Differentiable manifolds – exercise sheet 2

Exercise 1. Let $m \ge n$. Show that the set of $m \times n$ matrices of maximal rank is a manifold.

Exercise 2. Let M and N be smooth manifolds and $p \in M$ and $q \in N$. Show that $M \times N$ has a natural structure of manifold for which the following maps are smooth

$$\begin{split} \pi_1: M\times N &\longrightarrow M, & \pi_1(x,y) = x; \\ \pi_2: M\times N &\longrightarrow N, & \pi_2(x,y) = y; \\ \iota_q: M &\longrightarrow M\times N; & \iota_q(x) = (x,q); \\ \iota_p: N &\longrightarrow M\times N; & \iota_p(y) = (p,y). \end{split}$$

Exercise 3. Identifying the circle S^1 with the complex numbers of length 1, show that the 2- torus $T^2 = S^1 \times S^1$ is a manifold and that the map

$$\pi: \mathbb{R}^2 \longrightarrow T^2, \qquad \pi(x,y) = (e^{2\pi i x}, e^{2\pi i y})$$

is a smooth surjection which is a local diffeomorphism.

Exercise 4. Identify the circle S^1 with the complex numbers of length 1 and let $n \in \mathbb{Z}$. Show that the map $z \mapsto z^n$ is smooth.

Exercise 5. Let S^n be the *n*-sphere. Show that the map

$$\varphi: S^n \longrightarrow S^n, \qquad \varphi(x) = -x$$

is smooth.

Exercise 6. Read the section of the book that proves the existence of partitions of unity on smooth manifolds .

Exercise 7. Show that $C^{\infty}(M)$ is an infinite dimensional vector space.