Differentiable manifolds - Mock Exam 1

Notes:

1. Write your name and student number ${ }^{* *}$ clearly** on each page of written solutions you
hand in.
2. You can give solutions in English or Dutch.
3. You are expected to explain your answers.
4. You are not allowed to consult any text book, class notes, colleagues, calculators, computers etc.
5. Advice: read all questions first, then start solving the ones you already know how to solve or have good idea on the steps to find a solution. After you have finished the ones you found easier, tackle the harder ones.
1) Let M be the subset of \mathbb{R}^{3} defined by the equation

$$
M=\left\{\left(x_{1}, x_{2}, x_{3}\right): x_{1} x_{2}^{2}+x_{2} x_{3}^{2}+x_{3} x_{1}^{2}=1\right\}
$$

a) Show that M is a smooth submanifold of \mathbb{R}^{3};
b) Define $\pi: M \longrightarrow \mathbb{R} ; \pi\left(x_{1}, x_{2}, x_{3}\right)=x_{1}$. Find the critical points and critical values of π.

Solution.

a) M is the zero-level set of the function $F: \mathbb{R}^{3} \longrightarrow \mathbb{R}$ given by

$$
F\left(x_{1}, x_{2}, x_{3}\right)=x_{1} x_{2}^{2}+x_{2} x_{3}^{2}+x_{3} x_{1}^{2}-1
$$

hence to prove that M is a manifold it is enough to prove that 0 is a regular value, that is, prove that if $F(x)=0$ then $F_{*} \mid x: T_{x} \mathbb{R}^{3} \longrightarrow T_{0} \mathbb{R}$ is onto. For real valued functions, F_{*} is just the differential $d F$ and since $T_{0} \mathbb{R}$ is a one dimensional vector space, $d F$ is surjective whenever it is not zero. So, to prove that $0 \in \mathbb{R} \mathrm{~s}$ a regular value we must show that the equations $F(x)=0$ and $d F(x)=0$ do not have a solution. Since

$$
d F\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{2}^{2}+2 x_{3} x_{1}\right) d x_{1}+\left(x_{3}^{2}+2 x_{1} x_{2}\right) d x_{2}+\left(x_{1}^{2}+2 x_{2} x_{3}\right) d x_{3}
$$

we can spell out the conditions $F(x)=0$ and $d F(x)=0$:

$$
\left\{\begin{array}{l}
x_{1} x_{2}^{2}+x_{2} x_{3}^{2}+x_{3} x_{1}^{2}-1=0 \\
x_{2}^{2}+2 x_{3} x_{1}=0 \\
x_{3}^{2}+2 x_{1} x_{2}=0 \\
x_{1}^{2}+2 x_{2} x_{3}=0
\end{array}\right.
$$

First we observe that there is no solution with $x_{1} x_{2} x_{3}=0$. Indeed, say $x_{1}=0$, second and third equations give $x_{2}=x_{3}=0$, but $(0,0,0)$ is not a solution to the first equation. If we divide the last two equations written as $x_{3}^{2}=-2 x_{1} x_{2}$ and $x_{1}^{2}=-2 x_{2} x_{3}^{2}$ we get

$$
\left(x_{3} / x_{1}\right)^{2}=\left(x_{1} / x_{3}\right) \Rightarrow x_{3}=x_{1}
$$

By symmetry of the last three equations, we also get $x_{2}=x_{1}$ and hence a solution to the last three equations should satisfy $3 x_{1}^{2}=0$ hence $x_{1}=0$, but was saw that this can not be a solution to the system, so 0 is a regular value.
b) Similarly to the previous argument, the critical points x of $\left.\pi\right|_{M}$ are those for which $d \pi_{x}: T_{x} M \longrightarrow$ $T_{\pi(x)} \mathbb{R}$ is the zero map, that is $\operatorname{ker}\left(d \pi_{x}\right)=T_{x} M=\operatorname{ker} d F$, hence the points where $d \pi_{x}=\lambda d F_{x}$ are the critical points of π. Since $d \pi=d x_{1}$, we want to find the points in M where the coefficients of $d F$ corresponding to $d x_{2}$ and $d x_{3}$ vanish, i.e., we want to solve

$$
\left\{\begin{array}{l}
x_{1} x_{2}^{2}+x_{2} x_{3}^{2}+x_{3} x_{1}^{2}-1=0 \\
x_{3}^{2}+2 x_{1} x_{2}=0 \\
x_{1}^{2}+2 x_{2} x_{3}=0
\end{array}\right.
$$

