
Group theory – Exam

Notes:

1. Write your name and student number **clearly** on each page of written solutions you
hand in.

2. You can give solutions in English or Dutch.

3. You are expected to explain your answers.

4. You are not allowed to consult any text book, class notes, colleagues, calculators, computers etc.

5. Advice: read all questions first, then start solving the ones you already know how to solve or have
good idea on the steps to find a solution. After you have finished the ones you found easier, tackle
the harder ones.

1) For each list of groups a) and b) below, decide which of the groups within each list are isomorphic, if
any:

a) Z3 × Z3 × Z2, Z9 × Z2, Z18 and Z6 × Z3 (0.5 pt).

b) S4, A4 × Z2, D12 and H× Z3, where H is the quaternion group with 8 elements (0.5 pt).

Solution. a) For this one you should remember that Zn × Zm is isomorphic to Znm if and only if n and
m are coprime. This implies that Z3 × Z3 × Z2

∼= Z3 × Z6 and Z9 × Z2
∼= Z18, but that Z3 × Z6 6∼= Z18.

b) First consider the center of each of the groups given. We have ZS4 = {e}, ZA4×Z2
∼= ZA4 × ZZ2

∼= Z2,
ZD12

∼= Z2 and ZH×Z3
∼= ZH × ZZ3 = Z2 × Z3. So the only two groups which can be isomorphic are D12

and A4, but D12 has an element of order 6 and A4 does not, so no two groups of list b) are isomorphic.
Compare this exercise with exercise 10.7 in Armstrong (exercise sheet 7).

2) Show that if a finite group G has only two conjugacy classes, then G ∼= Z2 (1.0 pt).

Solution. Let G be such a group and let n be its order. The identity element e is always in a conjugacy
class of its own and every element is in a conjugacy class, so, since G has only two conjugacy classes, we
have that G\{e} must be a conjugacy class. Since a conjugacy class is an orbit of the action of G on itself
by conjugation, the orbit stabilizer theorem says that the order of an orbit must divide the order of the
group, i.e.,

n− 1 = #(G\{e})|#G = n,

this can only happen if n = 1 or n = 2. For n = 1 G is the trivial group which has only one conjugacy
class, so, since G has two classes, #G = 2 and hence G ∼= Z2.
This was exercise 6 from hand-in sheet 3.



3 a) Show that if Sn acts on a set with p elements and p > n is a prime number then the action has more
than one orbit (0.75 pt).

b) Let p be a prime. Show that the only action of Zp on a set with n < p elements is the trivial one
(0.75 pt).

Solution. a) Assume by contradiction that the action has only one orbit. Then, by the orbit stabilizer
theorem, the cardinality of the set (i.e. the only orbit) must divide the order of the group acting on it.
Therefore, for the present case, p must divide #Sn = n!. Since p is a prime, it divides a product if and
only if it divides one of the factors, but since n < p, p does not divide any factor in n!. This contradiction
implies that there is more than one orbit.
b) Let X be a set with n elements on which Zp acts and let x ∈ X. By the orbit stabilizer theorem, p = Zp

must divide the order of the orbit through x, Ox, so #Ox = 1 or Ox = p. Since Ox ⊂ X, #Ox ≤ n < p,
hence #Ox = 1. Since x is an arbitrary element of X, this means that the action is trivial.
Exercise a)was exercise 5 from hand-in sheet 3 and also exercise 5 from sheet 6.

4) Prove or give a counter-example for the following claim: For every m which divides 60 there is a
subgroup of A5 of order m (1.5 pt).

Solution. Recall that A5 is simple, i.e., it has no nontrivial normal subgroups. Since every subgroup of
index 2 is normal, this means that A5 has no subgroup of order 30.
This was exercise 11.8 from Armstrong (exercise sheet 7).

5) Let G be a finite group. We define a sequence of groups (Gi) as follows. Let G0 = G and define
inductively Gi = Gi−1/ZGi−1 , where ZGi−1 is the center of Gi−1, so for example, G1 = G/ZG. This
procedure gives rise to a sequence of groups

G = G0 −→ G1 −→ G2 −→ · · ·

where each map Gi−1 −→ Gi is a surjective group homomorphism whose kernel is the center of Gi−1.

a) Show that if ZGi = {e} for some i, then Gn = Gi for n > i (0.3 pt).

b) Show that if Gi is Abelian, then Gn = {e} for n > i (0.3 pt).

c) Compute this sequence for D8, D10 and A5 (0.9 pt).

Solution. a) We prove this by induction. If ZGi = {e}, then Gi+1 = Gi/ZGi
∼= Gi/{e} ∼= Gi, showing

the first step holds. The inductive hypothesis is that Gj
∼= Gi, and then ZGj

∼= ZGi = {e} and Gj+1 =
Gj/ZGj

∼= Gj/{e} ∼= Gj
∼= Gi, proving the inductive step.

b) If Gi is Abelian, then ZGi
= Gi and Gi+1 = Gi/ZGi

= Gi/Gi
∼= {e}. So, ZGi+1 = {e} and by part a)

Gj
∼= Gi+1

∼= {e} for j > i.
c) D10 and D8. We know that for n > 1, ZD2n−1

∼= {e} and ZD2n
∼= Z2 and that D2n/ZD2n

∼= Dn. We
also know that D2

∼= Z2 × Z2 is Abelian, hence ZD2 = D2. These facts give us.
For G = D10, we have G0 = D10, G1 = D5 and ZD5 = {e}, so, by a), Gi = D5 for i > 0.
For G = D8, we have G0 = D8, G1 = D4, G2 = D2 and Gi = {e} for i > 2.
Finally, A5 has trivial center, since it is simple and is not Abelian (and the center is always a normal

subgroup). So, by a), Gi = A5 for all i.
Compare this with exercise 2 of hand-in sheet 5.



