Analysis in one complex variable Lecture 16 - Mock exam Q2

Gil Cavalcanti

Utrecht University
Jun 2020
Utrecht

Exercise (2)

Let f be analytic on a closed disc \bar{D} of radius $b>0$, centered at z_{0}.

- Show that the value off at z_{0} can be computed as either of the following two averages:

$$
\begin{gathered}
f\left(z_{0}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(z_{0}+r e^{i \theta}\right) d \theta, \text { where } 0<r<b \\
f\left(z_{0}\right)=\frac{1}{\pi b^{2}} \int_{D} f(x+i y) d y d x
\end{gathered}
$$

- Is the converse true? That is, if a continuous function $f: U \rightarrow \mathbb{C}$ satisfies

$$
f(z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(z+r e^{i \theta}\right) d \theta
$$

for all $z \in U$ and all r such that $\bar{D}_{r}(z) \subset U$, is f holomorphic?

Proof.

Since f is holomorphic, we have, by the Cauchy formula that

$$
f\left(z_{0}\right)=\frac{1}{2 \pi i} \int_{\partial D_{r}\left(z_{0}\right)} \frac{f(\xi)}{\xi-z_{0}} d \xi
$$

Proof.

Since f is holomorphic, we have, by the Cauchy formula that

$$
f\left(z_{0}\right)=\frac{1}{2 \pi i} \int_{\partial D_{r}\left(z_{0}\right)} \frac{f(\xi)}{\xi-z_{0}} d \xi
$$

To compute the path integral, we parametrize $\partial D_{r}\left(z_{0}\right)$ as

$$
\theta \mapsto \xi(\theta):=r e^{i \theta}+z_{0}, \quad \text { with } \theta \in[0, \text { frm-epi }] .
$$

Then $d \xi=$ ire $^{i \theta} d \theta$

Proof.

Since f is holomorphic, we have, by the Cauchy formula that

$$
f\left(z_{0}\right)=\frac{1}{2 \pi i} \int_{\partial D_{r}\left(z_{0}\right)} \frac{f(\xi)}{\xi-z_{0}} d \xi
$$

To compute the path integral, we parametrize $\partial D_{r}\left(z_{0}\right)$ as

$$
\theta \mapsto \xi(\theta):=r e^{i \theta}+z_{0}, \quad \text { with } \theta \in[0, \text { frm-epi }] .
$$

Then $d \xi=i r e^{i \theta} d \theta$ and the integral becomes

$$
\begin{aligned}
f\left(z_{0}\right) & =\frac{1}{2 \pi i} \int_{0}^{2 \pi} \frac{f\left(r e^{i \theta}+z_{0}\right)}{r e^{i \theta}} i r e^{i \theta} d \theta \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(r e^{i \theta}+z_{0}\right) d \theta
\end{aligned}
$$

Proof.

The second equality is the averaged version of the first:

Proof.

The second equality is the averaged version of the first:

$$
\begin{aligned}
\frac{1}{\pi b^{2}} \int_{D_{b}\left(z_{0}\right)} f(z) d x d y & =\frac{1}{\pi b^{2}} \int_{0}^{b} \int_{0}^{2 \pi} f(z) r d \theta d r \\
& =\frac{2 \pi}{\pi b^{2}} \int_{0}^{b} f\left(z_{0}\right) r d r \\
& =\left.\frac{2 \pi f\left(z_{0}\right)}{\pi b^{2}} \frac{1}{2} r^{2}\right|_{r=0} ^{b} \\
& =\frac{f\left(z_{0}\right)}{b^{2}} b^{2} \\
& =f\left(z_{0}\right) .
\end{aligned}
$$

Proof.

The converse is not true. Indeed, if f satisfies the average property (e.g., if f is holomorphic), then so do $u=\operatorname{Re}(f)$ and $v=\operatorname{Im}(f)$.

Proof.

The converse is not true. Indeed, if f satisfies the average property (e.g., if f is holomorphic), then so do $u=\operatorname{Re}(f)$ and $v=\operatorname{Im}(f)$.
Notice that since u is real, by the Cauchy Riemman relations, it is only holomorphic if it is constant.
So the real part of any nonconstant holomorphic function provides a counter-example.
Concretely, take, for example

$$
u(x, y)=x=\operatorname{Re}(x+i y)
$$