Again, if, a solution has, say, $x_{1}=0$, then the last two equations give either x_{2} or x_{3} must vanish and hence the first equation can not hold. Similarly, if $x_{2}=$, the last two equations imply $x_{1}=x_{3}=0$ and the first equation does not hold. Following the same computations we did in a), we can rearrange the last two equations and divide them by each other to obtain

$$
\left(x_{3} / x_{1}\right)^{2}=x_{1} / x_{3} \Rightarrow x_{1}=x_{3}
$$

Then the last equation furnishes $x_{2}=-x_{1} / 2$ and the first gives

$$
3 x_{1}^{3}=1 \Rightarrow x_{1}=\sqrt[3]{4 / 3}
$$

So the point $(\sqrt[3]{4 / 3},-\sqrt[3]{1 / 6}, \sqrt[3]{4 / 3})$ is the only critical point of π on M and the corresponding critical value is $\sqrt[3]{4 / 3}$.
2) Show that a smooth map $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ can not be injective.

Solution.

Firstly we observe that if $d F$ is identically zero, then F is constant and hence not an injection.
If $d F_{p} \neq 0$ for some $p \in \mathbb{R}^{2}$, then one of the several corollaries of the inverse function theorem states that we can find coordinates y in a nhood of $f(p)$ and coordinates $\left(x_{1}, x_{2}\right)$ in a nhood of p for which $f\left(x_{1}, x_{2}\right)=x_{1}$. Hence f is not injective.
3) Let $M \stackrel{\varphi}{\longrightarrow} N$ be an embedded submanifold for which $\varphi(M)$ is a closed subset of N. Show that if $X \in \mathscr{X}(M)$, then there exists a vector field $\tilde{X} \in \mathscr{X}(N)$ which is φ-related to X. Such \tilde{X} is normally called an extension of X to N. Given $X, Y \in \mathscr{X}(M)$, let \tilde{X}, \tilde{Y} be extensions of X and Y to N. Show that for $p \in \varphi(M),[\tilde{X}, \tilde{Y}](p)$ is tangent to $\varphi(M)$ and depends only on X and Y and not on the particular extensions \tilde{X} and \tilde{Y} chosen.

Solution. From one of the several corollaries of the inverse function theorem, we know that for every $p \in M$ there is a coordinate system X in a nhood U of p and a coordinate system Y in a nhood V of $\varphi(p)$ such that the local expression for $\varphi, \tilde{\varphi}=Y \circ \varphi \circ X^{-1}$ is simply

$$
\varphi(x)=(x, 0)
$$

Since φ is an embedding, we can further assume that $V \cap \varphi(M)=\varphi(U)$.
Now we define \tilde{X} in the nhood V (in the coordinates above) by

$$
\tilde{X}\left(y_{1}, y_{2}\right)=X\left(y_{1}\right), \quad y_{1} \in \mathbb{R}^{m}, y_{2} \in \mathbb{R}^{n-m}
$$

that is, in these coordinates \tilde{X} is independent of the last $n-m$ variables and, for $q=\varphi(p), \tilde{X}(q)=$ $\left.\varphi_{*}\right|_{p} X(p)$.

This procedure can now be carried out in nhoods of all points of M to obtain an open cover U_{α} of M and corresponding extensions \tilde{X}_{α} of $\varphi_{*} X$ to V_{α}., so for $p \in U_{\alpha} \varphi_{p} * X(p)=\tilde{X}(\varphi(p))$. By second countability we can find a locally finite and countable refinement of U_{α} which we still denote by U_{α} and we still denote the corresponding vector fields $X_{\alpha} \in \mathfrak{X}\left(V_{\alpha}\right)$. Since $\varphi(M)$ is closed, $N \backslash \varphi(M)$ is open and the collection formed by $\left(V_{\alpha}\right)$ and the open set $N \backslash \varphi(M)$ is a locally finite cover of N, hence we can find a partition of unity $\left(\xi_{\alpha}\right)$ subordinated to this cover with same index set.

