Group theory – Exam 1

Notes:

- 1. Write your name and student number ** clearly** on each page of written solutions you hand in.
- 2. You can give solutions in English or Dutch.
- 3. You are expected to explain your answers.
- 4. You are **not** allowed to consult any text book, class notes, colleagues, calculators, computers etc.
- 5. Advice: read all questions first, then start solving the ones you already know how to solve or have good idea on the steps to find a solution. After you have finished the ones you found easier, tackle the harder ones.

1) a) Let α, β be elements of the symmetric group S_n . Show that if α and β commute and $i \in \{1, 2, \dots, n\}$ is fixed by α , i.e., $\alpha(i) = i$, then $\beta(i)$ is also fixed by α . (0.5 pt)

- b) Show that, for n > 2, $Z_{S_n} = \{e\}$. (0.5 pt)
- c) Show that, for n > 3, $Z_{A_n} = \{e\}$. (0.5 pt)
- d) What is the center of A_3 ? (0.5 pt)

Solution. a) Since $\alpha(i) = i$, we have that

$$\alpha(\beta(i)) = \beta(\alpha(i)) = \beta(i).$$

b)Let $\beta \in Z_{S_n}$ and let $\alpha_i = (1 \ 2 \ \cdots \ i - 1 \ i + 1 \ \cdots \ n)$. Then, since β is in the center, it commutes with α_i , hence from the first part

$$\alpha_i(\beta(i)) = \beta(i)$$

But notice that for n > 2 the only number fixed by α_i is *i*. Since $\beta(i)$ is fixed by α_i we have $\beta(i) = i$. Since this is true for all *i*, we get $\beta = e$ and hence the center of S_n is trivial.

c) Let $\beta \in Z_{A_n}$. If n is even the permutations α_i used above belong to A_n and hence the same argument used above shows that $\beta = e$ and hence $Z_{A_n} = \{e\}$ for n even and greater than 2.

For *n* odd, consider $\alpha_{ij} = (1 \ 2 \ \cdots \ i-1 \ i+1 \ \cdots \ j-1 \ j+1 \ \cdots \ n-1 \ n)$. Then $\alpha(i) = i, \ \alpha(j) = j$ and these are the only two points fixed by α_{ij} if n > 3. Using item (a) of this exercise we see that

$$\alpha(\beta(i)) = \beta(i)$$

so $\beta(i)$ is fixed by α_{ij} , hence $\beta(i) = i$ or $\beta(i) = j$.

Taing $k \neq i, j$, since β commutes also with $\alpha_{ik} = (1 \ 2 \ \cdots \ i-1 \ i+1 \ \cdots \ k-1 \ k+1 \ \cdots n-1 \ n)$ the same argument used above show that $\beta(i) = i$ or $\beta(i) = k$.

Since $(\beta(i) = i \text{ or } \beta(i) = j)$ and $(\beta(i) = i \text{ or } \beta(i) = k)$ must be both true, we conclude that $\beta(i) = i$ for all i and hence $\beta = e$, showing that $Z_{A_n} = \{e\}$ for n odd.

d) A_3 is a group with 3 elements, hence isomorphic to \mathbb{Z}_3 which is Abelian, so $Z_{A_3} = A_3 = Z_3$.

2) For each of the lists below, determine which groups are isomorphic:

- a) $\mathbb{Z}_4 \times \mathbb{Z}_9$, $\mathbb{Z}_6 \times \mathbb{Z}_6$, \mathbb{Z}_{36} and $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_3$. (0.75 pt)
- b) $A_5 \times \mathbb{Z}_2, S_5, D_{30}, D_{15} \times \mathbb{Z}_2.$ (0.75 pt)

Solution. a) We know from lectures and the book that $\mathbb{Z}_m \times \mathbb{Z}_n \cong \mathbb{Z}_{mn}$ if and only if m and n are coprime. Hence

$$(\mathbb{Z}_2 \times \mathbb{Z}_3) \times (\mathbb{Z}_2 \times \mathbb{Z}_3) \cong \mathbb{Z}_6 \times \mathbb{Z}_6$$
$$\mathbb{Z}_9 \times \mathbb{Z}_4 \cong \mathbb{Z}_{36}$$

and

 $\mathbb{Z}_6 \times \mathbb{Z}_6 \not\cong \mathbb{Z}_{36}.$

b) $\#D_{15} \times \mathbb{Z}_2 = \#D_{30} = 60$ and $\#A_5 \times \mathbb{Z}_2 = \#S_5 = 5! = 120$, so the first two groups can not be isomorphic to the last two.

From lectures we know that $D_n \times \mathbb{Z}_2 \cong D_{2n}$ if and only if n is odd, therefore $D_{15} \times \mathbb{Z}_2 \cong D_{30}$.

From question 1 (and from lectures) we know that $Z_{S_n} = \{e\}$ for n > 2 and $Z_{A_n} = \{e\}$ for n > 3, hence

$$Z_{A_5 \times \mathbb{Z}_2} = Z_{A_5} \times Z_{\mathbb{Z}_2} = \mathbb{Z}_2 \neq Z_{S_5}$$

Therefore $A_5 \times \mathbb{Z}_2$ is not isomorphic to S_5 .

