Analysis in one complex variable Lecture 8 – Singularities

Gil Cavalcanti

Utrecht University

May 2020 Utrecht

Recall

- Singularities,
- Removable singularities,
- Poles.

Essential singularities

Definition

Let $f: U \to \mathbb{C}$ have a singularity at z_0 . We say that z_0 is an *essential singularity* of f it the Laurent expansion of f at z_0 has infinitely many nonzero terms with negative exponent.

Essential singularities

Theorem (Casorati–Weierstrass)

If f has an essential singularity at z_0 *, then for any disc* D *around* z_0 $f(D \setminus \{z_0\})$ *is dense on* \mathbb{C} *.*

Proof.

Assume by contradiction that there is *D* such that $f(D \setminus \{z_0\})$ is not dense on \mathbb{C} .

Then there is $\alpha \in \mathbb{C}$ and a disc D' around α such that $D' \notin f(D \setminus \{z_0\})$. Consider

$$g: D \setminus \{z_0\} \to \mathbb{C}, \qquad g(z) = \frac{1}{f(z) - \alpha}$$

g is bounded, hence z_0 is a removable singularity.

Essential singularities

Proof.

Hence *g* has at most a zero of some order, say, *m* at z_0 . Hence $f(z) - \alpha = \frac{1}{g}$ has a pole of order *m* at z_0 . (contradiction)

Definition

A *biholomorphism* between U and $V \subset \mathbb{C}$ is a holomorphic map $f: U \to V$ with holomorphic inverse.

Lemma

If $f: U \to V$ *is a holomorphic bijection, then* f *is a biholomorphism.*

Proof.

Indeed, if f' is nowhere zero, then f has a holomorphic inverse, but if f' vanishes at a point then f is not a bijection.

Lemma (L03P02)

Let $f(z) = a_n z^n + ...$ with $a_n \neq 0$. Then there is an analytic diffeomorphism φ of a neighbourhood of 0 such that $f \circ \varphi(z) = z^n$.

Theorem

The only biholomorphisms of \mathbb{C} (*with itself*) *are maps of the form* f(z) = az + b *with* $a \neq 0$.

Proof.

Let *f* be a biholomorphism of \mathbb{C} . By composing *f* with a translation we may assume that f(0) = 0. Hence *f* maps a neighbourhood *U* of 0 to a neighbourhood of 0 and, since *f* is a bijection, *f* maps the complement of *U* to the complement of a neighbourhood of 0. Hence the image of $g: D \setminus \{0\} \to \mathbb{C}, g(z) := f(1/z)$ not dense. Therefore *g* has a pole at 0.

Proof.

If $f(z) = \sum a_n z^n$, then $g(z) = \sum a_n z^{-n}$. Hence f is a polynomial. Since a complex polynomial of degree n has n zero (counted with multiplicity, but f is a bijection, we must have $f(z) = az^n$. Hence n = 1.

Definition

The *Riemann sphere* is the union $S := C \cup \{\infty\}$. A function $f : S \to \mathbb{C}$ is *holomorphic* if $f|_{\mathbb{C}} : \mathbb{C} \to \mathbb{C}$ is holomorphic and

$$g: \mathbb{C} \to \mathbb{C}, \qquad g(z) = \begin{cases} f(1/z) & \text{for } z \neq 0, \\ f(\infty) & \text{for } z = 0 \end{cases}$$

is holomorphic.

Same idea holds for meromorphic functions.

Lemma

A holomorphic function on the Riemann sphere is constant.

Proof.

Let *f* be a holomorphic function on *S* and write its power series expansion

$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$

Then

$$g(z) = \sum_{n=0}^{\infty} a_n z^{-n}$$

is holomorphic, hence $a_n = 0$ for n > 0.

Lemma

A meromorphic function on the Riemann sphere is a rational function.

Proof.

It is an exercise to show that if f = p/q for p, q polynomials, then f is a meromorphic function on S. Let f be a meromorphic function on S. Since S is compact and the poles of a meromorphic function must form a discrete set, f has finitely many poles, say z_1, \ldots, z_n and maybe also ∞ . Let m_i be the order of the pole z_i .

Proof.

Consider the function

$$h(z) = f(z)\Pi_i(z-z_i)^{m_i}.$$

Then *h* has only removable singularities on \mathbb{C} and maybe a pole at ∞ . Writing out the series expansion of *h* we have

$$h(z) = \sum_{n=0}^{\infty} a_n z^n \qquad \Rightarrow \qquad h(1/z) = \sum_{n=0}^{\infty} a_n z^{-n}$$

and *h* has a pole at infinity if and only if $a_n = 0$ for all but finitely many values of *n*.

Proof.

That is *h* is a poloynomial.

$$f(z) = \frac{h(z)}{\prod_i (z - z_i)^{m_i}}$$

is a rational function.

Cavalcanti

Lemma

Let p and q be polynomials and consider f = p/q*. Then*

if deg(p) > deg(q), *f* has a pole at ∞ of order deg(p) - deg(q),

• *if* $\deg(p) < \deg(q)$, *f* has a zero at ∞ of order $\deg(q) - \deg(p)$. In particular, the sum of the order of the zeros of a meromorphic function *f* on *S* is equal to the sums of the order of the poles of *f*.

Lemma

The biholomorphisms of S with itself are maps of the form

$$f(z) = \frac{az+b}{cz+d}$$
, with $ad - bc \neq 0$.

Proof.

Case 1) $f(\infty) = \infty$. Then $f : \mathbb{C} \to \mathbb{C}$ is a biholomorphism and $f(z) = az + b = \frac{az+b}{0z+1}$ with $0 \neq a = ad - bc$.

Proof.

Case 2) If $f(\infty) = z_0$ let $g: S \to S$ be $g(z) = \frac{1}{z-z_0}$. Then g is a biholomorphism of S and $g \circ f(\infty) = \infty$, hence

$$cz + d = g \circ f(z) = \frac{1}{f(z) - z_0}.$$

Resolving for f(z):

$$f(z) = \frac{1}{cz+d} + z_0 = \frac{cz_0z+1+dz_0}{cz+d}$$

L08P01 - Singularities