Analysis in one complex variable Lecture 12 - Möbius transformations

Gil Cavalcanti

Utrecht University
Jun 2020
Utrecht

Möbius Transformations

Definition

A Möbius transformation or a fractional linear transformation is a $\operatorname{map} f: \mathbb{C} \cup\{\infty\} \rightarrow \mathbb{C} \cup\{\infty\}$ of the form

$$
f(z)=\frac{a z+b}{c z+d}
$$

with $a d-b c \neq 0$.

Example

$$
z \mapsto z, \quad z \mapsto z+1, \quad z \mapsto 1 / z \quad z \mapsto a z .
$$

Möbius Transformations

Lemma

The set Möb, of Möbius transformations, forms a group under composition.

Proof.

Indeed, they are the automorphisms of the Riemann sphere.

Möbius Transformations

Lemma

The map $\varphi: G L(2 ; \mathbb{C}) \rightarrow$ Möb given by

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \xrightarrow{\varphi} \frac{a z+b}{c z+d}
$$

is a group homomorphism.
The kernel of φ are the matrices of the form $\lambda \mathrm{Id}$.

Proof.

Direct computation :-(

Möbius Transformations

Corollary

If

$$
\frac{a z+b}{c z+d}=\frac{a^{\prime} z+b^{\prime}}{c^{\prime} z+d^{\prime}} \quad \forall z,
$$

then there is $\lambda \in \mathbb{C} \backslash\{0\}$ such that $a=\lambda a^{\prime}, b=\lambda b^{\prime}$, etc.

Möbius Transformations

Definition

- Translation by b is the map $z \mapsto z+b$.
- Multiplication by a is the map $z \mapsto a z$.
- Inversion is the map $z \mapsto z^{-1}$

Lemma

Every Möbius transformation is a composition of scalings, translations and inversion on the circle.

Möbius Transformations

Proof.

$$
\begin{aligned}
f(z) & =\frac{a z+b}{c z+d} \\
& =\frac{a z+b / a}{c} \frac{a+d / c}{} \\
& =\frac{a}{c}\left(\frac{z+d / c}{z+d / c}+\frac{b / a-d / c}{z+d / c}\right) \\
& =\frac{a}{c}\left(1+(b / a-d / c) \frac{1}{z+d / c}\right)
\end{aligned}
$$

with $a d-b c \neq 0$.

Möbius Transformations

Theorem

Möbius transformations map circles and lines on \mathbb{C} to circles and lines one \mathbb{C}.

Proof.

- If two maps send circlines to circlines, so does their composition.
- The statement is clearly true for scalings and translations.
- We only need to prove that inversion satisfies this property.

Möbius Transformations

Proof.

If $\left(w-w_{0}\right)\left(\bar{w}-\overline{w_{0}}\right)=r^{2}$ and

$$
w=\frac{a z+b}{c z+d}
$$

we get

$$
\left(\frac{a z+b}{c z+d}-w_{0}\right)\left(\frac{\overline{a z}+\bar{b}}{\overline{c z}+\bar{d}}-\overline{w_{0}}\right)=r^{2}
$$

$$
\left((a z+b)-(c z+d) w_{0}\right)\left((\overline{a z}+\bar{b})-(\overline{c z}+\bar{d}) \overline{w_{0}}\right)=(c z+d)(\overline{c z}+\bar{d}) r^{2}
$$

$$
\left(a \bar{a}-a \bar{c} \overline{w_{0}}-\bar{a} c w_{0}+c \bar{c} w_{0} \overline{w_{0}}-c \bar{c} r^{2}\right) z \bar{z}+\text { linear polynomial }=0 .
$$

$$
\lambda\left(x^{2}+y^{2}\right)+\alpha x+\beta y+\gamma=0
$$

Fixed points

We want to prove that a Möbius transformation is determined by what it does to any three points in $\mathbb{C} \cup\{\infty\}$.

Definition
 A fixed point of a map $f: U \rightarrow U$ is a point $x \in U$ for which $f(x)=x$.

Fixed points

Lemma

If a Möbius transformation

$$
z \stackrel{f}{\mapsto} \frac{a z+b}{c z+d}
$$

fixes $0,1, \infty$ it is the identity.

Proof.

- From $f(0)=0$ we get $b=0$.
- From $f(\infty)=\infty$ we get $c=0$.
- From $f(1)=1$ we get $a=d$.

Fixed points

Theorem

Given two sets of three points, $\left(z_{1}, z_{2}, z_{3}\right)$ and $\left(w_{1}, w_{2}, w_{3}\right)$, there is a unique Möbius transformation w such that $w\left(z_{i}\right)=w_{i}$.

Proof.

Define w implicitly by

$$
\frac{z-z_{1}}{z-z_{2}} \frac{z_{3}-z_{2}}{z_{3}-z_{1}}=\frac{w-w_{1}}{w-w_{2}} \frac{w_{3}-w_{2}}{w_{3}-w_{1}}
$$

This proves existence.

Fixed points

Proof.

In particular,

$$
f(z)=\frac{z-z_{1}}{z-z_{2}} \frac{z_{3}-z_{2}}{z_{3}-z_{1}}
$$

maps z_{1} to $0, z_{2}$ to ∞ and z_{3} to 1 .
If w and $\tilde{w} \operatorname{map} z_{i}$ to w_{i}, then

$$
f \circ \tilde{w}^{-1} \circ w \circ f^{-1}
$$

has 0,1 and ∞ as fixed points, hence is the identity.

$$
f \circ \tilde{w}^{-1} \circ w \circ f^{-1}=\mathrm{Id} \Rightarrow \tilde{w}^{-1} \circ w=f^{-1} \circ f=\mathrm{Id} \Rightarrow w=\tilde{w}
$$

Fixed points

Corollary

If a Möbius transformation fixes three points, it is the identity.

Proof.

The identity is a Möbius transformation that also fixes the same three points. The result follows by uniqueness.