3) Let G be the group generated by

$$G = \langle a, b | a^n = b^m = e; bab^{-1} = a^l \rangle$$

Show that if $l^m \neq 1 \mod n$ then the order of a is less than n. (1 pt)

Solution. Since b has order m, we have the following equality

$$a = b^m a b^{-m} = b^{m-1} (bab^{-1}) b^{-m+1} = b^{m-1} a^l b^{-m+1} = (b^{m-1} a b^{-m+1})^l = \dots = a^{l^m}$$

Hence $a^{l^m-1} = e$ and therefore the order of a must divide $l^m - 1$. If $l^m - 1 \neq 0 \mod n$ then a does not have order n. since $a^n = e$, the order of a must be a divisor of a, hence the order of a is less than n.

4) Given a group G, a subgroup H < G is called *proper* if H is neither $\{e\}$ nor G. Find a group which is isomorphic to one of its proper subgroups. (Hint: this is only possible for infinite groups). (1 pt)

Let $G = \mathbb{Z}$ and consider $H < \mathbb{Z}$ the subgroup formed by the even numbers. Then

$$\varphi: \mathbb{Z} \longrightarrow \mathbb{Z}_{even}, \qquad \varphi(n) = 2n$$

is a group isomorphism between \mathbb{Z} and \mathbb{Z}_{even} .

Indeed, this map is clearly surjective. Computing $\varphi(m+n) = 2m + 2n = \varphi(m) + \varphi(n)$ we see that φ is a group homomorphism and finally if $\varphi(n) = 0$ then 2n = 0 and hence n = 0, showing that φ is injective.

5) Let G be a group. Then the *conjugacy class* of an element $x \in G$ is the set

$$\mathcal{C}_x = \{gxg^{-1} : g \in G\}$$

and the centralizer of x, denoted by C(x) is the set of all elements in G which commute with x, i.e.,

$$C(x) = \{g \in G : gxg^{-1} = x\}$$

a) Show that the centralizer of x is a subgroup of G. (0.75 pt)

b) Show that, if G is finite, then index of C(x) in G, i.e., the number of elements in G/C(x), is the number of elements in \mathcal{C}_x , the conjugacy class of x. (0.75 pt).

Solution. G acts on itself by conjugation. For a given $x \in G$, the stabilizer of x is precisely C(x) defined above, hence C(x) is a subgroup of G (all stabilizers are subgroups).

Further, the orbit of x by this action is the set \mathcal{C}_x , so, by the Orbit-Stabilizer theorem,

$$#G = #C(x) \cdot \mathcal{C}_x.$$

or equivalently, $\#(G/C(x)) = \#C_x$.

6 a) Show that if S_n acts on a set with p elements and p > n is a prime number then the action has more than one orbit (0.75 pt).

b) Let p be a prime. Show that the only action of \mathbb{Z}_p on a set with n < p elements is the trivial one (0.75 pt).

Solution. a) Assume that there is an action of S_n on a set with p elements which has only one orbit. Then, by the Orbit–Stabilizer theorem we have

$$n! = \#S_n = \#orbit \cdot \#stabiliser = p \cdot k,$$

for some $k \in \mathbb{N}$. In particular, we conclude that p|n!. Since p is prime, if it divides a product, it must divide one of the factors. But since p > n all the factors in $n! = n \cdot (n-1) \cdot (n-2) \cdots 2 \cdot 1$ are smaller than p and hence are not divisible by p.

This contradiction proves that there is more than one orbit.

b) An action of \mathbb{Z}_p on a set with *n*-elements corresponds to a group homomorphism $\varphi : \mathbb{Z}_p \longrightarrow S_n$. Since every element of \mathbb{Z}_p different of the identity is a generator of the group either the kernel of the map is trivial or it is the whole of \mathbb{Z}_p . In the second case the action is trivial. So we have to show that the first case can not happen. If the kernel of φ is trivial, the φ is an injection of \mathbb{Z}_p into S_n , hence $\mathbb{Z}_p = im(\varphi) < S_n$. Since the order of any subgroup must divide the order of the group we see that p|n!, but since n < p this can not happen.

7) Let G be a group, S a set and $\varphi: G \times S \longrightarrow S$ be an action. Let H be the stabilizer of a point $s \in S$. Show that the stabilizer of $g \cdot s$ is gHg^{-1} . Conclude that H is a normal subgroup of G if and only if it is the stabilizer of all the points in the orbit of s. (1.5 pt)

Solution. Let J be the stabiliser of $g \cdot s$. Then for $j \in J$ we have

$$j \cdot g \cdot s = g \cdot s \Rightarrow (g^{-1}jg) \cdot s = s$$

Therefore $g^{-1}jg \in H$ for all $j \in J$ hence $g^{-1}Jg \subset H$ or, equivalently, $J \subset gHg^{-1}$. Conversely, given $j \in gHg^{-1}$, there is $h \in H$ such that $j = ghg^{-1}$ and

$$j \cdot g \cdots = ghg^{-1}g \cdot s = gh \cdot s = gs$$

so $j \in J$, showing the reverse inclusion.

Therefore $J = gHg^{-1}$.

Points in the orbit of s are of the form $g \cdot s$ for some $g \in G$ and by the above the stabiliser of such point is gHg^{-1} . Therefore H is the stabilizer of all points in the orbit of s if and only if $H = gHg^{-1}$ for all $g \in G$ which happens if and only if H is normal.