Analysis in one complex variable Lecture 13 – Geodesics

Gil Cavalcanti

Utrecht University

Jun 2020 Utrecht

L13P01 - Geodesics

Measuring distances – Recall

In L04p04, we argued that given $\gamma \colon [0,1] \to \mathbb{R}^2$

length(
$$\gamma$$
) = $\int_0^1 ||\gamma'(t)|| |dt|$.

Lemma

If $\tilde{\gamma} = \gamma \circ \sigma$ *, where* $\sigma \colon [0,1] \to [0,1]$ *is a diffeomorphism then*

 $\operatorname{length}(\gamma) = \operatorname{length}(\tilde{\gamma}),$

that is, the length of γ is independent of the parametrization.

Measuring distances

Definition

For $A, B \in V^*$, $v, w \in V$ we have

$$A \odot B(v,w) = \frac{1}{2}(A(v)B(w) + B(v)A(w)) = B \odot A(v,w).$$

It is worth introducing the symmetric inner product:

$$g = dx \odot dx + dy \odot dy.$$

Measuring distances – Recall

Given
$$X = x_1e_1 + x_2e_2$$
 and $Y = y_1e_1 + y_2e_2$, we have
 $g(X, Y) = dx(x_1e_1 + x_2e_2)dx(y_1e_1 + y_2e_2) + dy(x_1e_1 + x_2e_2)dy(y_1e_1 + y_2e_2)$
 $= x_1y_1 + x_2y_2$
 $= \langle X, Y \rangle$

Putting these together

length(
$$\gamma$$
) = $\int_0^1 \sqrt{g(\gamma'(t), \gamma'(t))} dt$.

L13P01 - Geodesics

Measuring distances – The sphere

For the sphere with stereographic projection, we have

$$g=\frac{4}{(1+x^2+y^2)^2}(dx\odot dx+dy\odot dy).$$

If we endow \mathbb{R}^2 with a metric of the form

$$g = f(x, y)(dx \odot dx + dy \odot dy),$$

the curvature is given by

$$K(x,y) = -\frac{1}{2f(x,y)}(\triangle \log f)$$

where $\triangle = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$.

L13P01 - Geodesics

Measuring distances – Curvature

$$K(x,y) = -\frac{1}{2f(x,y)}(\triangle \log f)$$

For the plane: f(x, y) = 1, hence $\triangle \log f = 0 \Rightarrow K = 0$.

$$K(x,y) = -\frac{1}{2f(x,y)} (\triangle \log f)$$

For the sphere: $f(x,y) = \frac{4}{(1+x^2+y^2)^2}$, hence
 $\triangle \log f = \triangle \log \frac{4}{(1+x^2+y^2)^2}$
 $= \triangle \log 4 - 2\triangle \log(1+x^2+y^2)$
 $= -2\left(\frac{\partial}{\partial x}\frac{2x}{1+x^2+y^2} + \frac{\partial}{\partial y}\frac{2y}{1+x^2+y^2}\right)$
 $= -2\left(\frac{4(1+x^2+y^2)-4x^2-4y^2}{(1+x^2+y^2)^2}\right)$
 $= -8\frac{1}{(1+x^2+y^2)^2}$

$$\begin{split} K(x,y) &= -\frac{1}{2f(x,y)} (\triangle \log f) \\ &= -\frac{(1+x^2+y^2)^2}{8} \left(-8\frac{1}{(1+x^2+y^2)^2} \right) \\ &= 1 \end{split}$$

as if it was meant to be ...

L13P01 - Geodesics

Recap

- Sphere: K = 1
- Plane: K = 0
- ???: K = -1
- ??? $\neq \mathbb{R}P^2$, \mathbb{M} , $\mathbb{C}P^1$, saddle ($z = x^2 y^2$).

Exercise

Consider the unit disc, \mathbb{D} , with the following inner product

$$g=\frac{4}{(1-x^2-y^2)^2}(dx\odot dx+dy\odot dy).$$

Compute the curvature of the disc.

Exercise

Consider the upper half plane, *H*, with the following inner product

$$g=\frac{1}{y^2}(dx\odot dx+dy\odot dy).$$

Compute its curvature.

