Analysis in one complex variable Lecture 10 - Tricks with integrals

Gil Cavalcanti

Utrecht University

May 2020
Utrecht

Trick 2

Given a suitable real function $f: \mathbb{R} \rightarrow \mathbb{R}$ we want to compute

$$
\int_{-\infty}^{\infty} f(x) d x
$$

We will assume that

- f is the restriction to \mathbb{R} of a holomorphic function with singularities $f: \mathbb{C} \backslash\left\{z_{1}, \ldots z_{n}\right\} \rightarrow \mathbb{C}$
- $\lim _{A, B, T \rightarrow \infty} \int_{R_{A, B, T}^{+}} f(z) d z=0$, where $R_{A, B, T}^{+}$are the three sides of the rectangle below outside of the real line

Trick 2

In this case, for A, B, T large enough,

$$
\int_{-A}^{B} f(x) d x+\int_{R_{A, B, T}^{+}} f(z) d z=2 \pi i\left(\sum_{j: \operatorname{Im}\left(z_{j}\right)>0} \operatorname{Res}_{z_{j}}(f)\right)
$$

Taking the limit:

$$
\int_{-\infty}^{\infty} f(x) d x=2 \pi i\left(\sum_{j: \operatorname{Im}\left(z_{j}\right)>0} \operatorname{Res}_{z_{j}}(f)\right)
$$

Trick 2

How do we check that $\lim _{A, B, T \rightarrow \infty} \int_{R_{A, B, T}^{+}} f(z) d z=0$?

Lemma

Let $a>0$ and Suppose that f is meromorphic function on \mathbb{C} with finitely many poles and without poles in the real line. If there is $K \in \mathbb{R}$ such that

$$
|f(z)| \leq \frac{K}{|z|}
$$

for all z outside a (large) disc centered at the origin, then $\lim _{A, B, T \rightarrow \infty} \int_{R_{A, B, T}^{+}} e^{i a z} f(z) d z=0$.

Trick 2

Proof.

Need to compute three integrals but two are similar. For the right hand edge we have $z=B+i y$

$$
\begin{aligned}
\left|\int_{0}^{T} e^{i a(B+i y)} f(B+i y) i d y\right| & \leq \int_{0}^{T}\left|e^{i a B-a y} f(B+i y)\right| d y \\
& \leq \int_{0}^{T}\left|e^{-a y}\right| \frac{K}{B} d y \\
& =\left.\frac{K}{B}\left|\frac{e^{-a y}}{a}\right|\right|_{0} ^{T} \\
& =\frac{K}{B} \frac{1-e^{-a T}}{a}
\end{aligned}
$$

Trick 2

Proof.

For the top edge we have $z=x+i T$ and we take $T=A+B$

$$
\begin{aligned}
\left|\int_{-A}^{B} e^{i a(x+i T)} f(x+i T) d x\right| & \leq \int_{-A}^{B}\left|e^{i a x-a T} f(x+i T)\right| d x \\
& \leq \int_{-A}^{B}\left|e^{-a T}\right| \frac{K}{T} d x \\
& =e^{-a T} \frac{K}{T}(A+B) .
\end{aligned}
$$

Trick 2

Claim

Let $a>0$ and Suppose that f is meromorphic function on \mathbb{C} with finitely many poles and without poles in the real line. If there is $K \in \mathbb{R}$ such that

$$
|f(z)| \leq \frac{K}{|z|}
$$

for all z outside a (large) disc centered at the origin, then

$$
\int_{-\infty}^{\infty} e^{i a x} f(x) d x=2 \pi i\left(\sum_{j: \operatorname{Im}\left(z_{j}\right)>0} \operatorname{Res}_{z_{j}} e^{i a z} f(z)\right)
$$

Notice: $\cos a x=\frac{e^{i a}+e^{-i a}}{2}$ and $\sin a x=\frac{e^{i a}-e^{-i a}}{2 i}$

