Differentiable manifolds – hand-in sheet 5

Hand in by 22/Jan

Before solving the exercise below, recall the definitions and results from hand-in exercise sheet 2.

Exercise 1. Let M be a manifold, $\Omega^{\bullet}(M)$ be the (infinite dimensional) graded vector space of smooth forms on M and \mathcal{A} be the set of all \mathbb{R} -linear endomorphisms of $\Omega^{\bullet}(M)$, i.e., elements of \mathcal{A} are \mathbb{R} -linear maps which send forms to forms. Examples of elements of \mathcal{A} are

- Given a vector field $X \in \mathfrak{X}(M)$, interior product by $X, \iota_X \in \mathcal{A}, \iota_X : \Omega^k(M) \longrightarrow \Omega^{k-1}(M)$ for all k;
- Given a 1-form ξ , exterior product by ξ is in $\mathcal{A}, \xi \wedge : \Omega^k(M) \longrightarrow \Omega^{k+1}(M)$, for all k;
- The exterior derivative d is an element of $\mathcal{A}, d: \Omega^k(M) \longrightarrow \Omega^{k+1}(M)$, for all k.

We can introduce a grading in \mathcal{A} . Namely, we declare that an element $\alpha \in \mathcal{A}$ has degree l if $\alpha : \Omega^k(M) \longrightarrow \Omega^{k+l}(M)$ for all k, so the elements introduced above have degree -1, 1 and 1, respectively.

We introduce a bracket in \mathcal{A} as follows. For $\alpha \in \mathcal{A}^l$, $\beta \in \mathcal{A}^m$, we define

$$[\alpha, \beta] = \alpha\beta + (-1)^{lm+1}\beta\alpha.$$

This is called the graded commutator of α and β and due the results in hand-in sheet 2, $(\mathcal{A}^{\bullet}, [\cdot, \cdot])$ is a graded Lie algebra with a bracket of degree 0.

1. Show that [d, d] = 0 and hence (from hand-in sheet 2) the derived bracket

$$\llbracket \alpha, \beta \rrbracket := \llbracket [\alpha, d], \beta \rrbracket \tag{1}$$

satisfies Jacobi.

- 2. For $X,Y \in \mathfrak{X}(M)$, show that $[\![X,Y]\!]$ is just the Lie bracket between the vector fields X and Y and hence $\mathfrak{X}(M)$ is closed with respect to the derived bracket. Conclude that the condition $d^2 = 0$ implies that $\mathfrak{X}(M)$ is a Lie algebra;
- 3. For $X, Y \in \mathfrak{X}(M)$ and $\xi, \eta \in \Omega^1(M)$ show that

$$[\![X+\xi,Y+\eta]\!]=[X,Y]+\mathcal{L}_X\eta-\iota_Yd\xi$$

4. Let $\langle \cdot, \cdot \rangle : TM \oplus T^*M \longrightarrow \mathbb{R}$ be the natural symmetric pairing corresponding to evaluation of forms on vectors:

$$\langle X + \xi, Y + \eta \rangle = \frac{1}{2} (\eta(X) + \xi(Y)), \qquad X, Y \in T_p M, \ \xi, \eta \in T_p^* M.$$

For $X, Y \in \mathfrak{X}(M)$ and $\xi, \eta \in \Omega^1(M)$ compute

$$[X + \xi, Y + \eta] + [Y + \eta, X + \xi]$$

5. Let L be an isotropic subbundle of $TM \oplus T^*M$, i.e., if $X + \xi, Y + \eta \in L_p$, then $\langle X + \xi, Y + \eta \rangle = 0$ (for all $p \in M$). Conclude that if L is involutive with respect to the bracket (1), then the space of sections of L is a Lie algebra.