be a zero of order m of f, then $\frac{f(z)}{(z-z_0)^m}$ has a removable singularity at z_0

Exercise

Let $f, g: U \to \mathbb{C}$ be holomorphic and z_0 be a zero of order m of f and a zero of order $n \le m$ of g then $\frac{f}{g}$ has a removable singularity at z_0

Definition

Let $f: U \to \mathbb{C}$ have a singularity at z_0 . We say that z_0 is a *pole* of f it the Laurent expansion of f at z_0 has finitely many nonzero terms with negative exponent:

$$f(z) = \sum_{n=-m}^{\infty} a_n (z - z_0)^n.$$

Definition

If *f* has a pole at z_0 , the biggest value of *n* for which $a_{-n} \neq 0$ is the *order* of the pole of *f* at z_0 .

Definition

A *simple pole* is a pole of order one.

L08P01 - Singularities

Definition

A *meromorphic* function on $U \subset \mathbb{C}$ is a holomorphic function defined on U whose singularities are all poles.

Lemma

If f has a zero of order m at z_0 , then $\frac{1}{f}$ has a pole of order m at z_0 and vice versa.

Proof.

Write
$$f = \sum_{n=m}^{\infty} a_n (z - z_0)^n = (z - z_0)^m \sum_{n=0}^{\infty} a_{n+m} (z - z_0)^n$$
.
Then

$$\frac{1}{f} = \frac{1}{(z - z_0)^m \sum_{n=0}^{\infty} a_{n+m} (z - z_0)^n} = \frac{1}{(z - z_0)^m} \sum_{n=0}^{\infty} \tilde{a}_n (z - z_0)^n.$$

L08P01 - Singularities

Lemma

If f has a zero of order m at z_0 and g has a pole of order n at z_0 , then

- gf has a zero of order m n at z_0 if m > n,
- gf has a pole of order n m at z_0 if n > m.