
Notes on Čech cohomology

1 Čech cochains and differential

Čech cohomology is obtained using an open cover of a topological space and is arises using purely com-
binatorial data. The idea being that if one has information about the open sets that make up a space as
well as how these sets are glued together one can deduce global properties of the space from local data.

Let U = {Uα : α ∈ A} be an open cover of a connected manifold M . For α1, · · · , αn ∈ A, we denote

Uα0···αk
= Uα0

∩ · · · ∩ Uαk
,

or, equivalently, in multi-index notation, if a = {α0, · · · , αk}

Ua =
⋂
αi∈a

Uαi
.

Definition 1. A degree k-Čech cochain with real coeficients for the cover U is a collection of functions

f̌ := {fa|a ordered subset of A with k + 1 elements} (1)

where each fa ∈ f̌ is a constant real function (coefficients in R)

fa : Ua −→ R.

satisfying
fα0···αiαi+1···αk

= −fα0···αi+1αi···αk
(skew symmetry)

We denote the set of all degree k-Čech cochains with real coefficients obtained from a cover U of M by
Čk(M ;R;U). Note that pointwise addition of real numbers makes Čk(M ;R;U) into and abelian group
and scalar multiplication gives it the structure of a real vector space.

Notice that according to this definition, and element of Č0(M ;R;U) corresponds to the assigment
of a constant function to each open set of U. In particular if the cover U is finite, say #U = n, then
Č(M ;R;U) = Rn. Similarly, the elements in Č1(M ;R;U) correspond to constant functions defined on
overlaps of two sets of U. Let’s see this in a concrete example.

Example 2. Consider S1 as the interval [0, 1] with the ends identified. We can cover S1 by the open
sets U0 = (0, 2/3), U1 = (1/3, 1) and U2 = (2/3, 1) ∪ (0, 1/3). Then U0,1 = (1/3, 2/3), U1,2 = (2/3, 1) and
U2,0 = (0, 1/3) and U0,1,2 = ∅. That is, for this open decomposition of S1 there are only Čech cycles of
degree zero and one. An element in Č0(M ;R;U) is given by three constants, hence Č0(M ;R;U) = R3.
Similarly, since there are only three double overlaps, Č1(M ;R;U) = R3.

Definition 3. The Čech differential is a linear map δk−1 : Čk−1(M ;R;U) −→ Čk(M ;R;U),

δk−1(f̌)α0···αk
=

∑
i

(−1)ifα0···αi−1αi+1···αk
.

In what follows we will denote all maps δk defined above simply by δ. The main property of δ is given
in the following proposition:

Proposition 4. The Čech differential satisfies

δ2 = 0.



Proof. Let f̌ be a k-cochain. Then

(δf̌)α0···αk+1
=

k+2∑
i=0

(−1)i(f̌)α0···αi−1αi+1αk+1

Hence

(δ2f)α0,···αk+2
=

k+2∑
i=0

(−1)i(δf̌)α0···αi−1αi+1αk+2

=
∑
j<i

(−1)i+j(f̌)α0···αj−1αj+1···αi−1αi+1αk+2

+
∑
i<j

(−1)i+j−1(f̌)α0···αi−1αi+1···αj−1αj+1···αk+2

= 0

It is standard practice in mathematics that whenever one finds a sequence of linear maps between
vector spaces

δk : V k−1 −→ V k

with δk ◦ δk−1 = 0 one defines cohomology spaces:

Hk :=
ker(δk)

Im(δk−1)
.

In our case, these spaces depend on M and the open cover U, so we write:

Ȟk(M ;R;U) =
ker(δ : Čk −→ Čk+1)

Im(δ : Čk−1 −→ Čk)
.

Further we say that an element f̌ ∈ Čk is closed or a cocycle if δf̌ = 0. An element f̌ ∈ Čk is exact or a
coboundary if f̌ is in the image of δ, i.e., there is ǧ ∈ Čk−1 for which δǧ = f̌ .

Example 5 (Degree zero Čech cocycles). Let M be a connected manifold and U be a locally finite open
cover. Next we see that degree zero Čech cohomology is particularly easy to describe. Since Č−1 = {0},
we have

Ȟ0 = ker(δ : Č0 −→ Č1)

Further, if f̌ ∈ ker(δ : Č0 −→ Č1), then if Uα intersects Uβ we have

0 = (δf̌)αβ = f̌β − f̌α,

that is f̌α = f̌β whenever Uα intersects Uβ . Now, for such an f̌ , let c = f̌α(x) for a fixed x in a fixed Uα.
Now, if we let V ⊂M be the set of points defined by

V = {p ∈M : if p ∈ Uα then f̌α(p) = c}.

