Differentiable manifolds - hand-in sheet 5

Hand in by 12/Dec

Exercise

Let \mathcal{A} be the space of all \mathbb{R}-linear endomorphisms of $\Omega^{\bullet}(M)$,

$$
\mathcal{A}=\left\{A: \Omega^{\bullet}(M) \longrightarrow \Omega^{\bullet}(M) \mid A \text { is linear }\right\} .
$$

We can make \mathcal{A} into a \mathbb{Z}-graded vector space by declaring that and element of \mathcal{A} has degree k if

$$
A: \Omega^{l}(M) \longrightarrow \Omega^{l+k}(M) \quad \forall l \in \mathbb{Z}
$$

1. Define the graded commutator in \mathcal{A} as the degree zero bracket

$$
\{\cdot, \cdot\}: \mathcal{A}^{k} \times \mathcal{A}^{l} \longrightarrow \mathcal{A}^{k+l} ; \quad\{A, B\}=A B+(-1)^{k l+1} B A
$$

Show that \mathcal{A} with the graded commutator is a graded Lie algebra.
2. Let d be the exterior derivative, X be a vector field and ξ be a 1 -form. Show that $d \in \mathcal{A}^{1}, \xi \wedge \in \mathcal{A}^{1}$ and $\iota_{X} \in \mathcal{A}^{-1}$. Further show that $\{d, d\}=0$.
3. Following the construction from exercise 2 from hand-in sheet 3 , show that for vector fields X and Y

$$
\left\{\iota_{X}, \iota_{Y}\right\}_{d}:=\left\{\left\{\iota_{X}, d\right\}, \iota_{Y}\right\}=\iota_{[X, Y]} .
$$

Remark: The conclusion from this part is that

- the exterior derivative determines the Lie bracket of vector fields and
- that the Jacobi identity for the Lie bracket of vector fields is a consequence of the fact that $d^{2}=0$.

4. We can also see \mathcal{A} as a \mathbb{Z}_{2}-graded vector space, where $\mathcal{A}^{e v}$ are the maps which preserve the parity of forms and $\mathcal{A}^{\text {od }}$ the ones that reverse:

$$
\begin{aligned}
& A \in \mathcal{A}^{e v} \text { if and only if } A: \Omega^{e v / o d}(M) \longrightarrow \Omega^{e v / o d}(M), \\
& A \in \mathcal{A}^{o d} \text { if and only if } A: \Omega^{e v / o d}(M) \longrightarrow \Omega^{o d / e v}(M),
\end{aligned}
$$

Following the construction from exercise 2 from hand-in sheet 3 , show that for vector fields X and Y and 1-forms ξ and η

$$
\left\{\iota_{X}+\xi \wedge, \iota_{Y}+\eta \wedge\right\}_{d}:=\left\{\left\{\iota_{X}+\xi \wedge, d\right\}, \iota_{Y}+\eta \wedge\right\}=\iota_{[X, Y]}+\left(\mathcal{L}_{X} \eta\right) \wedge-\left(\iota_{Y} d \xi\right) \wedge .
$$

About notation: Feel free to drop the ι from the interior product and the \wedge from the exterior product and just write $X \varphi$ for $\iota_{X} \varphi$ and $\xi \varphi$ for $\xi \wedge \varphi$.

