Differentiable manifolds – homework 2

Exercise 1. Show that the set of diffeomorphisms of a manifold is a group if endowed with composition of functions as group operation.

Exercise 2. Let \mathbb{R} denote the real numbers with their usual smooth structure. Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be the map $f(t) = t^3$. Show that f is a smooth bijection whose inverse is not smooth.

Exercise 3. Let M_1 and M_2 be manifolds and $p \in M_2$. Endow $M_1 \times M_2$ with the manifold structure from example (1.5 g) Show that the maps

$$M_1 \times M_2 \longrightarrow M_1;$$
 $(x, y) \mapsto x;$
 $M_1 \longrightarrow M_1 \times M_2;$ $x \mapsto (x, p)$

are smooth

Exercise 4. Let G be a Lie group and $g \in G$. Show that the maps

 $l_g: G \longrightarrow G;$ $l_g(h) = gh;$ $r_g: G \longrightarrow G;$ $r_g(h) = hg$

are smooth. Conclude that these maps are in fact diffeomorphisms of G.

Exercise 5. Solve question 3 from Warner.

Exercise 6 (Question 4 from Warner). A normal topological space is one for which every two disjoint closed sets have F_1 and F_2 have disjoint open neighborhoods U_1 and U_2 , i.e., U_i is open, $F_i \subset U_i$ and $U_1 \cap U_2 = \emptyset$. Show that manifolds are normal topological spaces. (Hint: use the corollary to Theorem 1.11)

Exercise 7 (Čech cochains and differential). Let $\mathfrak{U} = \{U_{\alpha} : \alpha \in A\}$ be an locally finite open cover of a connected manifold M. For $\alpha_1, \dots, \alpha_n \in A$, we denote

$$U_{\alpha_0\cdots\alpha_k} = U_{\alpha_0}\cap\cdots\cap U_{\alpha_k}$$

or, equivalently, in (ordered) multiindex notation, if $\mathbf{a} = \{\alpha_0, \cdots, \alpha_k\}$

$$U_{\mathbf{a}} = \bigcap_{\alpha_i \in \mathbf{a}} U_{\alpha_i}$$

A degree k-Čech cochain with real coefficients for the cover \mathfrak{U} is a collection of functions

$$\check{f} := \{ f_{\mathbf{a}} : U_{\mathbf{a}} \longrightarrow \mathbb{R} | \mathbf{a} \subset A; \| \mathbf{a} \| = k + 1 \}$$
(1)

such that

- $f_{\alpha_0\cdots\alpha_i\alpha_{i+1}\cdots\alpha_k} = -f_{\alpha_0\cdots\alpha_{i+1}\alpha_i\cdots\alpha_k}$
- each $f_{\mathbf{a}}$ is constant.

Denote the set of all degree k Čech cochains with real coefficients by $\check{C}^k(M; \mathbb{R}; \mathfrak{U})$. Note that pointwise addition of functions and scalar multiplication make $\check{C}^k(M; \mathbb{R}; \mathfrak{U})$ into a real vector space.

Next we define the *Čech differential* as a linear map $\delta^{k-1}: \check{C}^{k-1}(M; \mathbb{R}; \mathfrak{U}) \longrightarrow \check{C}^{k}(M; \mathbb{R}; \mathfrak{U}),$

$$\delta^{k-1}(\check{f})_{\alpha_0\cdots\alpha_k} = \sum_i (-1)^i f_{\alpha_0\cdots\alpha_{i-1}\alpha_{i+1}\cdots\alpha_k}.$$

- 1. Describe the elements of \check{C}^0 ;
- 2. Show that the elements of \check{C}^0 which are in the kernel of δ^0 correspond to a single constant defined on M;
- 3. Show that $\delta^k \circ \delta^{k-1} = 0$ for all k.

It is standard practice in mathematics that whenever one finds a sequence of linear maps between vector spaces

$$\delta^k: V^{k-1} \longrightarrow V^k$$

with $\delta^k \circ \delta^{k-1} = 0$ one defines cohomology spaces:

$$H^k := \frac{\ker(\delta^k)}{\operatorname{Im}(\delta^{k-1})}.$$

In our case, these spaces depend on M and the open cover \mathfrak{U} , se we write:

$$\check{H}^{k}(M;\mathbb{R};\mathfrak{U}) = \frac{\ker(\delta^{k})}{\operatorname{Im}(\delta^{k-1})}.$$

Exercise 8. Chance the definition of Čech cocycle so that each $f_{\mathbf{a}}$ in (1) is a smooth function instead of a constant. These are the Čech cochains with coefficients in $C^{\infty}(M)$. Assume that $\{\psi_{\alpha} : \alpha \in A\}$ is a partition of unity subbordinated to the cover \mathfrak{U} with the same index set.

- 1. Show that $\check{H}^0(M; C^{\infty}(M), \mathfrak{U}) = \{f : M \longrightarrow \mathbb{R} : f \in C^{\infty}(M)\}.$
- 2. Let $\check{f} \in \check{C}^k$ with k > 0 be such that $\delta^k \check{f} = 0$. Define $\check{g} \in \check{C}^{k-1}$ by

$$g_{\alpha_1,\cdots\alpha_{k-1}} = \sum_{\beta \in A} \psi_\beta f_{\beta \alpha_1 \cdots \alpha_{k-1}}$$

Show that $\delta^{k-1}\check{g} = \check{f}$, i.e., ker $\delta^k = \operatorname{Im}\delta^{k-1}$ and hence $\check{H}^k(M; C^{\infty}(M); \mathfrak{U}) = \{0\}$ for k > 0.