
Differentiable manifolds – Mock Exam 1

Notes:

1. Write your name and student number **clearly** on each page of written solutions you
hand in.

2. You can give solutions in English or Dutch.

3. You are expected to explain your answers.

4. You are not allowed to consult any text book, class notes, colleagues, calculators, computers etc.

5. Advice: read all questions first, then start solving the ones you already know how to solve or have
good idea on the steps to find a solution. After you have finished the ones you found easier, tackle
the harder ones.

1) Let M be the subset of R3 defined by the equation

M = {(x1, x2, x3) : x1x
2
2 + x2x

2
3 + x3x

2
1 = 1}.

a) Show that M is a smooth submanifold of R3;

b) Define π : M −→ R; π(x1, x2, x3) = x1. Find the critical points and critical values of π.

Solution.
a) M is the zero-level set of the function F : R3 −→ R given by

F (x1, x2, x3) = x1x
2
2 + x2x

2
3 + x3x

2
1 − 1

hence to prove that M is a manifold it is enough to prove that 0 is a regular value, that is, prove that if
F (x) = 0 then F∗|x : TxR3 −→ T0R is onto. For real valued functions, F∗ is just the differential dF and
since T0R is a one dimensional vector space, dF is surjective whenever it is not zero. So, to prove that
0 ∈ R s a regular value we must show that the equations F (x) = 0 and dF (x) = 0 do not have a solution.
Since

dF (x1, x2, x3) = (x2
2 + 2x3x1)dx1 + (x2

3 + 2x1x2)dx2 + (x2
1 + 2x2x3)dx3

we can spell out the conditions F (x) = 0 and dF (x) = 0:
x1x

2
2 + x2x

2
3 + x3x

2
1 − 1 = 0

x2
2 + 2x3x1 = 0
x2

3 + 2x1x2 = 0
x2

1 + 2x2x3 = 0

First we observe that there is no solution with x1x2x3 = 0. Indeed, say x1 = 0, second and third equations
give x2 = x3 = 0, but (0, 0, 0) is not a solution to the first equation. If we divide the last two equations
written as x2

3 = −2x1x2 and x2
1 = −2x2x

2
3 we get

(x3/x1)2 = (x1/x3)⇒ x3 = x1.



By symmetry of the last three equations, we also get x2 = x1 and hence a solution to the last three
equations should satisfy 3x2

1 = 0 hence x1 = 0, but was saw that this can not be a solution to the system,
so 0 is a regular value.

b) Similarly to the previous argument, the critical points x of π|M are those for which dπx : TxM −→
Tπ(x)R is the zero map, that is ker(dπx) = TxM = ker dF , hence the points where dπx = λdFx are
the critical points of π. Since dπ = dx1, we want to find the points in M where the coefficients of dF
corresponding to dx2 and dx3 vanish, i.e., we want to solve

x1x
2
2 + x2x

2
3 + x3x

2
1 − 1 = 0

x2
3 + 2x1x2 = 0
x2

1 + 2x2x3 = 0

Again, if, a solution has, say, x1 = 0, then the last two equations give either x2 or x3 must vanish and
hence the first equation can not hold. Similarly, if x2 =, the last two equations imply x1 = x3 = 0 and
the first equation does not hold. Following the same computations we did in a), we can rearrange the last
two equations and divide them by each other to obtain

(x3/x1)2 = x1/x3 ⇒ x1 = x3.

Then the last equation furnishes x2 = −x1/2 and the first gives

3x3
1 = 1⇒ x1 = 3

√
4/3,

So the point ( 3
√

4/3,− 3
√

1/6, 3
√

4/3) is the only critical point of π on M and the corresponding critical
value is 3

√
4/3.

2) Show that a smooth map f : R2 −→ R can not be injective.

Solution.
Firstly we observe that if dF is identically zero, then F is constant and hence not an injection.
If dFp 6= 0 for some p ∈ R2, then one of the several corollaries of the inverse function theorem states

that we can find coordinates y in a nhood of f(p) and coordinates (x1, x2) in a nhood of p for which
f(x1, x2) = x1. Hence f is not injective.

3) Let M
ϕ−→ N be an embedded submanifold for which ϕ(M) is a closed subset of N . Show that if

X ∈ X(M), then there exists a vector field X̃ ∈ X(N) which is ϕ-related to X. Such X̃ is normally called
an extension of X to N . Given X,Y ∈ X(M), let X̃, Ỹ be extensions of X and Y to N . Show that
for p ∈ ϕ(M), [X̃, Ỹ ](p) is tangent to ϕ(M) and depends only on X and Y and not on the particular
extensions X̃ and Ỹ chosen.

