Differentiable manifolds – hand-in sheet 5

Hand in by 12/Dec

Exercise

Let \mathcal{A} be the space of all \mathbb{R} -linear endomorphisms of $\Omega^{\bullet}(M)$,

$$\mathcal{A} = \{ A : \Omega^{\bullet}(M) \longrightarrow \Omega^{\bullet}(M) | A \text{ is linear} \}.$$

We can make \mathcal{A} into a \mathbb{Z} -graded vector space by declaring that and element of \mathcal{A} has degree k if

$$A: \Omega^{l}(M) \longrightarrow \Omega^{l+k}(M) \qquad \forall l \in \mathbb{Z}.$$

1. Define the graded commutator in \mathcal{A} as the degree zero bracket

$$\{\cdot, \cdot\}: \mathcal{A}^k \times \mathcal{A}^l \longrightarrow \mathcal{A}^{k+l}; \qquad \{A, B\} = AB + (-1)^{kl+1}BA.$$

Show that \mathcal{A} with the graded commutator is a graded Lie algebra.

- 2. Let d be the exterior derivative, X be a vector field and ξ be a 1-form. Show that $d \in \mathcal{A}^1$, $\xi \wedge \in \mathcal{A}^1$ and $\iota_X \in \mathcal{A}^{-1}$. Further show that $\{d, d\} = 0$.
- 3. Following the construction from exercise 2 from hand-in sheet 3, show that for vector fields X and Y

$$\{\iota_X, \iota_Y\}_d := \{\{\iota_X, d\}, \iota_Y\} = \iota_{[X, Y]}.$$

Remark: The conclusion from this part is that

- the exterior derivative determines the Lie bracket of vector fields and
- that the Jacobi identity for the Lie bracket of vector fields is a consequence of the fact that $d^2 = 0$.
- 4. We can also see \mathcal{A} as a \mathbb{Z}_2 -graded vector space, where \mathcal{A}^{ev} are the maps which preserve the parity of forms and \mathcal{A}^{od} the ones that reverse:

$$A \in \mathcal{A}^{ev}$$
 if and only if $A : \Omega^{ev/od}(M) \longrightarrow \Omega^{ev/od}(M)$,

 $A \in \mathcal{A}^{od}$ if and only if $A : \Omega^{ev/od}(M) \longrightarrow \Omega^{od/ev}(M)$,

Following the construction from exercise 2 from hand-in sheet 3, show that for vector fields X and Y and 1-forms ξ and η

$$\{\iota_X + \xi \land, \iota_Y + \eta \land\}_d := \{\{\iota_X + \xi \land, d\}, \iota_Y + \eta \land\} = \iota_{[X,Y]} + (\mathcal{L}_X \eta) \land - (\iota_Y d\xi) \land.$$

About notation: Feel free to drop the ι from the interior product and the \land from the exterior product and just write $X\varphi$ for $\iota_X\varphi$ and $\xi\varphi$ for $\xi \land \varphi$.