Analysis in one complex variable Lecture 13 - Geodesics

Gil Cavalcanti

Utrecht University

Jun 2020
Utrecht

Measuring distances - Recall

In L04p04, we argued that given $\gamma:[0,1] \rightarrow \mathbb{R}^{2}$

$$
\text { length }(\gamma)=\int_{0}^{1}\left\|\gamma^{\prime}(t)\right\||d t|
$$

Lemma

If $\tilde{\gamma}=\gamma \circ \sigma$, where $\sigma:[0,1] \rightarrow[0,1]$ is a diffeomorphism then

$$
\text { length }(\gamma)=\operatorname{length}(\tilde{\gamma})
$$

that is, the length of γ is independent of the parametrization.

Measuring distances

Definition

For $A, B \in V^{*}, v, w \in V$ we have

$$
A \odot B(v, w)=\frac{1}{2}(A(v) B(w)+B(v) A(w))=B \odot A(v, w)
$$

It is worth introducing the symmetric inner product:

$$
g=d x \odot d x+d y \odot d y
$$

Measuring distances - Recall

Given $X=x_{1} e_{1}+x_{2} e_{2}$ and $Y=y_{1} e_{1}+y_{2} e_{2}$, we have

$$
\begin{aligned}
g(X, Y) & =d x\left(x_{1} e_{1}+x_{2} e_{2}\right) d x\left(y_{1} e_{1}+y_{2} e_{2}\right)+d y\left(x_{1} e_{1}+x_{2} e_{2}\right) d y\left(y_{1} e_{1}+y_{2} e^{2}\right. \\
& =x_{1} y_{1}+x_{2} y_{2} \\
& =\langle X, Y\rangle
\end{aligned}
$$

Putting these together

$$
\text { length }(\gamma)=\int_{0}^{1} \sqrt{g\left(\gamma^{\prime}(t), \gamma^{\prime}(t)\right)} d t
$$

Measuring distances - The sphere

For the sphere with stereographic projection, we have

$$
g=\frac{4}{\left(1+x^{2}+y^{2}\right)^{2}}(d x \odot d x+d y \odot d y)
$$

Curvature

If we endow \mathbb{R}^{2} with a metric of the form

$$
g=f(x, y)(d x \odot d x+d y \odot d y)
$$

the curvature is given by

$$
K(x, y)=-\frac{1}{2 f(x, y)}(\triangle \log f)
$$

where $\triangle=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}$.

Measuring distances - Curvature

$$
K(x, y)=-\frac{1}{2 f(x, y)}(\triangle \log f)
$$

For the plane: $f(x, y)=1$, hence $\triangle \log f=0 \Rightarrow K=0$.

Curvature

$$
K(x, y)=-\frac{1}{2 f(x, y)}(\triangle \log f)
$$

For the sphere: $f(x, y)=\frac{4}{\left(1+x^{2}+y^{2}\right)^{2}}$, hence

$$
\begin{aligned}
\triangle \log f & =\triangle \log \frac{4}{\left(1+x^{2}+y^{2}\right)^{2}} \\
& =\triangle \log 4-2 \triangle \log \left(1+x^{2}+y^{2}\right) \\
& =-2\left(\frac{\partial}{\partial x} \frac{2 x}{1+x^{2}+y^{2}}+\frac{\partial}{\partial y} \frac{2 y}{1+x^{2}+y^{2}}\right) \\
& =-2\left(\frac{4\left(1+x^{2}+y^{2}\right)-4 x^{2}-4 y^{2}}{\left(1+x^{2}+y^{2}\right)^{2}}\right) \\
& =-8 \frac{1}{\left(1+x^{2}+y^{2}\right)^{2}}
\end{aligned}
$$

Curvature

$$
\begin{aligned}
K(x, y) & =-\frac{1}{2 f(x, y)}(\triangle \log f) \\
& =-\frac{\left(1+x^{2}+y^{2}\right)^{2}}{8}\left(-8 \frac{1}{\left(1+x^{2}+y^{2}\right)^{2}}\right) \\
& =1
\end{aligned}
$$

as if it was meant to be...

Curvature

Recap

- Sphere: $K=1$
- Plane: $K=0$
- ???: $K=-1$
- ??? $\neq \mathbb{R} P^{2}, \mathbb{M}, \mathbb{C} P^{1}$, saddle $\left(z=x^{2}-y^{2}\right)$.

Curvature

Exercise

Consider the unit disc, \mathbb{D}, with the following inner product

$$
g=\frac{4}{\left(1-x^{2}-y^{2}\right)^{2}}(d x \odot d x+d y \odot d y)
$$

Compute the curvature of the disc.

Curvature

Exercise

Consider the upper half plane, \mathbb{H}, with the following inner product

$$
g=\frac{1}{y^{2}}(d x \odot d x+d y \odot d y)
$$

Compute its curvature.

