Differentiable manifolds - homework 8

Read the section regarding Frobenius theorem.
Read the section regarding tensor and exterior algebra of vector spaces.
Exercise 1. Let $A: V \longrightarrow W$ be linear. Show that the following map induced by A is also linear:

$$
A^{*}: \otimes^{k} W^{*} \longrightarrow \otimes^{k} V^{*} ; \quad A \mapsto A^{*}(\omega)
$$

where $A^{*} \omega\left(X_{1}, \cdots X_{k}\right):=\omega\left(A X_{1}, \cdots, A X_{k}\right)$.
Exercise 2. Compute the dimension of $\wedge^{k} V^{*}$.
Exercise 3. Show that if $A: V \longrightarrow W$ is linear and $\omega \in \wedge^{k} W^{*}$, then $A^{*} \omega \in \wedge^{k} V^{*}$.
Exercise 4. Let V and W be vector spaces and let $B \in V^{*} \otimes W^{*}$ be a non degenerate element, i.e., B satisfies the property

$$
\begin{array}{ll}
B(X, Y)=0 & \text { for all } X \Rightarrow Y=0 \\
B(X, Y)=0 & \text { for all } Y \Rightarrow X=0
\end{array}
$$

Thinking of B as an element in $\operatorname{Hom}\left(V, W^{*}\right)$, show that B is an isomorphism of vector spaces. Conversely, given an isomorphism $B: V \longrightarrow W^{*}$, show that the corresponding tensor in $V^{*} \otimes W^{*}$ is nondegenerate.

Exercise 5. Let $A \in \otimes^{2} V^{*}$. Show that there are $b \in \wedge^{2} V^{*}$ and $g \in \operatorname{Sym}^{2} V^{*}$ such that $A=g+b$.

Exercise 6.

1. (exterior product) Let $\xi \in V^{*}$ and $\omega \in \wedge^{k} V^{*}$. Show that $\xi \wedge \xi \wedge \omega=0$.
2. (interior product) Interior product is a map

$$
\iota: V \times \wedge^{k} V^{*} \longrightarrow \wedge^{k-1} V^{*}, \quad(X, \omega) \mapsto \iota_{X} \omega
$$

where

$$
\iota_{X} \omega\left(X_{2}, \cdots, X_{k}\right)=\omega\left(X, X_{2}, \cdots, X_{k}\right)
$$

Show that $\iota_{X} \iota_{X} \omega=0$ for all $X \in V$ and for all $\omega \in \wedge^{k} V^{*}$.
3. For $X \in V, \xi \in V^{*}$ and $\omega \in \wedge^{k} V^{*}$, define

$$
(X+\xi) \cdot \omega=\iota_{X} \omega+\xi \wedge \omega \in \wedge V^{*}
$$

Show that

$$
(X+\xi) \cdot((X+\xi) \cdot \omega)=\xi(X) \omega
$$