Solution. From one of the several corollaries of the inverse function theorem, we know that for every
p ∈M there is a coordinate system X in a nhood U of p and a coordinate system Y in a nhood V of ϕ(p)
such that the local expression for ϕ, ϕ̃ = Y ◦ ϕ ◦X−1 is simply

ϕ(x) = (x, 0).

Since ϕ is an embedding, we can further assume that V ∩ ϕ(M) = ϕ(U).
Now we define X̃ in the nhood V (in the coordinates above) by

X̃(y1, y2) = X(y1), y1 ∈ Rm, y2 ∈ Rn−m,



that is, in these coordinates X̃ is independent of the last n − m variables and, for q = ϕ(p), X̃(q) =
ϕ∗|pX(p).

This procedure can now be carried out in nhoods of all points of M to obtain an open cover Uα of
M and corresponding extensions X̃α of ϕ∗X to Vα., so for p ∈ Uα ϕp ∗ X(p) = X̃(ϕ(p)). By second
countability we can find a locally finite and countable refinement of Uα which we still denote by Uα and
we still denote the corresponding vector fields Xα ∈ X(Vα). Since ϕ(M) is closed, N\ϕ(M) is open and
the collection formed by (Vα) and the open set N\ϕ(M) is a locally finite cover of N , hence we can find
a partition of unity (ξα) subordinated to this cover with same index set.

Now define X̃ =
∑
ξαXα. Then, for p ∈M and q = ϕ(p) we have

X̃(q) =
∑
α

ξα(q)X̃α(q) =
∑
α

ξα(q)ϕ∗|pX(p) = ϕ∗|pX(p).

Therefore X̃ is ϕ-related to X.
Now given vector fields X,Y ∈ X(M) and extensions X̃, Ỹ ∈ X(N). Then, by the above these vector

fields are ϕ-related and hence so is their Lie bracket:

ϕ∗|p([X,Y ]) = [X̃, Ỹ ](q).

Since the quantity in the left hand side of the expression above is independent of the choices of extensions,
so is the quantity on the right hand side, i.e., [X̃, Ỹ ](q)depends only on X,Y but not on the extensions
chosen.

4) Show that C\{0} with complex multiplication is a Lie group. Show that S1, the set of complex numbers
of norm 1, is also a Lie group.

First we will show that C∗ = C\{0} is a Lie group, i.e., that multiplication and inversion are smooth.
Notice that C∗ = R2\{0}, x + iy 7→ (x, y) is covered by a single chart, so to check smoothness we can
simply check it in this chart.

Multiplication is given by

(x+ iy, u+ iv) 7→ xu− yv + i(xv + yu),

or, in coordinates
((x, y), (u, v)) 7→ (xu− yv, xv + yu)

and we see that the map is polynomial on the coordinates (x, y) and (u, v), hence smooth.
Inversion is given by

z 7→ z/‖z‖2

in coordinates, this is

(x, y) 7→
(

x

x2 + y2
,− y

x2 + y2

)
,

which is clearly smooth on R2\{0}.
Now we check that S1 is a Lie group. Since multiplication and inversion are smooth in C∗, their

restriction to S1 is also smooth, i.e.

S1 × S1 −→ C∗ (z1, z2) −→ z1z2

S1 −→ C∗ z −→ z−1

are smooth.



Since S1 is a subgroup of C∗, as has been checked in the group theory course, the image of maps above
is S1 and since S1 is an embedded submanifold of C∗ this means that the maps

S1 × S1 −→ S1 ⊂ C∗ (z1, z2) −→ z1z2

S1 −→ S1 ⊂ C∗ z −→ z−1

are also smooth (c.f. Warner Theorem 1.32), hence S1 is a Lie (sub)group.

5) Let (Uα : α ∈ A) be an open cover of a manifold M and let fα : Uα −→ R be a family of smooth
functions such that on Uα ∩ Uβ , fα − fβ is constant, for all α, β ∈ A. Show that if we define a 1-form ξ
on M by declaring that, on Uα, ξ = dfα, then ξ is a globally defined 1-form.

Solution.
Define ξα ∈ Ω1(Uα) by ξα = dfα. Then if x ∈ Uα ∩ Uβ we have

ξα − ξβ = dfα − dfβ = d(fα − fβ) = 0.

Hence the form ξ defined to be equal to ξα in Uα is well defined (its value at a point x does not depend
on which representative ξα was used to define it). Since fα is smooth, so is ξ.