Complex numbers

$$
\begin{gathered}
x=\frac{z+\bar{z}}{2} \quad y=\frac{z-\bar{z}}{2 i} \\
d x=\frac{d z+d \bar{z}}{2} \quad d y=\frac{d z-d \bar{z}}{2 i} \\
d x \odot d x=\frac{(d z+d \bar{z})^{2}}{4}=\frac{d z^{2}+2 d z \odot d \bar{z}+d \bar{z} \odot d \bar{z}}{4} \\
d y \odot d y=-\frac{(d z-d \bar{z})^{2}}{4}=-\frac{d z^{2}-2 d z \odot d \bar{z}+d \bar{z} \odot d \bar{z}}{4} \\
d x \odot d x+d y \odot d y=d z \odot d \bar{z}
\end{gathered}
$$

Complex numbers

Metric on \mathbb{C} :

$$
g=d z \odot d \bar{z}
$$

Metric on the sphere, $\mathbb{C} \cup\{\infty\}$:

$$
g=\frac{4}{\left(1+|z|^{2}\right)^{2}} d z \odot d \bar{z}
$$

Metric on \mathbb{D} :

$$
g=\frac{4}{\left(1-|z|^{2}\right)^{2}} d z \odot d \bar{z}
$$

Metric on \mathbb{H} :

$$
g=\frac{-4}{(z-\bar{z})^{2}} d z \odot d \bar{z}
$$

Upper half plane

Consider the metric on \mathbb{H},

$$
g=\frac{1}{y^{2}} d z \odot d \bar{z}
$$

and the transformation $f: \mathbb{H} \rightarrow \mathbb{H}, z=f(w)$,

$$
z=\frac{a w+b}{c w+d}
$$

with $a d-b c=1$ and $a, b, c, d \in \mathbb{R}$.

Upper half plane

$$
\begin{aligned}
& d z=\frac{a(c w+d)-c(a w+b)}{(c w+d)^{2}} d w \\
& d \bar{z}=\frac{a(c \bar{w}+d)-c(a \bar{w}+b)}{(c \bar{w}+d)^{2}} d \bar{w}
\end{aligned}
$$

with $a d-b c=1$ and $a, b, c, d \in \mathbb{R}$.

Upper half plane

Plug it all in and compute :-(

$$
\frac{-4}{z-\bar{z}}(d z \odot d \bar{z})=\frac{-4}{w-\bar{w}}(d w \odot d \bar{w})
$$

(Shortcut: $d f$ preserves angles: only need to check that determinant is 1)
Cute, but what does it mean?

$$
f^{*} g=g .
$$

Upper half plane

Given a path $\gamma:[0,1] \rightarrow \mathbb{H}$ and a Mobius transformation, f, as above consider the path $\tilde{\gamma}=f \circ \gamma$. Then

$$
\begin{aligned}
\operatorname{length}(\tilde{\gamma}) & =\int_{0}^{1} \sqrt{g\left(\frac{d f \circ \gamma}{d t}, \frac{d f \circ \gamma}{d t}\right)} d t \\
& =\int_{0}^{1} \sqrt{g\left(d f\left(\gamma^{\prime}\right), d f\left(\gamma^{\prime}\right)\right)} d t \\
& =\int_{0}^{1} \sqrt{f^{*} g\left(\gamma^{\prime}, \gamma^{\prime}\right)} d t \\
& =\int_{0}^{1} \sqrt{g\left(\gamma^{\prime}, \gamma^{\prime}\right)} d t \\
& =\text { length }(\gamma)
\end{aligned}
$$

That is, the map $f(w)=\frac{a w+b}{c w+d}$ preserves lengths of paths (isometry).

Upper half plane - Geodesics

Question

What is the shortest path between $(0, a)$ and $(0, b)$?

- Say $\gamma:[0,1] \rightarrow \mathbb{H}, \gamma(t)=(x(t), y(t))$, connects $(0, a)$ to $(0, b)$.
- Consider the path $\tilde{\gamma}(t)=(0, y(t))$.

$$
\text { length }(\gamma)=\int_{0}^{1} \sqrt{\frac{\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2}}{y^{2}}} d t \geq \int_{0}^{1} \sqrt{\frac{\left(y^{\prime}\right)^{2}}{y^{2}}} d t=\text { length }(\tilde{\gamma})
$$

- The path of shortest length is the vertical line segment between $(0, a)$ to $(0, b)$.

Upper half plane - Geodesics

Question

What is the shortest path between z_{0} and z_{1} ?

Remark

If γ is the shortest path between z_{0} and z_{1} and f is an isometry, then $f \circ \gamma$ is the path of shortest length between $f\left(z_{0}\right)$ and $f\left(z_{1}\right)$.

Upper half plane - Geodesics

- Möbius transformations send circlines to circlines,
- Möbius transformations preserve angles of intersections between paths,
- Möbius transformations are determined by what they do to any three points.

Upper half plane - Geodesics

Example

The geodesics on the upper half plane are (part of) vertical lines or semicircles centered at the real line.

Upper half plane - Geodesics

Example

The geodesics on the upper half plane are (part of) vertical lines or semicircles centered at the real line.

What is your name, again?

- \mathbb{C} is the complex plane,
- $\mathbb{C} \cup\{\infty\}$ is the Riemann sphere,
- \mathbb{D} is the Poincaré disc,
- \mathbb{H} is the hyperbolic or Lobachevsky plane.

The disc- Geodesics

Exercise

Describe the isometries and the geodesics of the Poincaré disc.

