Analysis in one complex variable Lecture 16 – Mock exam Q4

Gil Cavalcanti

Utrecht University

Jun 2020 Utrecht

Exercise (4)

Consider the group homomorphism

$$\Phi: \operatorname{Sl}(2; \mathbb{C}) \to M \ddot{o} b, \qquad \Phi \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \frac{az+b}{cz+d}.$$

- Show that if $v = (z_1, z_2)$ is an eigenvector of A, that is $Av = \lambda v$ for some $\lambda \in \mathbb{C}$, then $z = \frac{z_1}{z_2}$ is a fixed point for $\Phi(A)$.
- Show that if z is a fixed point for Φ(A), then (z, 1) is an eigenvector for A.

- I will first consider the the case in which $v = (z_1, z_2)$ is an eigenvector and $z_2 \neq 0$.
- Spelling out $Av = \lambda v$ we have

$$\begin{pmatrix} az_1 + bz_2 \\ cz_1 + dz_2 \end{pmatrix} = \lambda \begin{pmatrix} z_1 \\ z_2 \end{pmatrix}$$

Taking the quotient of the first coordinate by the second we have

$$\frac{az_1 + bz_2}{cz_1 + dz_2} = \frac{z_1}{z_2} \tag{1}$$

Finally we compute:

$$\Phi(A)(z_1/z_2) = \frac{az_1/z_2 + b}{cz_1/z_2 + d}$$
$$= \frac{az_1 + bz_2}{cz_1 + dz_2}$$
$$= \frac{z_1}{z_2}.$$

showing that z_1/z_2 is a fixed point (the last equality follows from (1)).

- Now I will consider the the case in which $v = (z_1, z_2)$ is an eigenvector and $z_2 = 0$ (hence $z_1/z_2 = \infty$).
- Then

$$A = \begin{pmatrix} a & b \\ 0 & d \end{pmatrix}$$

And

$$\Phi(A)(z) = \frac{az+b}{d}$$

And $\Phi(A)(\infty) = \frac{a}{0} = \infty$.

• For the converse, assuming that *z* is a fixed point, we have

$$\frac{az+b}{cz+d} = z$$

Let $\lambda := cz + d$, then $az + b = \lambda z$ and

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} z \\ 1 \end{pmatrix} = \begin{pmatrix} az+b \\ cz+d \end{pmatrix} = \begin{pmatrix} \lambda z \\ \lambda \end{pmatrix}$$