Differentiable manifolds – Mock exam 2

- 1. Write your name and student number ** clearly** on each page of written solutions you hand in.
- 2. You can give solutions in English or Dutch.
- 3. You are expected to explain your answers.
- 4. You are allowed to consult text books and class notes.
- 5. You are **not** allowed to consult colleagues, calculators, computers etc.

Some useful definitions and results

- **Definition**. A path on a manifold $\gamma : \mathbb{R} \longrightarrow M$ is *periodic* if there is T > 0 such that $\gamma(t+T) = \gamma(t)$ for all $t \in \mathbb{R}$.
- Definition. A star shaped domain of \mathbb{R}^n is an open set $U \subset \mathbb{R}^n$ such that there is $p \in U$ with the property that if $q \in U$, then all the points in the segment connecting p and q are also in U, that is, there is p such that

 $(1-t)p + tq \in U$; for all $q \in U$ and all $t \in [0, 1]$.

The Poincaré Lemma in full generality states

Theorem 1 (Poincaré Lemma). If U is (diffeomorphic to) a star shaped domain of \mathbb{R}^n then

$$H^k(U) = \{0\}$$
 for $k > 0$.

• **Definition**. An open cover \mathcal{U} of a manifold M is *fine* if any finite intersection of opens sets in \mathcal{U} is either empty or (diffeomorphic to) a disc.

With this definition, we have proved in the hand-in exercise sheets

Theorem 2 (Čech to de Rham). The Čech cohomology with real coefficients of any fine cover of M is isomorphic to the de Rham cohomology of M.

Questions

1) (2 pt) Let D be a rank k, involutive distribution on a manifold M. Show that if $\alpha \in \Omega^1(M)$ is such that $\alpha(X) = 0$ for all $X \in \Gamma(D)$, then $(d\alpha)(X, Y) = 0$ for all $X, Y \in \Gamma(D)$.

2) (2 pt) Let X be a smooth vector field on a manifold M and let $\gamma : (a, b) \longrightarrow M$ be a maximal integral curve of X. Show that exactly one of the following holds

- γ is the constant path;
- γ is injective;
- γ is defined for all time and is periodic and nonconstant.
- 3) (2 pt) Consider the form $\rho \in \Omega^2(\mathbb{R}^3 \setminus \{0\})$

$$\rho = \frac{xdy \wedge dz + ydz \wedge dx + zdx \wedge dy}{(x^2 + y^2 + z^2)^{3/2}}$$

- a) Show that $d\rho = 0$;
- b) Compute the integral of ρ over the 2-sphere of radius 2 in \mathbb{R}^3 centered at (0,0,1).
- c) Compute the integral of ρ over the 2-sphere of radius 2 in \mathbb{R}^3 centered at (0,0,3).
- d) Does ρ represent a nontrivial cohomology class in $\mathbb{R}^3 \setminus \{0\}$? Does ρ represent a nontrivial class in

$$\mathbb{R}^3 \setminus \{(0,0,x) : x \ge 0\}?$$

4) (2 pt) Compute the dimension of the degree 1 de Rham cohomology of $S^1 \times S^1$.

5) (2 pt) Let $E \xrightarrow{\pi} M$ be a vector bundle over a manifold M. Show that $\check{H}^k(E; \mathbb{R}; \mathcal{V}) \cong \check{H}^k(M; \mathbb{R}; \mathcal{U})$ for all k as long as \mathcal{U} and \mathcal{V} are fine covers of M and E respectively. (Hint: use the Čech to de Rham theorem to conclude that it is enough to prove the result for a single pair of fine covers \mathcal{U} and \mathcal{V} , then use \mathcal{U} to choose wisely a fine cover \mathcal{V} for E.)