Analysis in one complex variable Lecture 16 - Mock exam Q3

Gil Cavalcanti

Utrecht University
Jun 2020
Utrecht

Exercise (3)

Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be the holomorphic function with singularities given by

$$
f(z)=\frac{e^{-2 \pi i z}}{z^{3}+i}
$$

- Determine the singularities off and for each of them, determine what type of singularity it is (removable, pole or essential).
- Compute the residue off at each of its singularities.
- Compute the integrals

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \frac{x^{3} \cos 2 \pi x-\sin 2 \pi x}{x^{6}+1} d x \\
& \int_{-\infty}^{\infty} \frac{x^{3} \sin 2 \pi x-\cos 2 \pi x}{x^{6}+1} d x
\end{aligned}
$$

Proof.

- The function f is the quotient of two holomorphic functions, hence it is a meromorphic function.
- Since the numerator is a nowhere vanishing function, f will have poles at the zeros of the denominator and the order of the poles of f is the order of the zeros of the denominator.
- If we denote by $\omega=e^{2 \pi i / 3}$ (a cubic root of 1) and pick $\alpha=e^{-\pi i / 6}$ (one of the cubic roots of $-i$) we have that the denominator is $z^{3}+i=(z-\alpha)(z-\alpha \omega)\left(z-\alpha \omega^{2}\right)$, that is, it has three simple zeros.
- The function f has three simple poles at $\alpha, \alpha \omega$ and $\alpha \omega^{2}$.

Proof.

- $\omega=e^{2 \pi i / 3}=-\frac{1}{2}+i \frac{\sqrt{3}}{2}($ a cubic root of 1$)$
- $\alpha=e^{-\pi i / 6}=\cos \pi / 6-i \sin \pi / 6=\frac{\sqrt{3}}{2}-\frac{i}{2}$ (a cubic root of $-i)$
- For the computations that follow, it is convenient to have at hand

$$
\begin{aligned}
\alpha^{2} & =\frac{1}{2}-\frac{\sqrt{3}}{2} i=-\omega \\
1+\omega+\omega^{2} & =0, \quad \omega^{2}=-\frac{1}{2}-\frac{\sqrt{3}}{2} i .
\end{aligned}
$$

Proof.

$$
\begin{aligned}
\operatorname{Res}_{\alpha}(f) & =\frac{e^{-2 \pi i \alpha}}{\alpha^{2}(1-\omega)\left(1-\omega^{2}\right)} \\
\operatorname{Res}_{\alpha \omega}(f) & =\frac{e^{-2 \pi i \alpha \omega}}{-\omega \alpha^{2}(1-\omega)^{2}} \\
\operatorname{Res}_{\alpha \omega^{2}}(f) & =\frac{e^{-2 \pi i \alpha \omega^{2}}}{\alpha^{2} \omega\left(\omega^{2}-1\right)(\omega-1)}
\end{aligned}
$$

I will fill out specific values as needed to compute the integrals.

Proof.

- Since for both integrals the integrand is continuous (the denominator has no zeros) and the function being integrated goes to infinity as $1 / x^{3}$, the integrals converge absolutely.
- Letting $g=\frac{x^{3} \cos 2 \pi x-\sin 2 \pi x}{x^{6}+1}$, we have $g(-x)=-g(x)$, hence

$$
\int_{-\infty}^{\infty} g(x) d x=0
$$

Proof.

- For the second integral we observe that

$$
\begin{aligned}
f(x) & =\frac{e^{-2 \pi i x}}{x^{3}+i}=\frac{e^{-2 \pi i x}\left(x^{3}-i\right)}{\left(x^{3}+i\right)\left(x^{3}-i\right)} \\
& =\frac{(\cos (2 \pi x)-i \sin (2 \pi x))\left(x^{3}-i\right)}{x^{6}+1}
\end{aligned}
$$

- Hence there was a sign cock up...
- We surely were meant to compute the integral of the real and imaginary parts of f and I will do that now.

$$
\operatorname{Im}(f(x))=-\frac{\cos (2 \pi x)+x^{3} \sin (2 \pi x)}{x^{6}+1}
$$

Proof.

