Analysis in one complex variable Lecture 12 – Möbius transformations

Gil Cavalcanti

Utrecht University

Jun 2020 Utrecht

L12P03 - Möbius transformations

Cavalcanti

Definition

A *Möbius transformation* or a *fractional linear transformation* is a map $f : \mathbb{C} \cup \{\infty\} \rightarrow \mathbb{C} \cup \{\infty\}$ of the form

$$f(z) = \frac{az+b}{cz+d}$$

with $ad - bc \neq 0$.

Example

$$z \mapsto z, \qquad z \mapsto z+1, \qquad z \mapsto 1/z \qquad z \mapsto az.$$

Lemma

The set Möb, of Möbius transformations, forms a group under composition.

Proof.

Indeed, they are the automorphisms of the Riemann sphere.

Lemma

The map φ : *GL*(2; \mathbb{C}) \rightarrow *Möb given by*

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \xrightarrow{\varphi} \frac{az+b}{cz+d}$$

is a group homomorphism. The kernel of φ are the matrices of the form λ Id.

Proof.

Direct computation :-(

Definition

- *Translation by b* is the map $z \mapsto z + b$.
- *Multiplication by a* is the map $z \mapsto az$.
- *Inversion* is the map $z \mapsto z^{-1}$

Lemma

Every Möbius transformation is a composition of scalings, *translations and inversion on the circle*.

Proof.

$$f(z) = \frac{az+b}{cz+d}$$

= $\frac{a}{c}\frac{z+b/a}{z+d/c}$
= $\frac{a}{c}\left(\frac{z+d/c}{z+d/c} + \frac{b/a-d/c}{z+d/c}\right)$
= $\frac{a}{c}\left(1+(b/a-d/c)\frac{1}{z+d/c}\right)$

with $ad - bc \neq 0$.

L12P03 - Möbius transformations

Theorem

Möbius transformations map circles and lines on \mathbb{C} *to circles and lines one* \mathbb{C} *.*

Proof.

- If two maps send circlines to circlines, so does their composition.
- The statement is clearly true for scalings and translations.
- We only need to prove that inversion satisfies this property.

Proof.

If
$$(w - w_0)(\overline{w} - \overline{w_0}) = r^2$$
 and

$$w = \frac{az+b}{cz+d}$$

we get

$$(\frac{az+b}{cz+d}-w_0)(\frac{\overline{az}+\overline{b}}{\overline{cz}+\overline{d}}-\overline{w_0}) = r^2$$

$$((az+b)-(cz+d)w_0)((\overline{az}+\overline{b})-(\overline{cz}+\overline{d})\overline{w_0}) = (cz+d)(\overline{cz}+\overline{d})r^2$$

$$(a\overline{a}-a\overline{cw_0}-\overline{a}cw_0+c\overline{c}w_0\overline{w_0}-c\overline{c}r^2)z\overline{z} + \text{ linear polynomial } = 0.$$

$$\lambda(x^2+y^2)+\alpha x+\beta y+\gamma = 0$$

Cavalcanti

We want to prove that a Möbius transformation is determined by what it does to any three points in $\mathbb{C} \cup \{\infty\}$.

Definition

A *fixed point* of a map $f: U \to U$ is a point $x \in U$ for which f(x) = x.

Lemma

If a Möbius transformation

$$z \stackrel{f}{\mapsto} \frac{az+b}{cz+d}$$

fixes $0, 1, \infty$ it is the identity.

Proof.

- From f(0) = 0 we get b = 0.
- From $f(\infty) = \infty$ we get c = 0.
- From f(1) = 1 we get a = d.

Theorem

Given two sets of three points, (z_1, z_2, z_3) and (w_1, w_2, w_3) , there is a unique Möbius transformation w such that $w(z_i) = w_i$.

Proof.

Define *w* implicitly by

$$\frac{z-z_1}{z-z_2}\frac{z_3-z_2}{z_3-z_1} = \frac{w-w_1}{w-w_2}\frac{w_3-w_2}{w_3-w_1}$$

This proves existence.

Proof.

In particular,

$$f(z) = \frac{z - z_1}{z - z_2} \frac{z_3 - z_2}{z_3 - z_1}$$

maps z_1 to 0, z_2 to ∞ and z_3 to 1. If w and \tilde{w} map z_i to w_i , then

$$f \circ \tilde{w}^{-1} \circ w \circ f^{-1}$$

has 0, 1 and ∞ as fixed points, hence is the identity.

$$f \circ \tilde{w}^{-1} \circ w \circ f^{-1} = \mathrm{Id} \Rightarrow \tilde{w}^{-1} \circ w = f^{-1} \circ f = \mathrm{Id} \Rightarrow w = \tilde{w}$$

Corollary

If a Möbius transformation fixes three points, it is the identity.

Proof.

The identity is a Möbius transformation that also fixes the same three points. The result follows by uniqueness. $\hfill \Box$