Analysis in one complex variable Lecture 12 – The disc

Gil Cavalcanti

Utrecht University

Jun 2020 Utrecht

L12P01 - The disc

Cavalcanti

Recall

Definition

- Let $U, V \subset \mathbb{C}$ be open subsets. An *isomorphism* between U and V is holomorphic bijection $\varphi \colon U \to V$ with holomorphic inverse.
- An *automorphism* of $U \subset \mathbb{C}$ is an isomorphism $\varphi \colon U \to U$.

Remark

If φ : $U \rightarrow V$ *is holomorphic and bijective, then is is an isomorphism.*

The Riemann mapping Theorem

Theorem (Riemann mapping Theorem)

Let M be a connected and simply-connected one (complex) dimensional space. Then M is isomorphic to exactly one of the following

- The Riemann sphere, $\mathbb{C} \cup \{\infty\}$,
- The complex plane, \mathbb{C} ,
- The unit disc, $D \subset \mathbb{C}$.

Remark

No open proper subset $U \subsetneq \mathbb{C}$ *is isomorphic to* \mathbb{C} *.*

Recall

Theorem (L08P02)

- The automorphisms of $\mathbb{C} \cup \{\infty\}$ are maps of the form $z \mapsto \frac{az+b}{cz+d}$ with $ad - bc \neq 0$,
- The automorphisms of \mathbb{C} are maps of the form $z \mapsto az + b$ with $a \neq 0$.

Aim

Automorphisms of D?

Theorem (Schwartz Lemma)

Let $f: D \to D$ be a holomorphic function of D to D with f(0) = 0. Then

- $|f(z)| \leq |z|$ for all $z \in D$,
- If |f(z)| = |z| for some $z \in D$, $z \neq 0$, then there is a with |a| = 1 such that

$$f(z)=az.$$

Proof.

- Denote r = |z|. Since f is holomorphic and f(0) = 0 it follows that $\frac{f(z)}{z}$ is analytic.
- From $|f(z)| \le 1$ we obtain

$$\left|\frac{f(z)}{z}\right| \le \frac{1}{r}$$

• Taking the limit as $r \to 1$ we have

$$\left|\frac{f(z)}{z}\right| \le 1 \qquad \forall z \in \partial D.$$

Proof.

• By the maximum modulus theorem,

$$\left|\frac{f(z)}{z}\right| \le 1 \qquad \forall z \in D$$

Hence

 $|f(z)| \le |z|.$

Proof.

• By the maximum modulus theorem, if

$$\left|\frac{f(z)}{z}\right| = 1$$
 for some $z \in D$.

then

$$\frac{f(z)}{z} = a.$$

Theorem

Let $f: D \to D$ be holomorphic with f(0) = 0. Then

- $|f'(0)| \le 1$
- If |f'(0)| = 1 then f(z) = az for some a with |a| = 1.

Proof.

Notice that $f'(0) = \frac{f(z)}{z}\Big|_{z=0}$. So, from the proof of the Schwartz Lemma $|f'(0)| \le 1$ and if |f'(0)| = 1 then f(z) = az for some *a* with |a| = 1.

Cavalcanti

Theorem

The automophisms of the unit disc, D are maps of the form

$$g_{w, heta}(z) = e^{i heta} rac{w-z}{1-\overline{w}z}.$$

for $w \in D$ and $\theta \in [0, 2\pi)$.

Proof.

First we check that $g_{w,\theta}$ is an automorphism of the disc. For |z| = 1, we have $z^{-1} = \overline{z}$ and

$$|g_{w,\theta}(z)| = \left| e^{i\theta} \frac{w-z}{1-\overline{w}z} \right|$$
$$= |z| \frac{|wz^{-1}-1|}{|1-\overline{w}z|}$$
$$= \frac{|w\overline{z}-1|}{|1-\overline{w}z|}$$
$$= 1.$$

By the maximum modulus principle $|g_{w,\theta}(z)| < 1$ for |z| < 1.

$$g_{w,\theta}\colon D\to D.$$

L12P01 - The disc

Proof.

Next notice that $g_{w,\theta}$ is a composition of a rotation with $g_{w,0}$ and a direct computation yields

 $g_{w,0} \circ g_{w,0} = \mathrm{Id}$

So the $g_{w,0}(D) = D$ and $g_{w,0}$ is an automorphism of the disc.

Cavalcanti

Proof.

- Given $f: D \to D$ an automorphism, let $w = f^{-1}(0)$ and consider $h = f \circ g_{w,0}: D \to D$.
- h(0) = 0 and $h: D \to D \Rightarrow |h(z)| \le |z| \Rightarrow |u| \le |h^{-1}(u)|$.
- But h^{-1} satisfies the same properties, hence $|h^{-1}(z)| \le |z| \Rightarrow |z| \le |h(z)| \Rightarrow h(z) = e^{i\theta}z$ for some θ .
- $f(z) = h \circ g_{w,0}(z) = g_{w,\theta}(z).$