Complex numbers

 $x = \frac{z + \overline{z}}{2}$ $y = \frac{z - \overline{z}}{2i}$ $dx = \frac{dz + d\bar{z}}{2}$ $dy = \frac{dz - d\bar{z}}{2i}$ $dx \odot dx = \frac{(dz + d\bar{z})^2}{4} = \frac{dz^2 + 2dz \odot d\bar{z} + d\bar{z} \odot d\bar{z}}{4}$ $dy \odot dy = -\frac{(dz - d\bar{z})^2}{4} = -\frac{dz^2 - 2dz \odot d\bar{z} + d\bar{z} \odot d\bar{z}}{4}$ $dx \odot dx + dy \odot dy = dz \odot d\overline{z}$

Complex numbers

Metric on \mathbb{C} :

$$g = dz \odot d\bar{z}$$

Metric on the sphere, $\mathbb{C} \cup \{\infty\}$:

$$g = \frac{4}{(1+|z|^2)^2} dz \odot d\bar{z}$$

Metric on \mathbb{D} :

$$g = \frac{4}{(1-|z|^2)^2} dz \odot d\bar{z}$$

Metric on \mathbb{H} :

$$g = \frac{-4}{(z - \bar{z})^2} dz \odot d\bar{z}$$

Consider the metric on \mathbb{H} ,

$$g=\frac{1}{y^2}dz\odot d\bar{z}$$

and the transformation $f \colon \mathbb{H} \to \mathbb{H}, z = f(w)$,

$$z = \frac{aw + b}{cw + d}$$

with ad - bc = 1 and $a, b, c, d \in \mathbb{R}$.

L13P01 - Geodesics

$$dz = \frac{a(cw+d) - c(aw+b)}{(cw+d)^2} dw$$
$$d\bar{z} = \frac{a(c\bar{w}+d) - c(a\bar{w}+b)}{(c\bar{w}+d)^2} d\bar{w}$$

with ad - bc = 1 and $a, b, c, d \in \mathbb{R}$.

L13P01 - Geodesics

Plug it all in and compute :-(

$$\frac{-4}{z-\bar{z}}(dz\odot d\bar{z})=\frac{-4}{w-\bar{w}}(dw\odot d\bar{w}).$$

(Shortcut: *df* preserves angles: only need to check that determinant is 1) Cute, but what does it mean?

$$f^*g = g.$$

Given a path $\gamma : [0, 1] \to \mathbb{H}$ and a Mobius transformation, f, as above consider the path $\tilde{\gamma} = f \circ \gamma$. Then

$$\operatorname{length}(\tilde{\gamma}) = \int_{0}^{1} \sqrt{g\left(\frac{df \circ \gamma}{dt}, \frac{df \circ \gamma}{dt}\right)} dt$$
$$= \int_{0}^{1} \sqrt{g(df(\gamma'), df(\gamma'))} dt$$
$$= \int_{0}^{1} \sqrt{f^{*}g(\gamma', \gamma')} dt$$
$$= \int_{0}^{1} \sqrt{g(\gamma', \gamma')} dt$$
$$= \operatorname{length}(\gamma)$$
e map $f(w) = \frac{aw+b}{cm+d}$ preserves lengths of particular of the second second

That is, the map $f(w) = \frac{aw+b}{cw+d}$ preserves lengths of paths (isometry).

L13P01 - Geodesics

Question

What is the shortest path between (0, a) *and* (0, b)*?*

- Say $\gamma : [0,1] \to \mathbb{H}, \gamma(t) = (x(t), y(t))$, connects (0,a) to (0,b).
- Consider the path $\tilde{\gamma}(t) = (0, y(t))$.

$$\text{length}(\gamma) = \int_{0}^{1} \sqrt{\frac{(x')^{2} + (y')^{2}}{y^{2}}} dt \ge \int_{0}^{1} \sqrt{\frac{(y')^{2}}{y^{2}}} dt = \text{length}(\tilde{\gamma})$$

• The path of shortest length is the vertical line segment between (0, *a*) to (0, *b*).

Question

What is the shortest path between z_0 and z_1 ?

Remark

If γ is the shortest path between z_0 and z_1 and f is an isometry, then $f \circ \gamma$ is the path of shortest length between $f(z_0)$ and $f(z_1)$.

- Möbius transformations send circlines to circlines,
- Möbius transformations preserve angles of intersections between paths,
- Möbius transformations are determined by what they do to any three points.

Example

The geodesics on the upper half plane are (part of) vertical lines or semicircles centered at the real line.

Example

The geodesics on the upper half plane are (part of) vertical lines or semicircles centered at the real line.

What is your name, again?

- C is the *complex plane*,
- $\mathbb{C} \cup \{\infty\}$ is the *Riemann sphere*,
- D is the *Poincaré disc*,
- If is the *hyperbolic or Lobachevsky plane*.

The disc-Geodesics

Exercise

Describe the isometries and the geodesics of the Poincaré disc.

