Differentiable manifolds – homework 4

Solve exercises 9 and 10 from Warner.

Exercise 1. Let $E \xrightarrow{\pi} M$ be a rank k vector bundle over M and let $\sigma_1, \dots, \sigma_k : M \longrightarrow E$ be sections such that $\{\sigma_1(p), \dots, \sigma_k(p)\}$ is a linearly independent set of E_p . Show that E is isomorphic to the trivial bundle $M \times \mathbb{R}^k$, i.e., there is a diffeomorphism

$$\Phi: E \longrightarrow M \times \mathbb{R}^k$$

such that $\Phi: E_p \longrightarrow p \times \mathbb{R}^k$ and this map is linear.

Definition 2. Let $E \xrightarrow{\pi} M$ be a vector bundle over M. A degree $k \,\check{C}ech$ cochain with coefficients in $\Gamma(E)$ for the cover \mathfrak{U} is a collection of functions

$$\check{f} := \{ f_{\mathbf{a}} | \mathbf{a} \text{ ordered subset of } A \text{ with } k+1 \text{ elements} \}$$
(1)

where each $f_{\mathbf{a}} \in \check{f}$ is a smooth section of E over $U_{\mathbf{a}}$ (coefficients in $\Gamma(E)$) satisfying

$$f_{\alpha_0\cdots\alpha_i\alpha_{i+1}\cdots\alpha_k} = -f_{\alpha_0\cdots\alpha_{i+1}\alpha_i\cdots\alpha_k} \qquad (skew symmetry)$$

We denote the set of all degree k Čech cochains with coefficients in $\Gamma(E)$ obtained from a cover \mathfrak{U} of M by $\check{C}^k(M;\Gamma(E);\mathfrak{U})$. We defined the Čech differential using the same way expression we used for Čech cohomology with real coefficients.

Exercise 3. Show that

- 1. $\check{H}^0(M; \Gamma(E); \mathfrak{U}) = \Gamma(E).$
- 2. $\check{H}^{i}(M; \Gamma(E); \mathfrak{U}) = \{0\}$ for i > 0.

Exercise 4. Let (U, φ) and (V, ψ) be two charts on a manifold such that $U \cap V \neq \emptyset$. Let (x_1, \dots, x_n) be the coordinates relative to φ and (y_1, \dots, y_n) be the coordinates relative to ψ . Show that

$$dx_i = \sum_j \frac{\partial x_i}{\partial y_j} dy_j$$

Exercise 5. Let $\varphi: M \longrightarrow N$ be a smooth map and $f: N \longrightarrow R$ be a smooth function. Show that

$$\varphi^*(df) = d(\varphi^*f) = d(f \circ \varphi).$$

Exercise 6. Given $\alpha \in \Omega^1(M)$ and $p \in M$, show that there is a function $f \in \Omega^0(M)$ such that $df|_p = \alpha|_p$. Show that one may not be able to find f such that $df = \alpha$ in a neighborhood p.

New exercises regarding the material from Lecture 1:

Exercise 7. The (real) projective space, $\mathbb{R}P^n$ is the set of all lines in \mathbb{R}^{n+1} passing through the origin. This can be equivalently defined as the quotient of $\mathbb{R}^{n+1} \setminus \{0\}$ by the equivalence relation $x \equiv y$ if and only if there is $\lambda \in \mathbb{R}^*$ such that $x = \lambda y$.

Give $\mathbb{R}P^n$ the structure of a manifold.

Exercise 8. The (complex) projective space, $\mathbb{C}P^n$ is the set of all (complex) lines in \mathbb{C}^{n+1} passing through the origin. This can be equivalently defined as the quotient of $\mathbb{C}^{n+1}\setminus\{0\}$ by the equivalence relation $x \equiv y$ if and only if there is $\lambda \in \mathbb{C}^*$ such that $x = \lambda y$.

Give $\mathbb{C}P^n$ the structure of a complex manifold.