Differentiable manifolds - homework 4

Solve exercises 9 and 10 from Warner.
Exercise 1. Let $E \xrightarrow{\pi} M$ be a rank k vector bundle over M and let $\sigma_{1}, \cdots, \sigma_{k}: M \longrightarrow E$ be sections such that $\left\{\sigma_{1}(p), \cdots, \sigma_{k}(p)\right\}$ is a linearly independent set of E_{p}. Show that E is isomorphic to the trivial bundle $M \times \mathbb{R}^{k}$, i.e., there is a diffeomorphism

$$
\Phi: E \longrightarrow M \times \mathbb{R}^{k}
$$

such that $\Phi: E_{p} \longrightarrow p \times \mathbb{R}^{k}$ and this map is linear.
Definition 2. Let $E \xrightarrow{\pi} M$ be a vector bundle over M. A degree k Čech cochain with coefficients in $\Gamma(E)$ for the cover \mathfrak{U} is a collection of functions

$$
\begin{equation*}
\check{f}:=\left\{f_{\mathbf{a}} \mid \mathbf{a} \text { ordered subset of } A \text { with } k+1 \text { elements }\right\} \tag{1}
\end{equation*}
$$

where each $f_{\mathbf{a}} \in \check{f}$ is a smooth section of E over U_{a} (coefficients in $\Gamma(E)$) satisfying

$$
f_{\alpha_{0} \cdots \alpha_{i} \alpha_{i+1} \cdots \alpha_{k}}=-f_{\alpha_{0} \cdots \alpha_{i+1} \alpha_{i} \cdots \alpha_{k}} \quad \text { (skew symmetry) }
$$

We denote the set of all degree k Čech cochains with coefficients in $\Gamma(E)$ obtained from a cover \mathfrak{U} of M by $\check{C}^{k}(M ; \Gamma(E) ; \mathfrak{U})$. We defined the Čech differential using the same way expression we used for Čech cohomology with real coefficients.

Exercise 3. Show that

1. $\check{H}^{0}(M ; \Gamma(E) ; \mathfrak{U})=\Gamma(E)$.
2. $\check{H}^{i}(M ; \Gamma(E) ; \mathfrak{U})=\{0\}$ for $i>0$.

Exercise 4. Let (U, φ) and (V, ψ) be two charts on a manifold such that $U \cap V \neq \emptyset$. Let $\left(x_{1}, \cdots, x_{n}\right)$ be the coordinates relative to φ and $\left(y_{1}, \cdots, y_{n}\right)$ be the coordinates relative to ψ. Show that

$$
d x_{i}=\sum_{j} \frac{\partial x_{i}}{\partial y_{j}} d y_{j}
$$

Exercise 5. Let $\varphi: M \longrightarrow N$ be a smooth map and $f: N \longrightarrow R$ be a smooth function. Show that

$$
\varphi^{*}(d f)=d\left(\varphi^{*} f\right)=d(f \circ \varphi)
$$

Exercise 6. Given $\alpha \in \Omega^{1}(M)$ and $p \in M$, show that there is a function $f \in \Omega^{0}(M)$ such that $\left.d f\right|_{p}=\left.\alpha\right|_{p}$. Show that one may not be able to find f such that $d f=\alpha$ in a neighborhoodof p.

New exercises regarding the material from Lecture 1:
Exercise 7. The (real) projective space, $\mathbb{R} P^{n}$ is the set of all lines in \mathbb{R}^{n+1} passing through the origin. This can be equivalently defined as the quotient of $\mathbb{R}^{n+1} \backslash\{0\}$ by the equivalence relation $x \equiv y$ if and only if there is $\lambda \in \mathbb{R}^{*}$ such that $x=\lambda y$.

Give $\mathbb{R} P^{n}$ the structure of a manifold.
Exercise 8. The (complex) projective space, $\mathbb{C} P^{n}$ is the set of all (complex) lines in \mathbb{C}^{n+1} passing through the origin. This can be equivalently defined as the quotient of $\mathbb{C}^{n+1} \backslash\{0\}$ by the equivalence relation $x \equiv y$ if and only if there is $\lambda \in \mathbb{C}^{*}$ such that $x=\lambda y$.

Give $\mathbb{C} P^{n}$ the structure of a complex manifold.