Now define $\tilde{X}=\sum \xi_{\alpha} X_{\alpha}$. Then, for $p \in M$ and $q=\varphi(p)$ we have

$$
\tilde{X}(q)=\sum_{\alpha} \xi_{\alpha}(q) \tilde{X}_{\alpha}(q)=\left.\sum_{\alpha} \xi_{\alpha}(q) \varphi_{*}\right|_{p} X(p)=\left.\varphi_{*}\right|_{p} X(p)
$$

Therefore \tilde{X} is φ-related to X.
Now given vector fields $X, Y \in \mathfrak{X}(M)$ and extensions $\tilde{X}, \tilde{Y} \in \mathfrak{X}(N)$. Then, by the above these vector fields are φ-related and hence so is their Lie bracket:

$$
\left.\varphi_{*}\right|_{p}([X, Y])=[\tilde{X}, \tilde{Y}](q)
$$

Since the quantity in the left hand side of the expression above is independent of the choices of extensions, so is the quantity on the right hand side, i.e., $[\tilde{X}, \tilde{Y}](q)$ depends only on X, Y but not on the extensions chosen.
4) Show that $\mathbb{C} \backslash\{0\}$ with complex multiplication is a Lie group. Show that S^{1}, the set of complex numbers of norm 1 , is also a Lie group.

First we will show that $C^{*}=\mathbb{C} \backslash\{0\}$ is a Lie group, i.e., that multiplication and inversion are smooth. Notice that $\mathbb{C}^{*}=\mathbb{R}^{2} \backslash\{0\}, x+i y \mapsto(x, y)$ is covered by a single chart, so to check smoothness we can simply check it in this chart.

Multiplication is given by

$$
(x+i y, u+i v) \mapsto x u-y v+i(x v+y u)
$$

or, in coordinates

$$
((x, y),(u, v)) \mapsto(x u-y v, x v+y u)
$$

and we see that the map is polynomial on the coordinates (x, y) and (u, v), hence smooth.
Inversion is given by

$$
z \mapsto \bar{z} /\|z\|^{2}
$$

in coordinates, this is

$$
(x, y) \mapsto\left(\frac{x}{x^{2}+y^{2}},-\frac{y}{x^{2}+y^{2}}\right)
$$

which is clearly smooth on $\mathbb{R}^{2} \backslash\{0\}$.
Now we check that S^{1} is a Lie group. Since multiplication and inversion are smooth in \mathbb{C}^{*}, their restriction to S^{1} is also smooth, i.e.

$$
\begin{array}{rl}
S^{1} \times S^{1} \longrightarrow \mathbb{C}^{*} & \left(z_{1}, z_{2}\right) \longrightarrow z_{1} z_{2} \\
S^{1} \longrightarrow \mathbb{C}^{*} & z \longrightarrow z^{-1}
\end{array}
$$

are smooth.

Since S^{1} is a subgroup of \mathbb{C}^{*}, as has been checked in the group theory course, the image of maps above is S^{1} and since S^{1} is an embedded submanifold of \mathbb{C}^{*} this means that the maps

$$
\begin{array}{rl}
S^{1} \times S^{1} \longrightarrow S^{1} \subset \mathbb{C}^{*} & \left(z_{1}, z_{2}\right) \longrightarrow z_{1} z_{2} \\
S^{1} \longrightarrow S^{1} \subset \mathbb{C}^{*} & z \longrightarrow z^{-1}
\end{array}
$$

are also smooth (c.f. Warner Theorem 1.32), hence S^{1} is a Lie (sub)group.
5) Let $\left(U_{\alpha}: \alpha \in A\right)$ be an open cover of a manifold M and let $f_{\alpha}: U_{\alpha} \longrightarrow \mathbb{R}$ be a family of smooth functions such that on $U_{\alpha} \cap U_{\beta}, f_{\alpha}-f_{\beta}$ is constant, for all $\alpha, \beta \in A$. Show that if we define a 1-form ξ on M by declaring that, on $U_{\alpha}, \xi=d f_{\alpha}$, then ξ is a globally defined 1-form.

Solution.

Define $\xi_{\alpha} \in \Omega^{1}\left(U_{\alpha}\right)$ by $\xi_{\alpha}=d f_{\alpha}$. Then if $x \in U_{\alpha} \cap U_{\beta}$ we have

$$
\xi_{\alpha}-\xi_{\beta}=d f_{\alpha}-d f_{\beta}=d\left(f_{\alpha}-f_{\beta}\right)=0
$$

Hence the form ξ defined to be equal to ξ_{α} in U_{α} is well defined (its value at a point x does not depend on which representative ξ_{α} was used to define it). Since f_{α} is smooth, so is ξ.

