Group theory - Exam 1

Notes:

1. Write your name and student number ${ }^{* *}$ clearly** on each page of written solutions you hand in.

2. You can give solutions in English or Dutch.
3. You are expected to explain your answers.
4. You are not allowed to consult any text book, class notes, colleagues, calculators, computers etc.
5. Advice: read all questions first, then start solving the ones you already know how to solve or have good idea on the steps to find a solution. After you have finished the ones you found easier, tackle the harder ones.
1) a) Let α, β be elements of the symmetric group S_{n}. Show that if α and β commute and $i \in\{1,2, \cdots, n\}$ is fixed by α, i.e., $\alpha(i)=i$, then $\beta(i)$ is also fixed by α. (0.5 pt)
b) Show that, for $n>2, Z_{S_{n}}=\{e\}$. (0.5 pt)
c) Show that, for $n>3, Z_{A_{n}}=\{e\}$. (0.5 pt)
d) What is the center of A_{3} ? (0.5 pt)

Solution. a) Since $\alpha(i)=i$, we have that

$$
\alpha(\beta(i))=\beta(\alpha(i))=\beta(i)
$$

b)Let $\beta \in Z_{S_{n}}$ and let $\alpha_{i}=(12 \cdots i-1 i+1 \cdots n)$. Then, since β is in the center, it commutes with α_{i}, hence from the first part

$$
\alpha_{i}(\beta(i))=\beta(i)
$$

But notice that for $n>2$ the only number fixed by α_{i} is i. Since $\beta(i)$ is fixed by α_{i} we have $\beta(i)=i$. Since this is true for all i, we get $\beta=e$ and hence the center of S_{n} is trivial.
c) Let $\beta \in Z_{A_{n}}$. If n is even the permutations α_{i} used above belong to A_{n} and hence the same argument used above shows that $\beta=e$ and hence $Z_{A_{n}}=\{e\}$ for n even and greater than 2 .

For n odd, consider $\alpha_{i j}=(12 \cdots i-1 i+1 \cdots j-1 j+1 \cdots n-1 n)$. Then $\alpha(i)=i, \alpha(j)=j$ and these are the only two points fixed by $\alpha_{i j}$ if $n>3$. Using item (a) of this exercise we see that

$$
\alpha(\beta(i))=\beta(i)
$$

so $\beta(i)$ is fixed by $\alpha_{i j}$, hence $\beta(i)=i$ or $\beta(i)=j$.
Taing $k \neq i, j$, since β commutes also with $\alpha_{i k}=(12 \cdots i-1 i+1 \cdots k-1 k+1 \cdots n-1 n)$ the same argument used above show that $\beta(i)=i$ or $\beta(i)=k$.

Since $(\beta(i)=i$ or $\beta(i)=j)$ and $(\beta(i)=i$ or $\beta(i)=k)$ must be both true, we conclude that $\beta(i)=i$ for all i and hence $\beta=e$, showing that $Z_{A_{n}}=\{e\}$ for n odd.
d) A_{3} is a group with 3 elements, hence isomorphic to \mathbb{Z}_{3} which is Abelian, so $Z_{A_{3}}=A_{3}=Z_{3}$.
2) For each of the lists below, determine which groups are isomorphic:
a) $\mathbb{Z}_{4} \times \mathbb{Z}_{9}, \mathbb{Z}_{6} \times \mathbb{Z}_{6}, \mathbb{Z}_{36}$ and $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3}$. (0.75 pt)
b) $A_{5} \times \mathbb{Z}_{2}, S_{5}, D_{30}, D_{15} \times \mathbb{Z}_{2}$. $(0.75 \mathrm{pt})$

Solution. a) We know from lectures and the book that $\mathbb{Z}_{m} \times \mathbb{Z}_{n} \cong \mathbb{Z}_{m n}$ if and only if m and n are coprime. Hence

$$
\begin{gathered}
\left(\mathbb{Z}_{2} \times \mathbb{Z}_{3}\right) \times\left(\mathbb{Z}_{2} \times \mathbb{Z}_{3}\right) \cong \mathbb{Z}_{6} \times \mathbb{Z}_{6} \\
\mathbb{Z}_{9} \times \mathbb{Z}_{4} \cong \mathbb{Z}_{36}
\end{gathered}
$$

and

$$
\mathbb{Z}_{6} \times \mathbb{Z}_{6} \not \neq \mathbb{Z}_{36}
$$

b) $\# D_{15} \times \mathbb{Z}_{2}=\# D_{30}=60$ and $\# A_{5} \times \mathbb{Z}_{2}=\# S_{5}=5!=120$, so the first two groups can not be isomorphic to the last two.

From lectures we know that $D_{n} \times \mathbb{Z}_{2} \cong D_{2 n}$ if and only if n is odd, therefore $D_{15} \times \mathbb{Z}_{2} \cong D_{30}$.
From question 1 (and from lectures) we know that $Z_{S_{n}}=\{e\}$ for $n>2$ and $Z_{A_{n}}=\{e\}$ for $n>3$, hence

$$
Z_{A_{5} \times \mathbb{Z}_{2}}=Z_{A_{5}} \times Z_{\mathbb{Z}_{2}}=\mathbb{Z}_{2} \neq Z_{S_{5}}
$$

Therefore $A_{5} \times \mathbb{Z}_{2}$ is not isomorphic to S_{5}.
3) Let G be the group generated by

$$
G=\left\langle a, b \mid a^{n}=b^{m}=e ; b a b^{-1}=a^{l}\right\rangle
$$

Show that if $l^{m} \neq 1 \bmod n$ then the order of a is less than n. (1 pt)

