Analysis in one complex variable Lecture 15 – Harmonic vs Holomorphic II

Gil Cavalcanti

Utrecht University

Jun 2020 Utrecht

L15P01 - Harmonic vs Holomorphic II

Cavalcanti

Recall

Theorem

Let $U \subset C$ *be a simply connected domain let* $u : U \to \mathbb{R}$ *be a harmonic function, then there is a holomorphic function* $f : U \to \mathbb{C}$ *with* $\operatorname{Re}(f) = u$.

Question

What can we say if U is not simply-connected?

Theorem

Let $U \subset \mathbb{C}$ be a simply connected domain, let $z_1, \ldots, z_n \in U$ and let $U^* = U \setminus \{z_1, \ldots, z_n\}$. Given a harmonic function $u : U^* \to \mathbb{R}$, there are constants a_1, \ldots, a_n and a holomorphic function $f : U^* \to \mathbb{C}$ such that

$$u = \operatorname{Re}(f) + \sum_{i} a_i \log |z - z_i|.$$

Lemma

Let $U \subset \mathbb{C}$ *be a connected open subset and* $h: U \to \mathbb{C}$ *be continuous. If for every loop* $\gamma: [0, 1] \to U$

$$\int_{\gamma} h(z) \, dz = 0,$$

then h has a (holomorphic) primitive.

Remark

$$\frac{\partial \log |z|}{\partial z} = \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right) \frac{1}{2} \log(x^2 + y^2)$$
$$= \frac{1}{4} \left(\frac{2x - 2iy}{x^2 + y^2} \right)$$
$$= \frac{1}{2} \left(\frac{\bar{z}}{z\bar{z}} \right)$$
$$= \frac{1}{2z}$$

Proof.

Given *u*, let $g = 2\frac{\partial u}{\partial z}$. Then

$$\frac{\partial g}{\partial \bar{z}} = 2 \frac{\partial^2 u}{\partial \bar{z} \partial z} = \frac{1}{2} \triangle u = 0,$$

so *g* is holomorphic. Let

$$a_i = \frac{1}{2\pi i} \int_{\partial D_i} g(z) \, dz,$$

where D_i is a small disc centered on z_i (so that $z_j \notin D_i$ for $i \neq j$).

Proof.

Consider $h = g - \sum a_i \frac{1}{z-z_i}$ and let $\gamma \colon [0,1] \to U^*$ be a loop. Then

$$\begin{split} \int_{\gamma} h \, dz &= \sum_{i} W(\gamma, z_{i}) \int_{\partial D_{i}} h \, dz \\ &= \sum_{i} W(\gamma, z_{i}) (\int_{\partial D_{i}} g \, dz - a_{i} \int_{\partial D_{i}} \frac{1}{z - z_{i}} dz) \\ &= \sum_{i} W(\gamma, z_{i}) (2\pi i a_{i} - a_{i} 2\pi i) \\ &= 0. \end{split}$$

Proof.

Let *f* be a primitive of *h* and let $u_1 = \text{Re}(f)$, then

$$2\frac{\partial u_1}{\partial z} = \frac{\partial f}{\partial z} = h = g - \sum a_i \frac{1}{z - z_i} = 2\frac{\partial u}{\partial z} - 2\frac{\partial a_i \log|z - z_i|}{\partial z}$$

Therefore

$$\frac{\partial}{\partial z}(u-u_1-\sum a_i\log|z-z_i|)=0$$

$$u-u_1-\sum a_i\log|z-z_i|=c.$$

Hence

$$u = u_1 + c + \sum a_i \log |z - z_i| = \operatorname{Re}(f + c) + \sum a_i \log |z - z_i|.$$

L15P01 - Harmonic vs Holomorphic II

Remark

The same result, with the same proof holds if we remove discs instead of points.

Corollary

If u is harmonic in the annulus, $D_{r_2} \setminus D_{r_1}$ *, then there are constants a and b such that*

$$\int_{0}^{2\pi} u(r,\theta)d\theta = a\log r + b.$$

Proof.

Let f and a be such that $u = \operatorname{Re}(f) + a \log |z|$ and let $b = \operatorname{Re}\left(\int_{\partial D_{r_0}(0)} \frac{f(z)}{iz} dz\right)$. Then $\int_{0}^{2\pi} u(r,\theta) d\theta = \operatorname{Re}\left(\int_{\partial D_{r}(0)} f(re^{i\theta}) d\theta\right) + \int_{0}^{2\pi} a \log|z|$ $= \operatorname{Re}\left(\int_{\partial D_{1}(0)} \frac{f(z)}{iz} dz\right) + \int_{0}^{2\pi} a \log r$ $= \operatorname{Re}\left(\int_{\partial D_{r_{0}}(0)} \frac{f(z)}{iz} dz\right) + 2\pi a \log r$

 $= b + 2\pi a \log r$

Remark

In \mathbb{C}^n we let $\frac{\partial}{\partial z_i} = \frac{1}{2} \left(\frac{\partial}{\partial x_i} - i \frac{\partial}{\partial y_i} \right)$. It remains the case that $4 \sum \frac{\partial}{\partial z_j} \frac{\partial}{\partial \overline{z_j}} = \Delta$. But the natural operators to consider are

$$\partial = \sum rac{\partial}{\partial z_j} dz_j, \qquad \overline{\partial} = \sum rac{\partial}{\partial ar{z_j}} dar{z_j}, \qquad riangle = d^*d + dd^*$$

The relationship between ∂ *,* $\overline{\partial}$ *and* \triangle *is not as obvious and culminates with Hodge's Theorem for Kähler manifolds.*