By the cocycle condition and the choice of c we see that x ∈ V , hence V 6= ∅. Further V is defined by
a closed condition, so it is a closed subset of M . Finally, if p ∈ V , let Uα ∈ U be an open set containing
p (Uα exists because U is a cover). Then f̌α(p) = c and hence, again by the cocycle condition f̌β(p) = c
whenever p ∈ Uβ . Hence V is open (by locally finiteness) and since M is connected, V = M . That is for
all α, f̌α = c and each f̌α is just the restriction of the globally defined function

f : M −→ R; f ≡ c



to Uα. Or said another way, f̌ corresponds to the restriction of a globally defined function to the open
sets of the cover U:

Ȟ0 = {Globally defined constant functions}

Exercise 6. For the cover of S1 obtained in Example 2, compute Ȟ0 and Ȟ1.

Now notice that we used very little of the structure of the real numbers and in fact all the argument
used above can be carried out for constant functions with values in any abelian group, such as Z, Zn, S1,
C∗, etc. This way we obtain cohomology groups Ȟ • (M ;G;U) (which are not necessarily vector spaces)
for any abelian group G.

We can also relax the condition that the functions fa are constant. For example we have

Definition 7. A degree k-Čech cochain with coeficients in the smooth functions for the cover U is a
collection of functions

f̌ := {fa|a ordered subset of A with k + 1 elements} (2)

where each fa ∈ f̌ is a smooth real function

fa : Ua −→ R.

satisfying
fα0···αiαi+1···αk

= −fα0···αi+1αi···αk
(skew symmetry)

We denote the set of all degree k-Čech cochains with smooth functions as coefficients obtained from a
cover U of M by Čk(M ;C∞(M);U). Note that pointwise addition of functions makes Čk(M ;C∞(M);U)
into and abelian group and scalar multiplication gives it the structure of a real vector space.

The Čech differential is defined in the same way as before and the same proof still yields δ2 = 0 hence
we also have Čech cohomology with coefficients in the smooth functions.

Exercise 8 (Čech cohomology with coefficients in C∞(M)). Repeat the argument from Example 5 and
conclude that Ȟ0(M ;C∞(M);U) can be identified with the space

C∞(M) = {f : M −→ R : f is smooth}.

Differently from the case of real coefficients, when we consider smooth functions, there is no cohomology
in degree higher than zero:

Theorem 9. For k > 0,
Ȟk(M ;C∞(M);U) = {0}.

Equivalently, every closed Čech cochain is a coboundary.

Proof. This theorem is a consequence of the existence of partitions of unity. Indeed, let f̌ ∈ Čk(M ;C∞(M);U)
be a cocycle and (ϕα : α ∈ A) be a partition of unity subbordinated to U. Spelling out the cocycle condition
we have

0 = (δf̌)α0,···αk+1
=

k+1∑
i=0

(−1)if̌α0···αi−1αi+1···αk+1
∀αi ∈ A.

Equivalently,

f̌α1···αk+1
=

k+1∑
i=1

(−1)i+1f̌α0···αi−1αi+1···αk+1
∀αi ∈ A. (3)

Define ǧ ∈ Čk−1(M ;C∞(M);U) by

ǧα1,···αk
=

∑
α∈A

ϕαfαα1···αk
.



Notice that even though fαα1···αk
is only defined on Uαα1···αk

, since ϕα has compact support in Uα,
ϕαfαα1···αk

can be extended to Uα1···αk
by declaring that it vanishes on Uα1···αk

\Uαα1···αk
so ǧα1···αk

defined above is indeed a smooth function on Uα1···αk
.

Now we compute

(δǧ)α1,··· ,αk+1
=

k+1∑
i=1

(−1)i+1ǧα1···αi−1αi+1···αk+1

=

k+1∑
i=1

(−1)i+1
∑
α∈A

ϕαf̌αα1···αi−1αi+1···αk+1

=
∑
α∈A

ϕα

k+1∑
i=1

(−1)i+1f̌αα1···αi−1αi+1···αk+1

=
∑
α∈A

ϕαf̌α1···αk+1

= (
∑
α∈A

ϕα)f̌α1···αk+1

= f̌α1···αk+1
,

where in the first equality we wrote the definition of Čech differential, in the second we used the definition
of ǧ, in the third we commuted the sums, in the fourth we used equation (3), in the fifth we notice that
the term f̌α1···αk+1

does not depend on the index of summation, hence can be put in evidence and in the
last equation we used again that αα is a partition of unity.

Exercise 10. If the multi-indices are mind boggling, repeat this argument above in the case f ∈
Č2(M ;C∞(M),U) to convince yourself that everything is fine.

As a consequence of this theorem, we see that the Čech cohomology Ȟ•(M ;C∞(M),U) are rather
simple to describe. Indeed, according to Example 5 and Exercise 8, Ȟ0(M ;C∞(M),U) corresponds to the
vector space of globally defined functions and the remaning groups Ȟk(M ;C∞(M),U) are all trivial for
k > 0. Note that these equalities hold for any locally finite cover, that is these groups are independent of
U, hence in this case it makes sense to write simply Ȟ•(M ;C∞(M)).
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