Topology and Geometry - exercise sheet 9

Solve exercises 1, 3, 4, 5, 11 and 14 from Section 2.1 in Hatcher's book.
Exercise 1 (Homology with coefficients in an Abelian group). Let G be an Abelian group and X be a Δ-complex. In the definition of simplicial homology observe that one can take the space of n-chains to be finite formal sums of the form $\sum_{\alpha} n_{\alpha} e_{\alpha}^{n}$, with $n_{\alpha} \in G$. Define an appropriate boundary operator ∂ and show that $\partial^{2}=0$. Conclude that one can define homology with any Abelian group as coefficients: $H_{*}(X ; G)$.

Exercise 2 (Homology with coefficients in an Abelian group II). In the exercise above, show that if G is a ring then $H_{n}(X ; G)$ is a G-module. Conclude that if G is a field then both the space of n-chains and the corresponding homology group, $H_{n}(X ; G)$, are G-vector spaces. In particular if $G=\mathbb{R}, H_{n}(X, \mathbb{R})$ is a real vector space.

Exercise 3. Let $V_{i}, i=0, \cdots, d$ be finite dimensional real vector spaces and let $\partial_{i}: V_{i} \longrightarrow V_{i-1}$ be linear maps such that $\partial_{i} \circ \partial_{i+1}=0$ for all i. Define the corresponding "homology groups" by

$$
H_{i}=\frac{\operatorname{ker}\left(\partial_{i}\right)}{\operatorname{im}\left(\partial_{i+1}\right)}
$$

Show that

$$
\sum(-1)^{i} \operatorname{dim}\left(V_{i}\right)=\sum(-1)^{i} \operatorname{dim} H_{i}
$$

Exercise 4 (Classification of surfaces revisited).

1. Show that every compact surface without boundary can be realized as a Δ-complex.
2. For each such surface compute its homology (with respect to a fixed realization as a Δ-complex of your choosing) with \mathbb{Z} and with \mathbb{R} coefficients (use the classification theorem). A few notable things emerge from these computations:

- No two nondiffeomorphic surfaces have the same homology group $H_{1}(\Sigma, \mathbb{Z})$.
- For the sphere and for connected sums of tori $H_{2}(\Sigma ; \mathbb{Z})=\mathbb{Z}$ and $H_{2}(\Sigma ; \mathbb{R})=\mathbb{R}$ while if Σ is a connected sum of projective spaces $H_{2}(\Sigma, \mathbb{Z})=\{0\}$ and $H_{2}(\Sigma ; \mathbb{R})=\{0\}$.
- In all cases $H_{0}(\Sigma, \mathbb{Z})=\mathbb{Z}$.

3. We define the Euler characteristic of a Δ-complex, X, to be the alternating sum

$$
\chi_{X}=\sum(-1)^{i} \operatorname{dim} H_{i}(X, \mathbb{R})
$$

Show that if $\Sigma=\# g T^{2}$, then

$$
\chi_{\Sigma}=2-2 g
$$

and that this still holds if $g=0$, i.e., if Σ is a sphere.
4. Show that if $\Sigma=\# g \mathbb{R} P^{2}$, then

$$
\chi_{\Sigma}=2-g
$$

5. Conclude that the numbers χ_{Σ} and $\operatorname{dim}\left(H^{2}(\Sigma ; \mathbb{R})\right)$ fully determine the diffeomorphism type of Σ.
6. Use Exercise 3 to conclude that the Euler characteristic of a compact surface realized as a Δ-complex is

$$
\chi_{\Sigma}=V-E+F
$$

where V is the number of vertices (0 -simplices), E is the number of edges (1-simplices) and F the number of faces (2 -simplices) in the Δ-complex.

