Group theory - Exam 1

Notes:

1. Write your name and student number ${ }^{* *}$ clearly** on each page of written solutions you hand in.

2. You can give solutions in English or Dutch.
3. You are expected to explain your answers.
4. You are not allowed to consult any text book, class notes, colleagues, calculators, computers etc.
5. Advice: read all questions first, then start solving the ones you already know how to solve or have good idea on the steps to find a solution. After you have finished the ones you found easier, tackle the harder ones.
1) a) Let α, β be elements of the symmetric group S_{n}. Show that if α and β commute and $i \in\{1,2, \cdots, n\}$ is fixed by α, i.e., $\alpha(i)=i$, then $\beta(i)$ is also fixed by α. (0.5 pt)
b) Show that, for $n>2, Z_{S_{n}}=\{e\}$. (0.5 pt)
c) Show that, for $n>3, Z_{A_{n}}=\{e\}$. (0.5 pt)
d) What is the center of A_{3} ? (0.5 pt)
2) For each of the lists below, determine which groups are isomorphic:
a) $\mathbb{Z}_{4} \times \mathbb{Z}_{9}, \mathbb{Z}_{6} \times \mathbb{Z}_{6}, \mathbb{Z}_{36}$ and $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3}$. $(0.75 \mathrm{pt})$
b) $A_{5} \times \mathbb{Z}_{2}, S_{5}, D_{30}, D_{15} \times \mathbb{Z}_{2}$. $(0.75 \mathrm{pt})$
3) Let G be the group generated by

$$
G=\left\langle a, b \mid a^{n}=b^{m}=e ; b a b^{-1}=a^{l}\right\rangle
$$

Show that if $l^{m} \neq 1 \bmod n$ then the order of a is less than n. (1 pt)
4) Given a group G, a subgroup $H<G$ is called proper if H is neither $\{e\}$ nor G. Find a group which is isomorphic to one of its proper subgroups. (Hint: this is only possible for infinite groups). (1 pt)
5) Let G be a group. Then the conjugacy class of an element $x \in G$ is the set

$$
\mathcal{C}_{x}=\left\{g x g^{-1}: g \in G\right\}
$$

and the centralizer of x, denoted by $C(x)$ is the set of all elements in G which commute with x, i.e.,

$$
C(x)=\left\{g \in G: g x g^{-1}=x\right\}
$$

a) Show that the centralizer of x is a subgroup of G. (0.75 pt)
b) Show that, if G is finite, then index of $C(x)$ in G, i.e., the number of elements in $G / C(x)$, is the number of elements in \mathcal{C}_{x}, the conjugacy class of x. (0.75 pt).

6 a) Show that if S_{n} acts on a set with p elements and $p>n$ is a prime number then the action has more than one orbit (0.75 pt).
b) Let p be a prime. Show that the only action of \mathbb{Z}_{p} on a set with $n<p$ elements is the trivial one (0.75 pt).
7) Let G be a group, S a set and $\varphi: G \times S \longrightarrow S$ be an action. Let H be the stabilizer of a point $s \in S$. Show that the stabilizer of $g \cdot s$ is $g H^{-1}$. Conclude that H is a normal subgroup of G if and only if it is the stabilizer of all the points in the orbit of s. (1.5 pt)

