Differentiable manifolds – Mock Exam 1

Notes:

- 1. Write your name and student number **clearly** on each page of written solutions you hand in.
- 2. You can give solutions in English or Dutch.
- 3. You are expected to explain your answers.
- 4. You are **not** allowed to consult any text book, class notes, colleagues, calculators, computers etc.
- 5. Advice: read all questions first, then start solving the ones you already know how to solve or have good idea on the steps to find a solution. After you have finished the ones you found easier, tackle the harder ones.
- 1) Let M be the subset of \mathbb{R}^3 defined by the equation

$$M = \{(x_1, x_2, x_3) : x_1 x_2^2 + x_2 x_3^2 + x_3 x_1^2 = 1\}.$$

- a) Show that M is a smooth submanifold of \mathbb{R}^3 ;
- b) Define $\pi: M \longrightarrow \mathbb{R}$; $\pi(x_1, x_2, x_3) = x_1$. Find the critical points and critical values of π .
- 2) Show that a smooth map $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ can not be injective.
- 3) Let $M \xrightarrow{\varphi} N$ be an embedded submanifold for which $\varphi(M)$ is a closed subset of N. Show that if $X \in \mathfrak{X}(M)$, then there exists a vector field $\tilde{X} \in \mathfrak{X}(N)$ which is φ -related to X. Such \tilde{X} is normally called an *extension* of X to N. Given $X, Y \in \mathfrak{X}(M)$, let \tilde{X}, \tilde{Y} be extensions of X and Y to N. Show that for $p \in \varphi(M)$, $[\tilde{X}, \tilde{Y}](p)$ is tangent to $\varphi(M)$ and depends only on X and Y and not on the particular extensions \tilde{X} and \tilde{Y} chosen.
- 4) Show that $\mathbb{C}\setminus\{0\}$ with complex multiplication is a Lie group. Show that S^1 , the set of complex numbers of norm 1, is also a Lie group.
- 5) Let $(U_{\alpha}: \alpha \in A)$ be an open cover of a manifold M and let $f_{\alpha}: U_{\alpha} \longrightarrow \mathbb{R}$ be a family of smooth functions such that on $U_{\alpha} \cap U_{\beta}$, $f_{\alpha} f_{\beta}$ is constant, for all $\alpha, \beta \in A$. Show that if we define a 1-form ξ on M by declaring that, on U_{α} , $\xi = df_{\alpha}$, then ξ is a globally defined 1-form.