Differentiable manifolds – exercise sheet 14

Exercise 1. Let $\alpha \in \Omega^1(\mathbb{R}^2 \setminus \{0\})$ be given by

$$\alpha = \frac{xdy - ydx}{x^2 + y^2}.$$

Compute $d\alpha$. Compute the integral of α over

- the unit circle oriented counterclockwise.
- the circle of radius 1 centered at (0, 2) oriented counterclockwise.
- the circle of radius 2 centered at (1,0) oriented counterclockwise.

Exercise 2. Let $\varphi: S^2 \setminus \{N\} \longrightarrow \mathbb{R}^2$ be the stereographic projection. Show that $\varphi^*(\frac{dx \wedge dy}{1 + (x^2 + y^2)^2})$ extends to the north pole to give rise to a smooth 2-form on S^2 . Compute its integral over S^2 .

Exercise 3. Using the Poicanré lemma and integration, show that $H^1(S^2) = \{0\}$.

Exercise 4. A k-form α is harmonic if α and $\star \alpha$ are closed. Show that is a harmonic form is not everywhere zero, it represents a nontrivial cohomology class.

Exercise 5. Let $\omega \in \Omega^2(\mathbb{R}^{2n})$ be given by

$$\omega = dx_1 \wedge dx_2 + \dots + dx_{2n-1} \wedge dx_{2n}$$

Let $\varphi: \Sigma^2 \longrightarrow \mathbb{R}^{2n}$ be a smooth map. Compute

$$\int_{\Sigma} \varphi^* \omega.$$

Convention: in a compact oriented Riemannian manifold for $f \in C^{\infty}(M)$ we define

$$\int_M f := \int_M \star f.$$

Exercise 6 (The divergent). Let M be an oriented Riemannian manifold and let $X \in \mathfrak{X}(M)$. Define the divergent of X to be

$$\nabla \cdot X = \star^{-1} d \star g(X).$$

Show that if M is \mathbb{R}^n with usual metric and orientation

$$\nabla \cdot (X_i \frac{\partial}{\partial x_i}) = \sum \frac{\partial X_i}{\partial x_i}.$$

Exercise 7. Let $X \in \mathfrak{X}(M)$ be a vector field on an oriented compact Riemannian manifold with boundary. Let N be the unit outward pointing normal vector to boundary. Show that

$$\int_{\partial M} g(X, N) = \int_M \nabla \cdot X.$$

Exercise 8. Let M be a compact manifold and $\mathfrak{U} = \{U_{\alpha} : \alpha \in A\}$ be an open cover such that for each multi-index $a \subset A$ the corresponding U_a is either empty of diffeomorphic to a disc. Show that $\check{H}^k(M;\mathfrak{U};\mathbb{R}) = H^k(M)$ for all k.

A possible route to prove this result relies on two facts.

Fact 1 (Uses the same argument as Theorem 1.16 from the notes on Cech cohomology): For any vector bundle E, $\check{H}^k(M: \mathfrak{U}; \Gamma(E)) = \{0\}$ if k > 0 and

$$\check{}^{k}(M;\mathfrak{U};\Gamma(E)) = \{0\}$$
 if $k > 0$ and
 $\check{H}^{0}(M;\mathfrak{U};\Gamma(E)) \cong \Gamma(E).$

Fact 2 (Poincaré Lemma) If U is diffeomorphic to an open ball in \mathbb{R}^n , then $H^i(U) = \{0\}$ for i > 0 and $H^0(U) = \mathbb{R}$.

And the proof involves introducing another cohomology space, H_D^k below, and then prove that

$$\check{H}^k(M;\mathfrak{U};\mathbb{R})\cong H^k_D\cong H^k(M).$$

Roadmap to the solution

Consider the $\mathbb{N} \times \mathbb{N}$ graded vector space

$$E^{\bullet,\bullet} = \bigoplus_{p,q \in \mathbb{N}} E^{p,q}; \qquad E^{p,q} = \check{C}^p(M;\mathfrak{U};\Omega^q(M)).$$

Endow $E^{\bullet,\bullet}$ with the operator

$$D: E^{p,q} \longrightarrow E^{p+1,q} \oplus E^{p,q+1}; \qquad D|_{E^{p,q}} = \check{\delta} + (-1)^p d_q$$

If we use a coarser grading for E, namely, if we define

$$\mathcal{E}^k = \oplus_{p+q=k} E^{p,q}$$

then $D: \mathcal{E}^k \longrightarrow \mathcal{E}^{k+1}$.

1. Show that $D^2 = 0$ and hence we can define its cohomology. Since $D : \mathcal{E}^k \longrightarrow \mathcal{E}^{k+1}$ we get an \mathbb{N} -grading for the *D*-cohomology:

$$H_D^k = \frac{\ker(D: \mathcal{E}^k \longrightarrow \mathcal{E}^{k+1})}{\operatorname{Im}(D: \mathcal{E}^{k-1} \longrightarrow \mathcal{E}^k)}$$

2. Using the inclusion of constant functions into smooth functions, we have an inclusion

$$\iota: \check{C}^k(M;\mathfrak{U};\mathbb{R}) \longrightarrow \check{C}^k(M;\mathfrak{U};\Omega^0(M)) = E^{k,0} \subset \mathcal{E}^k$$

Show that $\iota \circ \delta = D \circ \iota$ and hence conclude that ι induces a map in cohomology

$$\iota^*: \check{H}^k(M;\mathfrak{U};\mathbb{R}) \longrightarrow H^k_D.$$

3. Show that ι^* is a surjection: given an element $\alpha \in \mathcal{E}^k$ with $D\alpha = 0$, decompose it into its (p,q) components:

$$\alpha = \sum_{p+q=k} \alpha^{p,q}, \qquad \alpha^{p,q} \in E^{p,q}.$$

Let q_0 be the biggest integer for which α^{k-q_0,q_0} is not zero. Using the Poincaré Lemma, show that if $q_0 > 0$, there is a another representative $\tilde{\alpha}$ for the *D*-cohomology class $[\alpha]$ such that $\tilde{\alpha}^{p,q} = 0$ for $q \ge q_0$. Conclude by induction that any cohomology class in H_D^k can be represented by an element in $\check{C}^k(M; \mathfrak{U}; \mathfrak{U}^0(M))$. Conclude that this representative is in the image of the map ι and hence ι^* is surjective. 4. Use a similar argument to the one above to show that ι^* is injective and hence conclude that

$$\check{H}^k(M;\mathfrak{U};\mathbb{R})\cong H^k_D.$$

5. Using the inclusion of $\kappa : \Omega^k(M) \longrightarrow \check{C}^0(M; \mathfrak{U}; \Omega^k)$ obtained by restricting a globally defined section to each open set of the cover \mathfrak{U} , show that

$$\kappa \circ d = D \circ \kappa$$

and hence we have a map in cohomology

$$\kappa^*: H^k(M) \longrightarrow H^k_D.$$

- 6. Use Fact 1 and a similar argument to item 3 to prove that κ^* is surjective.
- 7. Use Fact 1 and a similar argument to item 4 to prove that κ^* is injective.