- Observe that for z in the semi-circle in the lower half plane centered at 0 of radius $R, z=x+i y$ with $y \leq 0$ and the numerator in f is bounded by

$$
\begin{aligned}
& \left|e^{-2 \pi i(x+i y)}\right|=\left|e^{-2 \pi i x} e^{2 \pi y}\right|=\left|e^{2 \pi y}\right| \leq 1 \\
& \begin{aligned}
f(x) & =\frac{e^{-2 \pi i x}}{x^{3}+i}=\frac{e^{-2 \pi i x}\left(x^{3}-i\right)}{\left(x^{3}+i\right)\left(x^{3}-i\right)} \\
\quad= & \frac{(\cos (2 \pi x)-i \sin (2 \pi x))\left(x^{3}-i\right)}{x^{6}+1}
\end{aligned}
\end{aligned}
$$

- Hence there was a sign cock up...

Proof.

- We surely were meant to compute the integral of the real and imaginary parts of f and I will do that now.
-

$$
\operatorname{Im}(f(x))=-\frac{\cos (2 \pi x)+x^{3} \sin (2 \pi x)}{x^{6}+1}
$$

- Since $1 / z^{3}$ goes faster than $O\left(1 / z^{2}\right)$ to zero as z goes to infinite, we conclude that

$$
I:=\int_{-\infty}^{\infty} f(x) d x=2 \pi i \sum_{\operatorname{Im}\left(z_{i}\right)<0} \operatorname{Res}_{z_{i}} f
$$

- Everything from now is purely algebraic manipulations with complex numbers.

Proof.

- The poles of f in the lower half plane are at α and $\alpha \omega^{2}$, hence we have (recall $\alpha^{2}=-\omega$ and $\omega^{2}=-1-\omega$)

$$
\begin{aligned}
I & =2 \pi i\left(\frac{e^{-2 \pi i \alpha}}{\alpha^{2}(1-\omega)\left(1-\omega^{2}\right)}+\frac{e^{-2 \pi i \alpha \omega^{2}}}{\alpha^{2} \omega\left(\omega^{2}-1\right)(\omega-1)}\right) \\
& =\frac{2 \pi i}{\alpha^{2}\left(\omega^{2}-1\right)(\omega-1)}\left(e^{-2 \pi i \alpha}+\omega^{2} e^{-2 \pi i \alpha \omega^{2}}\right) \\
& =-\frac{2 \pi i}{\omega(\omega+1)(\omega-1)(\omega-1)}\left(e^{-2 \pi i \alpha}+\omega^{2} e^{2 \pi i \bar{\alpha}}\right) \\
& =\frac{2 \pi i}{\omega \omega^{2}(\omega-1)^{2}}\left(e^{-2 \pi i \alpha}+\omega^{2} e^{2 \pi i \bar{\alpha}}\right) \\
& =\frac{2 \pi i}{\omega^{2}-2 \omega+1}\left(e^{-2 \pi i \alpha}+\omega^{2} e^{2 \pi i \bar{\alpha}}\right)
\end{aligned}
$$

Proof.

$$
\begin{aligned}
I & =-\frac{2 \pi i}{3 \omega}\left(e^{-2 \pi i \alpha}+\omega^{2} e^{2 \pi i \bar{\alpha}}\right) \\
& =-\frac{2 \pi i}{3}\left(\omega^{-1} e^{-2 \pi i \alpha}+\omega e^{2 \pi i \bar{\alpha}}\right) \\
& =-\frac{2 \pi i}{3}\left(e^{-2 \pi i \alpha-2 \pi i / 3}+e^{2 \pi i \bar{\alpha}+2 \pi i / 3}\right) \\
& =-\frac{2 \pi i}{3}\left(e^{-2 \pi i(\sqrt{3} / 2-i / 2)-2 \pi i / 3}+e^{2 \pi i(\sqrt{3} / 2+i / 2)+2 \pi i / 3}\right) \\
& =-\frac{2 \pi i e^{-\pi}}{3}\left(e^{-2 \pi i(\sqrt{3} / 2+1 / 3)}+e^{2 \pi i(\sqrt{3} / 2+1 / 3)}\right) \\
& =-\frac{4 \pi i e^{-\pi}}{3} \cos (2 \pi i(\sqrt{3} / 2+1 / 3))
\end{aligned}
$$

or something else ridiculous like this.

