Differentiable manifolds - hand-in sheet 3

Hand in by $21 / \mathrm{Nov}$

Prelude to the exercise

Definition 1. A graded vector space is a vector space which decomposes as a direct sum

$$
V=\oplus_{n=0}^{\infty} V_{n}
$$

where each V_{n} is a vector space and the elements of V_{n} are said to be the homogenous elements of degree n.

This means that an element of V does not have a degree associated to it, but it can be written as a sum of homogeneous elements of different degrees.

An example of graded vector space is given by polynomials in n variables with real, complex or even matrix coefficients. In this case, V_{n} is the set of homogeneous polynomials if degree n.

Definition 2. A graded algebra over the real numbers with a product of degree n is a real graded vector space, $A=\oplus A_{i}$, endowed with a bilinear operation

$$
A \times A \longrightarrow A \quad(X, Y) \mapsto X \cdot Y
$$

Such that for $X \in A_{i}$ and $Y \in A_{j}, X \cdot Y \in A^{i+j+n}$.
Using polynomial multiplication as algebra operation, polynomials of several variables are an example of a graded algebra with a multiplication of degree zero. Any algebra A is an example of a graded algebra with a product of degree zero by setting $A_{0}=A$ and $A_{i}=\{0\}$ for $i>0$.

Definition 3. A graded Lie algebra over the real numbers with a bracket of degree n is a real graded algebra, $A=\oplus A_{i}$ where the algebra operation is given by the bracket

$$
A \times A \xrightarrow{[\cdot \cdot]} A \quad(X, Y) \mapsto[X, Y]
$$

Such that for $X \in A_{i}, Y \in A_{j}$ and $Z \in A_{k}$

1. $[X, Y] \in A^{i+j+n}$, (degree n),
2. $[X, Y]=(-1)^{(i+n) \cdot(j+n)+1}[Y, X]$ (graded skew),
3. $[X,[Y, Z]]=[[X, Y], Z]+(-1)^{(n+i)(n+j)}[Y,[X, Z]]$ (graded Jacobi).

Exercise

1) For a fixed $m \in \mathbb{N}$, a different algebra structure can be introduced on the set of polynomials in one variable with coefficients in $m \times m$ matrices. Namely, we declare that the homogenous polynomials of degree n are the elements of degree $2 n$ in the algebra (hence there are no elements of odd degree) and define the algebra operation to be

$$
(p, q) \longrightarrow[p, q]=p \cdot q-q \cdot p, \quad \forall p, q,
$$

where • denotes usual polynomial multiplication together with matrix multiplication of the coefficients. Show that with this operation the set of polynomials in one variable with coefficients in $m \times m$ matrices is a graded Lie algebra with a bracket of degree 0 .
2) Let $(A,[\cdot, \cdot])$ be a graded Lie algebra with a bracket of degree n and assume that $d \in A^{l}$, with $n+l=1$ $\bmod 2$, satisfies $[d, d]=0$. Define a new bracket, $[\cdot, \cdot]_{d}$ on A by

$$
\left.[X, Y]_{d}=[[X, d], Y]\right]
$$

Show that for $X \in A_{i}, Y \in A_{j}$ and $Z \in A_{k}$

- $[X, Y]_{d} \in A^{i+j+2 n+l}$ (degree $2 n+l$);
- $\left[X,[Y, Z]_{d}\right]_{d}=\left[[X, Y]_{d}, Z\right]_{d}+(-1)^{(2 n+l+i)(2 n+l+j)}\left[Y,[X, Z]_{d}\right]_{d}$ (graded Jacobi)

Hint: It may simplify your computations to define first the linear operator

$$
D: A \longrightarrow A \quad D(X):=D X:=[X, d]
$$

so that

$$
[X, Y]_{d}=[D X, Y]
$$

and check that

$$
D^{2}=0 \quad \text { and } \quad D[X, Y]=(-1)^{n+j}[D X, Y]+[X, D Y]
$$

and then apply D to the Jacobi identity

$$
[D X,[Y, Z]]=[[D X, Y], Z]+(-1)^{(n+i+1)(n+j)}[Y,[D X, Z]]
$$

Remark: The bracket $[\cdot, \cdot]_{d}$ defined above is not necessarily graded skew, hence it is not in general a graded Lie bracket.

