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Exercise (3)
Let f : C→ C be the holomorphic function with singularities given by

f (z) =
e−2πiz

z3 + i
.

Determine the singularities of f and for each of them, determine
what type of singularity it is (removable, pole or essential).
Compute the residue of f at each of its singularities.
Compute the integrals

ˆ ∞
−∞

x3 cos 2πx− sin 2πx
x6 + 1

dx.

ˆ ∞
−∞

x3 sin 2πx− cos 2πx
x6 + 1

dx.
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Proof.
The function f is the quotient of two holomorphic
functions, hence it is a meromorphic function.
Since the numerator is a nowhere vanishing function, f will
have poles at the zeros of the denominator and the order of
the poles of f is the order of the zeros of the denominator.
If we denote by ω = e2πi/3 (a cubic root of 1) and pick
α = e−πi/6 (one of the cubic roots of −i) we have that the
denominator is z3 + i = (z− α)(z− αω)(z− αω2), that is, it
has three simple zeros.
The function f has three simple poles at α, αω and αω2.
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Proof.

ω = e2πi/3 = −1
2 + i

√
3

2 (a cubic root of 1)

α = e−πi/6 = cosπ/6− i sinπ/6 =
√

3
2 −

i
2 (a cubic root of

−i)
For the computations that follow, it is convenient to have
at hand

α2 = 1
2 −

√
3

2 i = −ω,

1 + ω + ω2 = 0, ω2 = −1
2 −

√
3

2 i.
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Proof.

Resα(f ) =
e−2πiα

α2(1− ω)(1− ω2)

Resαω(f ) =
e−2πiαω

−ωα2(1− ω)2

Resαω2(f ) =
e−2πiαω2

α2ω(ω2 − 1)(ω − 1)

I will fill out specific values as needed to compute the integrals.
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Proof.
Since for both integrals the integrand is continuous (the
denominator has no zeros) and the function being
integrated goes to infinity as 1/x3, the integrals converge
absolutely.

Letting g = x3 cos 2πx−sin 2πx
x6+1 , we have g(−x) = −g(x), hence

ˆ ∞
−∞

g(x)dx = 0.
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Proof.
For the second integral we observe that

f (x) =
e−2πix

x3 + i
=

e−2πix(x3 − i)
(x3 + i)(x3 − i)

=
(cos(2πx)− i sin(2πx))(x3 − i)

x6 + 1

Hence there was a sign cock up...
We surely were meant to compute the integral of the real
and imaginary parts of f and I will do that now.

Im (f (x)) = −cos(2πx) + x3 sin(2πx)
x6 + 1
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Proof.
Observe that for z in the semi-circle in the lower half plane
centered at 0 of radius R, z = x + iy with y ≤ 0 and the
numerator in f is bounded by

|e−2πi(x+iy)| = |e−2πixe2πy| = |e2πy| ≤ 1.

f (x) =
e−2πix

x3 + i
=

e−2πix(x3 − i)
(x3 + i)(x3 − i)

=
(cos(2πx)− i sin(2πx))(x3 − i)

x6 + 1

Hence there was a sign cock up...
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Proof.
We surely were meant to compute the integral of the real
and imaginary parts of f and I will do that now.

Im (f (x)) = −cos(2πx) + x3 sin(2πx)
x6 + 1

Since 1/z3 goes faster than O(1/z2) to zero as z goes to
infinite, we conclude that

I :=
ˆ ∞
−∞

f (x)dx = 2πi
∑

Im (zi)<0

Reszi f

Everything from now is purely algebraic manipulations
with complex numbers.
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Proof.
The poles of f in the lower half plane are at α and αω2,
hence we have (recall α2 = −ω and ω2 = −1− ω)

I = 2πi

(
e−2πiα

α2(1− ω)(1− ω2)
+

e−2πiαω2

α2ω(ω2 − 1)(ω − 1)

)

=
2πi

α2(ω2 − 1)(ω − 1)

(
e−2πiα + ω2e−2πiαω2

)
= − 2πi

ω(ω + 1)(ω − 1)(ω − 1)

(
e−2πiα + ω2e2πiᾱ

)
=

2πi
ωω2(ω − 1)2

(
e−2πiα + ω2e2πiᾱ

)
=

2πi
ω2 − 2ω + 1

(
e−2πiα + ω2e2πiᾱ

)
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Proof.

I = −2πi
3ω

(
e−2πiα + ω2e2πiᾱ

)
= −2πi

3

(
ω−1e−2πiα + ωe2πiᾱ

)
= −2πi

3

(
e−2πiα−2πi/3 + e2πiᾱ+2πi/3

)
= −2πi

3

(
e−2πi(

√
3/2−i/2)−2πi/3 + e2πi(

√
3/2+i/2)+2πi/3

)
= −2πie−π

3

(
e−2πi(

√
3/2+1/3) + e2πi(

√
3/2+1/3)

)
= −4πie−π

3
cos(2πi(

√
3/2 + 1/3))

or something else ridiculous like this.
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