Differentiable manifolds - hand-in sheet 5

Hand in by 22/Jan

Before solving the exercise below, recall the definitions and results from hand-in exercise sheet 2 .
Exercise 1. Let M be a manifold, $\Omega^{\bullet}(M)$ be the (infinite dimensional) graded vector space of smooth forms on M and \mathcal{A} be the set of all \mathbb{R}-linear endomorphisms of $\Omega^{\bullet}(M)$, i.e., elements of \mathcal{A} are \mathbb{R}-linear maps which send forms to forms. Examples of elements of \mathcal{A} are

- Given a vector field $X \in \mathfrak{X}(M)$, interior product by $X, \iota_{X} \in \mathcal{A}, \iota_{X}: \Omega^{k}(M) \longrightarrow \Omega^{k-1}(M)$ for all k;
- Given a 1-form ξ, exterior product by ξ is in $\mathcal{A}, \xi \wedge: \Omega^{k}(M) \longrightarrow \Omega^{k+1}(M)$, for all k;
- The exterior derivative d is an element of $\mathcal{A}, d: \Omega^{k}(M) \longrightarrow \Omega^{k+1}(M)$, for all k.

We can introduce a grading in \mathcal{A}. Namely, we declare that an element $\alpha \in \mathcal{A}$ has degree l if $\alpha: \Omega^{k}(M) \longrightarrow$ $\Omega^{k+l}(M)$ for all k, so the elements introduced above have degree $-1,1$ and 1 , respectively.

We introduce a bracket in \mathcal{A} as follows. For $\alpha \in \mathcal{A}^{l}, \beta \in \mathcal{A}^{m}$, we define

$$
[\alpha, \beta]=\alpha \beta+(-1)^{l m+1} \beta \alpha .
$$

This is called the graded commutator of α and β and due the results in hand-in sheet $2,\left(\mathcal{A}^{\bullet},[\cdot, \cdot]\right)$ is a graded Lie algebra with a bracket of degree 0 .

1. Show that $[d, d]=0$ and hence (from hand-in sheet 2) the derived bracket

$$
\begin{equation*}
\llbracket \alpha, \beta \rrbracket:=[[\alpha, d], \beta] \tag{1}
\end{equation*}
$$

satisfies Jacobi.
2. For $X, Y \in \mathfrak{X}(M)$, show that $\llbracket X, Y \rrbracket$ is just the Lie bracket between the vector fields X and Y and hence $\mathfrak{X}(M)$ is closed with respect to the derived bracket. Conclude that the condition $d^{2}=0$ implies that $\mathfrak{X}(M)$ is a Lie algebra;
3. For $X, Y \in \mathfrak{X}(M)$ and $\xi, \eta \in \Omega^{1}(M)$ show that

$$
\llbracket X+\xi, Y+\eta \rrbracket=[X, Y]+\mathcal{L}_{X} \eta-\iota_{Y} d \xi
$$

4. Let $\langle\cdot, \cdot\rangle: T M \oplus T^{*} M \longrightarrow \mathbb{R}$ be the natural symmetric pairing corresponding to evaluation of forms on vectors:

$$
\langle X+\xi, Y+\eta\rangle=\frac{1}{2}(\eta(X)+\xi(Y)), \quad X, Y \in T_{p} M, \xi, \eta \in T_{p}^{*} M
$$

For $X, Y \in \mathfrak{X}(M)$ and $\xi, \eta \in \Omega^{1}(M)$ compute

$$
\llbracket X+\xi, Y+\eta \rrbracket+\llbracket Y+\eta, X+\xi \rrbracket .
$$

5. Let L be an isotropic subbundle of $T M \oplus T^{*} M$, i.e., if $X+\xi, Y+\eta \in L_{p}$, then $\langle X+\xi, Y+\eta\rangle=0$ (for all $p \in M$). Conclude that if L is involutive with respect to the bracket (1), then the space of sections of L is a Lie algebra.
