Differentiable manifolds – homework 5

Solve exercise 11 from Warner.

Exercise 1. Consider the circle S^1 as the interval [0,1] with ends identified. Let \mathfrak{U} be the cover of S^1 given by the sets $U_0 = (0,2/3)$, $U_1 = (1/3,1)$ and $U_2 = (2/3,1] \cup [0,1/3)$. Compute the Čech cohomology of S^1 with coefficients in smooth functions with values in \mathbb{R}^* , $\check{H}^{\bullet}(S^1; C^{\infty}(M; \mathbb{R}^*); \mathfrak{U})$, for this cover. (Hint read Example 2.7 in the notes on Čech cohomology)

Exercise 2. Let M and N be manifolds, $f: M \longrightarrow N$ be smooth and let $E = N \times \mathbb{R}^k$ be the trivial rank k vector bundle over N. Show that f^*E is the trivial rank k vector bundle over M. Conversely, conclude that if $E \xrightarrow{\pi} N$ is a vector bundle and $f^*E \xrightarrow{\tilde{\pi}} M$ is not trivial, then E is not isomorphic to the trivial bundle over N.

Exercise 3. Last exercise sheet, we showed that $\mathbb{R}P^n$, the set of lines through the origin in \mathbb{R}^{n+1} can be given a manifold structure.

- Show that $\mathbb{R}P^1$ is diffeomorphic to the circle S^1 .
- Consider the subset

 $\tau \subset \mathbb{R}P^1 \times \mathbb{R}^2; \qquad \tau = \{(l, v) : v \in l\}.$

Show that τ is a manifold by giving coordinate charts.

- Let $\pi : \tau \longrightarrow \mathbb{R}P^1$ be the projection onto the first factor, $\pi(l, v) = l$. Show that the map π makes τ into a line bundle over $\mathbb{R}P^1$.
- Show that τ is not isomorphic to the trivial line bundle.

Exercise 4. Now we repeat the previous exercise in higher dimensions. Consider

$$\tau_n \subset \mathbb{R}P^n \times \mathbb{R}^{n+1}; \qquad \tau_n = \{(l, v) : v \in l\}.$$

- Show that τ_n is a manifold by giving coordinate charts.;
- Let $\pi : \tau_n \longrightarrow \mathbb{R}P^1$ be the projection onto the first factor, $\pi(l, v) = l$. Show that the map π makes τ_n into a line bundle over $\mathbb{R}P^n$.
- Show that τ_n is not isomorphic to the trivial line bundle.

Hint: For the last part, use the map $f : \mathbb{R}P^1 \longrightarrow \mathbb{R}P^n$, $f([x, y]) = [x, y, 0, \dots, 0]$ and show that $\tau = f^* \tau_n$. Then use the last two exercises to arrive at the conclusion.