Differentiable manifolds – homework 8

Read the section regarding Frobenius theorem.

Read the section regarding tensor and exterior algebra of vector spaces.

Exercise 1. Let $A: V \longrightarrow W$ be linear. Show that the following map induced by A is also linear:

$$A^*: \otimes^k W^* \longrightarrow \otimes^k V^*; \qquad A \mapsto A^*(\omega),$$

where $A^*\omega(X_1, \cdots, X_k) := \omega(AX_1, \cdots, AX_k).$

Exercise 2. Compute the dimension of $\wedge^k V^*$.

Exercise 3. Show that if $A: V \longrightarrow W$ is linear and $\omega \in \wedge^k W^*$, then $A^* \omega \in \wedge^k V^*$.

Exercise 4. Let V and W be vector spaces and let $B \in V^* \otimes W^*$ be a non degenerate element, i.e., B satisfies the property

$$B(X,Y) = 0 \quad \text{for all} X \Rightarrow Y = 0$$
$$B(X,Y) = 0 \quad \text{for all} Y \Rightarrow X = 0$$

Thinking of B as an element in Hom (V, W^*) , show that B is an isomorphism of vector spaces. Conversely, given an isomorphism $B: V \longrightarrow W^*$, show that the corresponding tensor in $V^* \otimes W^*$ is nondegenerate.

Exercise 5. Let $A \in \bigotimes^2 V^*$. Show that there are $b \in \wedge^2 V^*$ and $g \in \operatorname{Sym}^2 V^*$ such that A = g + b.

Exercise 6.

- 1. (exterior product) Let $\xi \in V^*$ and $\omega \in \wedge^k V^*$. Show that $\xi \wedge \xi \wedge \omega = 0$.
- 2. (interior product) Interior product is a map

$$\iota: V \times \wedge^k V^* \longrightarrow \wedge^{k-1} V^*, \qquad (X, \omega) \mapsto \iota_X \omega,$$

where

$$\iota_X \omega(X_2, \cdots, X_k) = \omega(X, X_2, \cdots, X_k).$$

Show that $\iota_X \iota_X \omega = 0$ for all $X \in V$ and for all $\omega \in \wedge^k V^*$.

3. For $X \in V, \xi \in V^*$ and $\omega \in \wedge^k V^*$, define

$$(X+\xi)\cdot\omega=\iota_X\omega+\xi\wedge\omega\in\wedge V^*$$

Show that

$$(X + \xi) \cdot ((X + \xi) \cdot \omega) = \xi(X)\omega.$$