Geometry and Topology - hand-in sheet 2

Hand in by $2 /$ June

Prelude to the exercise

Definition 1. A map $p: E \longrightarrow B$ has the homotopy lifting property with respect to a space X if given a homotopy $H: I \times X \longrightarrow B$ and a map $\tilde{h}:\{0\} \times X \longrightarrow E$ such that the following diagram commutes

then there is a map $\tilde{H}: I \times X \longrightarrow E$ which lifts H and agrees with \tilde{h} on $\{0\} \times X$, i.e., the following diagram commutes:

Exercise 2. Assume that $p: E \longrightarrow B$ has the homotopy lifting property with respect to $D^{2} \cong I \times I$ and $D^{1}=I$. Assume further that E and B are path connected and any map

$$
\varphi:(I \times I, \partial(I \times I)) \longrightarrow\left(B, b_{0}\right)
$$

is homotopy equivalent to the constant one via a relative homotopy $H: I \times I \times I \longrightarrow B$, i.e.,

$$
\begin{gathered}
H(0, s, t)=\varphi(s, t), \quad \forall s, t \in I \times I ; \\
H(1, s, t)=b_{0}, \quad \forall s, t \in I \times I ; \\
H(u, \partial(I \times I))=b_{0}, \quad \forall u \in I .
\end{gathered}
$$

Let $x_{0} \in E, b_{0}=p\left(x_{0}\right)$ and $F=p^{-1}\left(b_{0}\right)$. Show that the corresponding sequence of fundamental groups

$$
\{0\} \longrightarrow \pi_{1}\left(F, x_{0}\right) \xrightarrow{\iota_{*}} \pi_{1}\left(E, x_{0}\right) \xrightarrow{p_{*}} \pi_{1}\left(B, b_{0}\right)
$$

is exact, that is, the kernel of each map is the image of the previous map. Show further that the cardinality of $\pi_{1}\left(B, b_{0}\right) / p_{*}\left(\pi_{1}\left(E, x_{0}\right)\right)$ is the number of path connected components of F.

Hint: Often you will have a homotopy, say $H: I \times I \times I \longrightarrow B$ for which you can find by hand a lift \tilde{h} to all but one of the faces of $\partial(I \times I \times I)$. Argue that since the sides of the cube with one face removed is homotopic to the disc, the homotopy lifting property property can be used to find a lift \tilde{H} of H to the whole cube which agrees with \tilde{h} where both maps are defined.

Remark: To give some idea of when this result can be used we remark on the properties being required of E, B and $p: E \longrightarrow B$.

1. The condition that $p: E \longrightarrow B$ satisfies the homotopy lifting property is satisfied for example if E and B are manifolds and $p: E \longrightarrow B$ is a proper smooth submersion.
2. The condition that any map $\varphi:(I \times I, \partial(I \times I)) \longrightarrow\left(B, b_{0}\right)$ is homotopic to the constant map via relative homotopies is equivalent to saying that the second homotopy group of $B, \pi_{2}(B)$, is trivial.
