Differentiable manifolds - homework 6

From previous sheets: solve exercise 9,10 and 11 from Warner. From this time, solve exercises 16 and 18.

Exercise 1. Show that the sphere

$$
S^{n}=\left\{v \in \mathbb{R}^{n+1}:\|v\|=1\right\}
$$

is an embedded submanifold of \mathbb{R}^{n+1}.
Exercise 2. Let $i: \mathbb{C}^{n} \longrightarrow \mathbb{C}^{n}$ be multiplication by the imaginary number i and for each $p \in C^{n}$ we let $t_{p}: \mathbb{C}^{n} \longrightarrow \mathbb{C}^{n}$ be translation by p, i.e.

$$
t_{p} v=v+p
$$

For $p \in \mathbb{C}^{n}$ we define a map $I_{p}: T_{p} \mathbb{C}^{n} \longrightarrow T_{p} \mathbb{C}^{n}$ by

$$
I_{p} v=\left(t_{p} \circ i \circ\left(t_{p}\right)^{-1}\right)_{*} .
$$

Show that $I_{p}^{2}=-\mathrm{Id}$.
Exercise 3. We say that a function $f: \mathbb{C}^{n} \longrightarrow \mathbb{C}^{m}$ is holomorphic if $f_{*} \circ I_{p}=I_{f(p)} \circ f_{*}$. Show that if $f: U \subset \mathbb{C}^{n} \longrightarrow \mathbb{C}$ is holomorphic and $p \in U$, then $\left.f_{*}\right|_{p}: T_{p} \mathbb{C}^{n} \longrightarrow T_{f(p)} \mathbb{C}$ is either zero or onto. In particular, conclude that if f is holomorphic and $y \in \mathbb{C}$ is such that $\left.f_{*}\right|_{x} \neq 0$ for all $x \in f^{-1}(y)$ then $f^{-1}(y)$ is an embedded submanifold of U.

Exercise 4. Let $p: \mathbb{R}^{3} \longrightarrow \mathbb{R}$ be a homogeneous polynomial of degree m in three variables, i.e.,

$$
p\left(X_{0}, X_{1}, X_{2}\right)=\sum_{i+j+k=m} a_{i j k} X_{0}^{i} X_{1}^{j} X_{2}^{k}
$$

Let $\Sigma \subset \mathbb{R} P^{n}$ be the set defined by the zeros of p, i.e.,

$$
\Sigma=\left\{\left[X_{0}, X_{1}, X_{2}\right] \in \mathbb{R} P^{2}: p\left(X_{0}, X_{1}, X_{2}\right)=0\right\}
$$

1. Show that Σ is indeed a well defined subset of $\mathbb{R} P^{2}$, i.e., if two points are in the same line through the origin, then either both are zeros of p or neither is a zero of p.
2. Show that if the system

$$
\begin{cases}p\left(X_{0}, X_{1}, X_{2}\right) & =0 \\ \frac{\partial p}{\partial X_{0}}\left(X_{0}, X_{1}, X_{2}\right) & =0 \\ \frac{\partial p}{\partial X_{1}}\left(X_{0}, X_{1}, X_{2}\right) & =0 \\ \frac{\partial p}{\partial X_{2}}\left(X_{0}, X_{1}, X_{2}\right) & =0\end{cases}
$$

has no solutions, then Σ is an embedded submanifold of $\mathbb{R} P^{2}$.
3. Extend this result to $n+1$ variables, namely, define $\Sigma \subset \mathbb{R} P^{n}$ as the zero set of a degree m homogeneous polynomial and find a condition for smoothness of Σ.
4. Extend this result to $n+1$ complex variables, namely, define $\Sigma \subset \mathbb{C} P^{n}$ as the zero set of a degree m homogeneous polynomial with complex coefficients and find a condition for smoothness of Σ