Solution. Since b has order m, we have the following equality

$$
a=b^{m} a b^{-m}=b^{m-1}\left(b a b^{-1}\right) b^{-m+1}=b^{m-1} a^{l} b^{-m+1}=\left(b^{m-1} a b^{-m+1}\right)^{l}=\cdots=a^{l^{m}}
$$

Hence $a^{l^{m}-1}=e$ and therefore the order of a must divide $l^{m}-1$. If $l^{m}-1 \neq 0 \operatorname{modn}$ then a does not have order n. since $a^{n}=e$, the order of a must be a divisor of a, hence the order of a is less than n.
4) Given a group G, a subgroup $H<G$ is called proper if H is neither $\{e\}$ nor G. Find a group which is isomorphic to one of its proper subgroups. (Hint: this is only possible for infinite groups). (1 pt)

Let $G=\mathbb{Z}$ and consider $H<\mathbb{Z}$ the subgroup formed by the even numbers. Then

$$
\varphi: \mathbb{Z} \longrightarrow \mathbb{Z}_{\text {even }}, \quad \varphi(n)=2 n
$$

is a group isomorphism between \mathbb{Z} and $\mathbb{Z}_{\text {even }}$.
Indeed, this map is clearly surjective. Computing $\varphi(m+n)=2 m+2 n=\varphi(m)+\varphi(n)$ we see that φ is a group homomorphism and finally if $\varphi(n)=0$ then $2 n=0$ and hence $n=0$, showing that φ is injective.
5) Let G be a group. Then the conjugacy class of an element $x \in G$ is the set

$$
\mathcal{C}_{x}=\left\{g x g^{-1}: g \in G\right\}
$$

and the centralizer of x, denoted by $C(x)$ is the set of all elements in G which commute with x, i.e.,

$$
C(x)=\left\{g \in G: g x g^{-1}=x\right\}
$$

a) Show that the centralizer of x is a subgroup of G. (0.75 pt)
b) Show that, if G is finite, then index of $C(x)$ in G, i.e., the number of elements in $G / C(x)$, is the number of elements in \mathcal{C}_{x}, the conjugacy class of $x .(0.75 \mathrm{pt})$.

Solution. G acts on itself by conjugation. For a given $x \in G$, the stabilizer of x is precisely $C(x)$ defined above, hence $C(x)$ is a subgroup of G (all stabilizers are subgroups).

Further, the orbit of x by this action is the set \mathcal{C}_{x}, so, by the Orbit-Stabilizer theorem,

$$
\# G=\# C(x) \cdot \mathcal{C}_{x}
$$

or equivalently, $\#(G / C(x))=\# \mathcal{C}_{x}$.

6 a) Show that if S_{n} acts on a set with p elements and $p>n$ is a prime number then the action has more than one orbit (0.75 pt).
b) Let p be a prime. Show that the only action of \mathbb{Z}_{p} on a set with $n<p$ elements is the trivial one (0.75 pt).

Solution. a) Assume that there is an action of S_{n} on a set with p elements which has only one orbit. Then, by the Orbit-Stabilizer theorem we have

$$
n!=\# S_{n}=\# \text { orbit } \cdot \# \text { stabiliser }=p \cdot k
$$

for some $k \in \mathbb{N}$. In particular, we conclude that $p \mid n!$. Since p is prime, if it divides a product, it must divide one of the factors. But since $p>n$ all the factors in $n!=n \cdot(n-1) \cdot(n-2) \cdots 2 \cdot 1$ are smaller than p and hence are not divisible by p.

This contradiction proves that there is more than one orbit.
b) An action of \mathbb{Z}_{p} on a set with n-elements corresponds to a group homomorphism $\varphi: \mathbb{Z}_{p} \longrightarrow S_{n}$. Since every element of \mathbb{Z}_{p} different of the identity is a generator of the group either the kernel of the map is trivial or it is the whole of \mathbb{Z}_{p}. In the second case the action is trivial. So we have to show that the first case can not happen. If the kernel of φ is trivial, the φ is an injection of \mathbb{Z}_{p} into S_{n}, hence $\mathbb{Z}_{p}=\operatorname{im}(\varphi)<S_{n}$. Since the order of any subgroup must divide the order of the group we see that $p \mid n!$, but sincen $<p$ this can not happen.
7) Let G be a group, S a set and $\varphi: G \times S \longrightarrow S$ be an action. Let H be the stabilizer of a point $s \in S$. Show that the stabilizer of $g \cdot s$ is $g H^{-1}$. Conclude that H is a normal subgroup of G if and only if it is the stabilizer of all the points in the orbit of s. (1.5 pt)

Solution. Let J be the stabiliser of $g \cdot s$. Then for $j \in J$ we have

$$
j \cdot g \cdot s=g \cdot s \Rightarrow\left(g^{-1} j g\right) \cdot s=s
$$

Therefore $g^{-1} j g \in H$ for all $j \in J$ hence $g^{-1} J g \subset H$ or, equivalently, $J \subset g H g^{-1}$.
Conversely, given $j \in g H g^{-1}$, there is $h \in H$ such that $j=g h g^{-1}$ and

$$
j \cdot g \cdots=g h g^{-1} g \cdot s=g h \cdot s=g s
$$

so $j \in J$, showing the reverse inclusion.
Therefore $J=g H^{-1}$.
Points in the orbit of s are of the form $g \cdot s$ for some $g \in G$ and by the above the stabiliser of such point is $g H^{-1}$. Therefore H is the stabilizer of all points in the orbit of s if and only if $H=g H g^{-1}$ for all $g \in G$ which happens if and only if H is normal.

