Analysis in one complex variable Lecture 9 - The Riemann sphere

Gil Cavalcanti

Utrecht University

May 2020
Utrecht

Recall

Theorem (Casorati-Weierstrass)

Iff has an essential singularity at z_{0}, then for any disc D around z_{0}, $f\left(D \backslash\left\{z_{0}\right\}\right)$ is dense on \mathbb{C}.

Remark

Iff has a pole at z_{0}, then compact set $K \subset \mathbb{C}$, there is a disc D around z_{0} such that $f\left(D \backslash\left\{z_{0}\right\}\right) \cap K=\emptyset$.

Recall

Idea of the proof.

If f has a pole at z_{0}, then it has a Laurent expansion

$$
f(z)=\sum_{n=-m}^{\infty} a_{n}\left(z-z_{0}\right)^{n}
$$

The term $\left|a_{-m}\left(z-z_{0}\right)^{-m}\right|$ goes to infinity much faster than any other term in the series as $\left|z-z_{0}\right|$ goes to 0 , hence determines the behaviour of f in a neighbourhood of z_{0}.

Recall - The Riemann sphere

Definition

The Riemann sphere is the union $S:=\mathbb{C} \cup\{\infty\}$.
A function $f: S \rightarrow \mathbb{C}$ is holomorphic/meromorphic/smooth if
-

$$
f \mid \mathbb{C}: \mathbb{C} \rightarrow \mathbb{C} \quad \text { and }
$$

-

$$
g: \mathbb{C} \rightarrow \mathbb{C}, \quad g(z)= \begin{cases}f(1 / z) & \text { for } z \neq 0 \\ f(\infty) & \text { for } z=0\end{cases}
$$

are holomorphic/meromorphic/smooth.

What happened here?!

Answer

You just came across your second abstract manifold ever.

Question

Second?

What happened here?!

Some spaces are locally indistinguishable from Euclidean space: you can see any part of it on the screen of your phone.

What happened here?!

But when you try to see the space as a whole it turns out it is not \mathbb{R}^{n}.

What happened here?!

For an abstract manifold we have an atlas, but not a "3D" model.

What happened here?!

The Riemann sphere is a manifold with a very thin atlas: it has two pages (charts) and the relation between these charts is

$$
w=\frac{1}{z}
$$

What happened here?!

If $f: U \rightarrow \mathbb{C} \cup\{\infty\}$ is a function we can consider the sets

$$
U_{\infty}=\{z \in U: f(z) \neq \infty\} \quad \text { and } \quad U_{0}=\{z \in U: f(z) \neq 0\}
$$

To study the behaviour of f we can restrict ourselves to these two sets:

$$
f: U_{\infty} \rightarrow \mathbb{C}, \quad \frac{1}{f}: U_{0} \rightarrow \mathbb{C}
$$

Meromorphic functions are functions

Given a meromorphic function $f: U \rightarrow \mathbb{C}$, if $f(z)=\sum_{n=-m}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$, we rewrite it

$$
\begin{aligned}
f(z) & =a_{-m}\left(z-z_{0}\right)^{-m} \sum_{n=-m}^{\infty} \frac{a_{n}}{a_{-m}}\left(z-z_{0}\right)^{n+m} \\
& =a_{-m}\left(z-z_{0}\right)^{-m}\left(1+\frac{a_{-m+1}}{a_{-m}}\left(z-z_{0}\right)+\frac{a_{-m+2}}{a_{-m}}\left(z-z_{0}\right)^{2}+\ldots\right)
\end{aligned}
$$

Meromorphic functions are functions

Hence
$\frac{1}{f(z)}=\frac{\left(z-z_{0}\right)^{m}}{a_{-m}}\left(1+\frac{a_{-m+1}}{a_{-m}}\left(z-z_{0}\right)+\frac{a_{-m+2}}{a_{-m}}\left(z-z_{0}\right)^{2}+\ldots\right)^{-1}$
So we can define $f\left(z_{0}\right)=\infty$ for all poles z_{0}. We have a holomorphic function

$$
f: U \rightarrow \mathbb{C} \cup\{\infty\}
$$

Meromorphic functions are functions

Notice that by Casorati-Weierstrass theorem, holomorphic functions with essential singularities do not extend continuously to $\mathbb{C} \cup\{\infty\}$.

How round is the Riemann sphere?

We can parametrize a sphere minus one point (north pole) using stereographic projection:

How round is the Riemann sphere?

We can parametrize a sphere minus one point (north pole) using stereographic projection:

How round is the Riemann sphere?

We can parametrize a sphere minus one point (north pole) using stereographic projection:

How round is the Riemann sphere?

We can parametrize a sphere minus one point (north pole) using stereographic projection:

How round is the Riemann sphere?

We can parametrize a sphere minus one point (north pole) using stereographic projection:

How round is the Riemann sphere?

We can parametrize a sphere minus one point (north pole) using stereographic projection:

How round is the Riemann sphere?

We can parametrize a sphere minus one point (north pole) using stereographic projection:

How round is the Riemann sphere?

Similarly for the south pole...

How round is the Riemann sphere?

Similarly for the south pole...

How round is the Riemann sphere?

Similarly for the south pole...

$$
w(a, b, c)=\frac{(a,-b)}{1+c}=\frac{a-i b}{1+c}
$$

How round is the Riemann sphere?

Notice that

$$
z w=\left(\frac{a+i b}{1-c}\right)\left(\frac{a-i b}{1+c}\right)=\frac{a^{2}+b^{2}}{1-c^{2}}=1
$$

That is $z=\frac{1}{w}$.
The Riemann sphere is just the usual sphere in \mathbb{R}^{3} parametrized by two stereographic projections.

