Analysis in one complex variable Lecture 9 – The Riemann sphere

Gil Cavalcanti

Utrecht University

May 2020 Utrecht

L09P01 - The Riemann sphere

Recall

Theorem (Casorati–Weierstrass)

If f has an essential singularity at z_0 *, then for any disc* D *around* z_0 *,* $f(D \setminus \{z_0\})$ *is dense on* \mathbb{C} *.*

Remark

*If f has a pole at z*₀*, then compact set K* \subset \mathbb{C} *, there is a disc D around z*₀ *such that f*(D\{*z*₀}) \cap *K* = \emptyset .

Recall

Idea of the proof.

If f has a pole at z_0 , then it has a Laurent expansion

$$f(z) = \sum_{n=-m}^{\infty} a_n (z - z_0)^n.$$

The term $|a_{-m}(z - z_0)^{-m}|$ goes to infinity much faster than any other term in the series as $|z - z_0|$ goes to 0, hence determines the behaviour of *f* in a neighbourhood of z_0 .

Recall – The Riemann sphere

Definition

۵

٩

The *Riemann sphere* is the union $S := \mathbb{C} \cup \{\infty\}$. A function $f : S \to \mathbb{C}$ is *holomorphic/meromorphic/smooth* if

$$f|_{\mathbb{C}} \colon \mathbb{C} \to \mathbb{C}$$
 and

$g \colon \mathbb{C} \to \mathbb{C}, \qquad g(z) = egin{cases} f(1/z) & ext{ for } z eq 0, \\ f(\infty) & ext{ for } z = 0 \end{cases}$

are holomorphic/meromorphic/smooth.

Answer

You just came across your second abstract manifold ever.

Second?

L09P01 - The Riemann sphere

Some spaces are locally indistinguishable from Euclidean space: you can see any part of it on the screen of your phone.

But when you try to see the space as a whole it turns out it is not \mathbb{R}^n .

For an abstract manifold we have an atlas, but not a "3D" model.

The Riemann sphere is a manifold with a very thin atlas: it has two pages (charts) and the relation between these charts is

$$w = \frac{1}{z}.$$

If $f: U \to \mathbb{C} \cup \{\infty\}$ is a function we can consider the sets $U_{\infty} = \{z \in U: f(z) \neq \infty\}$ and $U_0 = \{z \in U: f(z) \neq 0\}$ To study the behaviour of f we can restrict ourselves to these

To study the behaviour of f we can restrict ourselves to these two sets:

$$f\colon U_{\infty} o \mathbb{C}, \qquad rac{1}{f}\colon U_0 o \mathbb{C}$$

Meromorphic functions are functions

Given a meromorphic function $f: U \to \mathbb{C}$, if $f(z) = \sum_{n=-m}^{\infty} a_n (z - z_0)^n$, we rewrite it

$$f(z) = a_{-m}(z - z_0)^{-m} \sum_{n=-m}^{\infty} \frac{a_n}{a_{-m}} (z - z_0)^{n+m}$$

= $a_{-m}(z - z_0)^{-m} (1 + \frac{a_{-m+1}}{a_{-m}} (z - z_0) + \frac{a_{-m+2}}{a_{-m}} (z - z_0)^2 + \dots)$

L09P01 - The Riemann sphere

Meromorphic functions are functions

Hence

$$\frac{1}{f(z)} = \frac{(z-z_0)^m}{a_{-m}} \left(1 + \frac{a_{-m+1}}{a_{-m}}(z-z_0) + \frac{a_{-m+2}}{a_{-m}}(z-z_0)^2 + \dots \right)^{-1}$$

So we can define $f(z_0) = \infty$ for all poles z_0 . We have a holomorphic function

 $f\colon U\to \mathbb{C}\cup\{\infty\}.$

L09P01 - The Riemann sphere

Meromorphic functions are functions

Notice that by Casorati–Weierstrass theorem, holomorphic functions with essential singularities do not extend continuously to $\mathbb{C} \cup \{\infty\}$.

We can parametrize a sphere minus one point (north pole) using stereographic projection:

L09P01 - The Riemann sphere

Similarly for the south pole...

Similarly for the south pole...

How round is the Riemann sphere? Similarly for the south pole...

L09P01 - The Riemann sphere

Notice that

$$zw = \left(\frac{a+ib}{1-c}\right)\left(\frac{a-ib}{1+c}\right) = \frac{a^2+b^2}{1-c^2} = 1.$$

That is $z = \frac{1}{w}$.

The Riemann sphere is just the usual sphere in \mathbb{R}^3 parametrized by two stereographic projections.