Differentiable manifolds - exercise sheet 12

Exercise 1. Let $A: V \longrightarrow V$ be a linear automorphism of an n-dimensional vector space. Show that $A^{*}: \wedge^{n} V^{*} \longrightarrow \wedge^{n} V^{*}$ is just multiplication by $\operatorname{det} A$.

Exercise 2. Let α be a closed form and β be an exact form. Show that $\alpha \wedge \beta$ is exact.
Exercise 3 (Cup product). Let α and β be closed forms on M. Show that $\alpha \wedge \beta$ is closed. Further, show that the cohomology class of $\alpha \wedge \beta$ only depends on the cohomology classes of α and β and not on the particular representatives of these classes. Conclude that we have a product operation:

$$
H^{k}(M) \cup H^{l}(M) \longrightarrow H^{k+l}(M)
$$

induced by the wedge product.
Exercise 4. Let $f: M \longrightarrow N$ be smooth

- For $\alpha, \beta \in \Omega(N)$ Show that $f^{*}(\alpha \wedge \beta)=\left(f^{*} \alpha\right) \wedge\left(f^{*} \beta\right)$.
- Using the fact above or otherwise, show that $f^{*}(d \alpha)=d\left(f^{*} \alpha\right)$.
- Conclude that f induces a map $f^{*}: H^{k}(N) \longrightarrow H^{k}(M)$ and that this map preserves the cup product introduced in exercise 3 .

Exercise 5. Compute the exterior derivative of the following forms

- $x d y$
- $x d x+y d y$
- $\frac{x d y-y d x}{x^{2}+y^{2}}$
- $\frac{x d y \wedge d z+y d z \wedge d x+z d x \wedge d y}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}}$

Exercise 6. For $X \in \mathfrak{X}(M)$ we define the interior product with X as a map

$$
\iota_{X}: \Omega^{k}(M) \longrightarrow \Omega^{k-1}(M) ; \quad \iota_{X} \alpha\left(X_{1}, \cdots, X_{k-1}\right)=\alpha\left(X, X_{1}, \cdots, X_{k-1}\right)
$$

Show that

$$
\iota_{X} \iota_{X} \alpha=0 \text { for all } \alpha \in \Omega^{k}(M)
$$

and that

$$
\iota_{X}(\alpha \wedge \beta)=\left(\iota_{X} \alpha\right) \wedge \beta+(-1)^{k} \alpha \wedge\left(\iota_{X} \beta\right)
$$

where $\alpha \in \Omega^{k}(M)$.
Exercise 7. For $\xi \in \Omega^{1}(M)$ and $X \in \mathfrak{X}(M)$, define

$$
X+\xi: \Omega(M) \longrightarrow \Omega(M) ; \quad(X+\xi) \cdot \alpha=\iota_{X} \alpha+\xi \wedge \alpha
$$

Show that $(X+\xi) \cdot((X+\xi) \cdot \alpha)=\xi(X) \alpha$

