Differentiable manifolds – hand-in sheet 1

hand in by: 19/Oct

Čech cohomology and lines bundles

Exercise 1. Let $\mathfrak{U} = \{U_{\alpha} : \alpha \in A\}$ be a locally finite cover of a manifold M by open sets such that each U_{α} is either empty or homeomorphic to a disc for every multi-index $a \subset A$, that is, each U_{α} is a disc, and each double intersection is a disc (or empty) and each triple intersection is a disc, or empty, etc.

For the rest of the exercise, we let $\pi: E \longrightarrow M$ be a rank 1 real vector bundle (i.e. a line bundle) over M.

1. Show that a choice of local nonvanishing sections s_{α} over U_{α} (for each α) gives isomorphisms

$$\Phi_{\alpha}: \pi^{-1}(U_{\alpha}) \longrightarrow U_{\alpha} \times \mathbb{R}.$$

2. Define the transition functions g^{β}_{α} for this collection of Φ_{α} by

$$\Phi_{\beta} \circ \Phi_{\alpha}^{-1} : U_{\alpha\beta} \times \mathbb{R} \longrightarrow U_{\alpha\beta} \times \mathbb{R}$$
$$\Phi_{\beta} \circ \Phi_{\alpha}^{-1}(x, v) = (x, g_{\beta}^{\alpha}(x)v) \qquad g_{\beta}^{\alpha}(x) \in Gl(1; \mathbb{R}) = \mathbb{R}^{*}$$

Show that the collection $\check{g} = \{g^{\alpha}_{\beta} : \alpha, \beta \in A\}$ forms a degree 1 Čech cochain with coefficients in the smooth functions with values in the abelian group \mathbb{R}^* .

- 3. Show that $\delta \check{g} = 0$.
- 4. Show that if we choose different nonvanishing sections σ_{α} of E over U_{α} and run the same argument above with s_{α} replaced by σ_{α} , the Čech cocyle \check{g} changes by a coboundary: $\check{g} + \delta \check{f}$, with $\check{f} \in \check{C}^0(M, \mathbb{R}^*)$, hence the cohomology class $[\check{g}] \in \check{H}^1(M; C^{\infty}(M; \mathbb{R}^*); \mathfrak{U})$ does not depend on the choices made.
- 5. Conversely, argue that given a cohomology class $[\check{g}] \in \check{H}^1(M; C^{\infty}(M; \mathbb{R}^*); \mathfrak{U})$, any representative $\check{g} = \{g_{\beta}^{\alpha} : \alpha, \beta \in A\}$ of that class can be used to construct a line bundle for which the procedure above associates to the class $[\check{g}]$.