6) Prove or give a counter example to the following claim: Let G1 and G2 be finite groups and H1 C G1,
H2 C G2 be normal subgroups such that H1

∼= H2. If G1/H1
∼= G2/H2, then G1

∼= G2 (1.5 pt).

Solution. False: Consider G1 = Z4 and G2 = Z2 × Z2. By the same argument of the first exercise of
this exam, G1 and G2 are not isomorphic. However, H = Z2 is a subgroup of both of these groups and
since G1 and G2 are Abelian, any subgroup is normal. Further, Gi/H is a group with 2 elements, hence
isomorphic to Z2. This gives a counter-example to the claim.

7) Let G be a group of order 231 = 3 · 7 · 11. Show that the 11 and the 7-Sylows are normal. Show that
the 11-Sylow is in the center of G (1.5 pt).

Solution. By the Sylow theorems, n11, the number of 11-Sylow subgroups, must divide #G/11 = 3 · 7,
i.e., it can be only 1, 3, 7 or 11. Further it must be 1 mod 11, so there is only 1 11-Sylow which therefore
is a normal subgroup.

By the Sylow theorems, n7, the number of 7-Sylow subgroups, must divide #G/7 = 3 · 11, i.e., it can
be only 1, 3, 11 or 33. Further it must be 1 mod 7, so there is only 1 7-Sylow which therefore is a normal
subgroup.

Let H be the 11- Sylow,so that H ∼= Z11 and let g ∈ G. Then, by Lagrange, g must have order
1, 3, 7, 11, 21, 33, 77 or 231 = 3 · 7 · 11. We will consider the case when g has order 21 as the other cases
are similar. If g has order 21 and x is a generator of H, then, by normality of H we have

gxg−1 = xl

for some l. Therefore
x = g21xg−21 = xl21 ,

showing that l21 = 1 mod 11. But Z11\{0} is a group (with multiplication) and the order of any of its
elements must divide 10 = #Z11\{0}. From l21 = 1 mod 11, we see that the order of l must divide 21.
Since 21 and 10 are coprime, the only number which divides both is 1, so l has order 1 and hence it is the
identity of Z11\{0}, showing that gxg−1 = x and hence g commutes with x.
This is exercise 4 from the last exercise sheet and is also a particular case of exercise 1 of hand-in sheet 6.

8) Show that a group of order 392 = 23 · 72 is not simple (1.5 pt).

Solution. One way to solve:
By Sylow’s theorem, n7, the number of 7-Sylows must divide 8 and be 1 mod 7, so there are either 1 or 8
7-Sylows. If there is only 1, then the 7-Sylow is normal and hence G is not simple. If n7 = 8, then let H
be the set whose elements are the 7-Sylows of G. Then G acts of H by conjugation:

G×H −→ H g : H 7→ gHg−1 ∈ H

Since H has 8 elements, this is equivalent to a group homomorphism

ϕ : G −→ S8.

By Sylow’s theorem, any two 7-Sylow subgroups are conjugated to each other, hence the action above
is not trivial, so ker(ϕ) 6= G. By the first isomorphism theorem and Lagrange we have that

#G = #Im(ϕ)# ker ϕ

and since Im(ϕ) < S8 we see that #Im(ϕ)|8!. Since 72 6 |8!, we have that 72 6 |#Im(ϕ), but 72|#G, so
# ker(ϕ) 6= 1 and therefore ker(ϕ) 6= {e}.



The kernel of any homomorphism is a normal subgroup and ker(ϕ) 6= G, {e}, so it is a nontrivial
normal subgroup of G, hence G is not simple.

Another way to solve (very similar argument):
Let H be a 7-Sylow subgroup of G. Then H has index 8, i.e., the set H of left H-cosets has 8 elements.
Then G acts of H by left translation:

G×H −→ H g : xH 7→ gxH ∈ H

Since H has 8 elements, this is equivalent to a group homomorphism

ϕ : G −→ S8.

By Sylow’s theorem, any two 7-Sylow subgroups are conjugated to each other, hence the action above
is not trivial, so ker(ϕ) 6= G. By the first isomorphism theorem and Lagrange we have that

#G = #Im(ϕ)# ker ϕ

and since Im(ϕ) < S8 we see that #Im(gf)|8!. Since 72 6 |8!, we have that 72 6 |#Im(ϕ), but 72|#G, so
# ker(ϕ) 6= 1 and therefore ker(ϕ) 6= {e}.

The kernel of any homomorphism is a normal subgroup and ker(ϕ) 6= G, {e}, so it is a nontrivial
normal subgroup of G, hence G is not simple.
Compare this to exercise 7 of the last exercise sheet and exercise 3 of hand-in sheet 6.

Remark: The first proof can be used in more general conditions than the second, for example, if G had
order 25 × 72 the first solution would still hold, but the second would not.


