## Differentiable manifolds - Mock Exam 2

Notes:

1. Write your name and student number ${ }^{* *}$ clearly** on each page of written solutions you hand in.
2. You can give solutions in English or Dutch.
3. You are expected to explain your answers.
4. You are allowed to consult any text book and class notes but not allowed to consult colleagues, calculators, computers etc.
5. Advice: read all questions first, then start solving the ones you already know how to solve or have good idea on the steps to find a solution. After you have finished the ones you found easier, tackle the harder ones.

## Some definitions you should know, but may have forgotten.

- An $n$ dimensional complex manifold is a manifold whose charts take values in $\mathbb{C}^{n}$ and for which the change of coordinates are holomorphic maps.
- A volume form on a manifold $M^{n}$ is a nowhere vanishing $n$-form.


## Questions

1) Show that $\mathbb{C P}^{n}$, the set of complex lines through the origin in $\mathbb{C}^{n+1}$, can be given the structure of a complex manifold, i.e. it can be covered by charts $\varphi_{\alpha}: U_{\alpha} \longrightarrow \mathbb{C}^{n}$ for which the change of coordinates

$$
\varphi_{\beta} \circ \varphi_{\alpha}^{-1}: V \subset \mathbb{C}^{n} \longrightarrow \mathbb{C}^{n}
$$

are holomorphic functions on their domain of definition. .
2) Given a manifold $M$, the space of sections of the bundle $T M \oplus T^{*} M$ is endowed with the natural pairing

$$
\langle X+\xi, Y+\eta\rangle=\frac{1}{2}(\eta(X)+\xi(Y))
$$

and a bracket (the Courant bracket):

$$
\llbracket X+\xi, Y+\eta \rrbracket=[X, Y]+\mathcal{L}_{X} \eta-i_{Y} d \xi, \quad X, Y \in \Gamma(T M) ; \xi, \eta \in \Gamma\left(T^{*} M\right) .
$$

a) Given a 2 -form $B \in \Omega^{2}(M)$, let $L$ be the subbundle of $T M \oplus T^{*} M$ given by

$$
L=\left\{X-i_{X} B: X \in T M\right\} .
$$

Show that $L$ is involutive with respect to the Courant bracket if and only if $B$ is closed.
b) Show that for $X, Y, Z \in \Gamma(T M)$ and $\xi, \eta, \mu \in \Gamma\left(T^{*} M\right)$ we have

$$
\mathcal{L}_{X}\langle Y+\eta, Z+\mu\rangle=\langle\llbracket X+\xi, Y+\eta \rrbracket, Z+\mu\rangle+\langle Y+\eta, \llbracket X+\xi, Z+\mu \rrbracket\rangle .
$$

3a) Let $V$ be a vector space. Show that if $\operatorname{dim}(V)=3$, then every homogeneous element of degree greater than zero in $\wedge^{\bullet} V$ is decomposable, i.e., can be written as a product of 1 -forms.
3b) Show that if $\operatorname{dim}(V)>3$ there are indecomposable homogeneous elements in $\wedge^{\bullet} V$.
3c) Show that if $\alpha \in \wedge^{k} V$ is an odd form, then $\alpha \wedge \alpha=0$. Show that if $\operatorname{dim}(V)>3$, then there is $\alpha \in \wedge^{2} V$ such that $\alpha \wedge \alpha \neq 0$.
4) Compute the integral of the 1 -form

$$
\theta=\frac{x d y-y d x}{x^{2}+y^{2}}
$$

along the paths drawn below traced counterclockwise.


5) Compute the degree one de Rham cohomology of $\mathbb{R}^{2} \backslash\{0\}$.

