Analysis in one complex variable Lecture 14 – Harmonic vs Holomorphic

Gil Cavalcanti

Utrecht University

Jun 2020 Utrecht

L14P02 - Harmonic vs Holomorphic

Cavalcanti

Recall

Lemma (Cauchy-Riemann relations)

If f = u + iv *is holomorphic, then*

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
 and $\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}$

Corollary

If f = u + iv is holomorphic, then u is harmonic.

Proof.

$$\frac{\partial}{\partial x}\frac{\partial u}{\partial x} + \frac{\partial}{\partial y}\frac{\partial u}{\partial y} = \frac{\partial}{\partial x}\frac{\partial v}{\partial y} - \frac{\partial}{\partial y}\frac{\partial v}{\partial x}.$$

L14P02 - Harmonic vs Holomorphic

Examples

Example

The function

$$u(x,y) = \log\left(\sqrt{x^2 + y^2}\right)$$

is harmonic because $u(z) = \operatorname{Re} \log(z)$.

Example

For any complex polynomial p, $\operatorname{Re}(p)$ is harmonic.

Example

The function $(x, y) \mapsto e^x \cos y$ is harmonic.

L14P02 - Harmonic vs Holomorphic

Cavalcanti

The operators $\frac{\partial}{\partial z}$ and $\frac{\partial}{\partial \bar{z}}$

- The operator $\frac{\partial}{\partial x}$ corresponds to directional derivative in the direction of e_1 .
- The quantity dx is a covector for which $dx(e_1) = 1$ and $dx(e_j) = 0$ for $j \neq 1$.
- On \mathbb{C} we can consider the complex covectors dz = dx + idyand $d\overline{z} = dx - idy$.

Notice that

$$dz(\frac{1}{2}(e_1 - ie_2)) = 1 \qquad dz(\frac{1}{2}(e_1 + ie_2)) = 0$$

$$d\overline{z}(\frac{1}{2}(e_1 - ie_2)) = 0 \qquad dz(\frac{1}{2}(e_1 + ie_2)) = 1.$$

• Introduce the differential operators

$$\frac{\partial}{\partial z} := \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right), \qquad \frac{\partial}{\partial \overline{z}} := \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right)$$

L14P02 - Harmonic vs Holomorphic

Cavalcanti

The operators $\frac{\partial}{\partial z}$ and $\frac{\partial}{\partial \bar{z}}$

Lemma

A function $f: U \to \mathbb{C}$ is holomorphic if and only if $\frac{\partial f}{\partial \bar{z}} = 0$, in which case

$$\frac{\partial f}{\partial z} = \frac{df}{dz}.$$

Lemma $4\frac{\partial}{\partial \overline{z}}\frac{\partial}{\partial z} = \Delta.$

Primitives

Lemma

Let f = (u + iv): $U \to \mathbb{C}$ be holomorphic and consider the vector field $X = ue_1 - ve_2$. If $g = \varphi + i\psi$ is a holomorphic primitive for f, then $\nabla \varphi = X$

Proof.

Since *g* is holomorphic, we have, using the Cauchy–Riemann relations

$$(u+iv) = f = dg = \begin{pmatrix} \varphi_x & \varphi_y \\ -\varphi_y & \varphi_x \end{pmatrix} = (\varphi_x - i\varphi_y).$$

Therefore $\nabla \varphi = ue_1 - ve_2$.

L14P02 - Harmonic vs Holomorphic

Harmonic \Leftrightarrow holomorphic

Theorem

Let $U \subset \mathbb{C}$ be simply connected and let $u: U \to \mathbb{R}$ be a harmonic function. Then there is a holomorphic function $f: U \to \mathbb{C}$ whose real part is u.

Proof.

Insight: if there was such an *f*, by the Cauchy Riemann relations we would have

$$df = u_x - iu_y = 2\frac{\partial}{\partial z}u.$$

Consider the function $g = 2\frac{\partial}{\partial z}u$. Then

$$\frac{\partial g}{\partial \bar{z}} = 2 \frac{\partial}{\partial \bar{z}} \frac{\partial}{\partial z} u = \frac{1}{2} \triangle u = 0.$$

Harmonic \Leftrightarrow holomorphic

Proof.

So *g* is holomorphic, hence has a primitive, *f*. Let $u_1 = \text{Re}f$, then

$$2\frac{\partial u_1}{\partial z} = \frac{\partial f}{\partial z} = g = 2\frac{\partial u}{\partial z}$$

Hence

$$\frac{\partial(u_1 - u)}{\partial z} = 0 \Rightarrow \frac{\partial(u_1 - u)}{\partial x} = 0 \text{ and } \frac{\partial(u_1 - u)}{\partial y} = 0$$

So $u_1 - u = c$ for some constant. It follows that $\operatorname{Re}(f - c) = u$.

L14P02 - Harmonic vs Holomorphic