Group theory — Mock Exam 2

Notes:

1. Write your name and student number **clearly** on each page of written solutions you
hand in.

2. You can give solutions in English or Dutch.

You are expected to explain your answers.
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You are not allowed to consult any text book, class notes, colleagues, calculators, computers etc.

5. Advice: read all questions first, then start solving the ones you already know how to solve or have
good idea on the steps to find a solution. After you have finished the ones you found easier, tackle
the harder ones.

1) Is (R, +) isomorphic to (R — {0},-)?

No. R— {0} has an element of order 2, namely, —1, while R does not have any element of order 2. Indeed,
if x € R is such that x + 2 = 0 then = = 0.

2) Show that if a finite group G has only two conjugacy classes, then G = Z,.

Let #G = n. Since G is a group, it acts on itself by conjugation and the orbits of this action are the
conjugacy classes. Since {e} is always a conjugacy class of its own and G has only two conjugacy classes,
we conclude that G — {e} is the other class, which therefore has n — 1 elements.

By the Orbit-Stabilizer theorem, the number of elements in a conjugacy class (orbit of the action by
conjugation) must divide divide the order of the group, i.e., n — 1 divides n. This is only possible for
n = 2, hence G has two elements and therefore is isomorphic to Zsg, the only group of order two.

3) Let H be a subgroup of finite index of an infinite group G. Prove that G has a normal subgroup of
finite index contained in H.

Let n be in index of H on G and let G act on the set of left H-cosets, G/H. This action corresponds to
a group homomorphism ¢ : G — S,,. Let Z < S, be the image of G by this group homomorphism and
K <1 G be its kernel. Then, according to the isomorphism theorem, G/K =7 < S,,. In particular #G/K
is finite, hence K has finite index. Further, K, being the formed by the elements which act trivially, is
the intersection of the stabilizers of all points in G/H. Since H is the stabilizer of H € G/H, we see that
K < H. Therefore K is a normal subgroup of finite index contained in H.

4) Given a group G, a subgroup H is a mazimal normal subgroup if

i) H is normal and



i1) if K < G is a normal subgroup and H < K then K = H or K = G, i.e., the only normal subgroup
of G which contains H as a proper subgroup is G.

Show that a normal subgroup H is maximal normal subgroup if and only if G/H is a simple group.

We will start proving that if H is not maximal normal, then G/H is not simple. So, assume H is a normal
subgroup which is not maximal, that is, there is K << G such that H S K S G. Let 7 : G — G/H be
the quotient map. Then, since K is a subgroup of G, 7(K) is a subgroup of G/H whose generic element
is of the form kH for k € K. Hence, given gH € G/H and kH € 7(K) , we have

gH -kH -g 'H = gkg 'H € KH = n(K),

where we have used in the step the fact that K is normal. Therefore we conclude that 7(K) is a normal
subgroup of G/H. Since H £ K < G, this is a nontrivial subgroup of G/H, showing that G/H is not
simple.

Now we prove the converse. Assume that G/H is not simple and let K be a nontrivial normal subgroup
of G/H. Now consider the set K = 7~ '(K) C G. We claim that this set is a normal subgroup of G which
contains H.

1. H C K: Indeed, since K is a subgroup of G/H, eH € K and hence H = 7~ (eH) C 7~ Y(K) = K.

2. K is a subgroup: Indeed, from (i), we have that e € H C K. Further, given ky, ks € K(kiky ') =
7(k1)(m(k2))~! € K, since for any element k € K, 7(k) € K and K is a subgroup. Therefore
kiky' € 771(K) and K is a subgroup.

3. K is normal: Indeed, for g € G and k € K, we have that w(gkg™") = w(g)m(k)7(9)~" € K, since
n(k) € K and K is normal. Therefore gkg=* € 7= 1(K) = K for every k € K and every g € G,
showing that K is normal.

4. Since {eH} S K3 G/H, we also get HS K S G.

Therefore we have seen that if G/H is not simple, then H is not a maximal normal subgroup.

5) Let G be a finite group and let p be the smallest prime which divides the order of G. Show that is
H < G is a subgroup of index p then H is normal.

Consider G/H, the set of left H-cosets, so that G/H = p. Then G acts on G/H by left multiplication
and this action corresponds to a group homomorphism ¢ : G — Sj,.
By Lagrange’s theorem and the first isomorphism theorem, we have

#G = # ker(p)#Im(p),

so #Im(p) must divide #G. But also, Im(¢) < S,, so #Im(yp) must divide p!. Since p is the smallest
prime dividing #G, we see that the only common factor between #G and p! is p, so #Im(y) can only be
either 1 or p. Since the group action is nontrivial, #Im(¢) = p and hence # ker(yp) = #G/p.

Now observe that H is the stabilizer of the point eH € G/H, and the kernel of ¢ made by the group
elements which fix all points in G/H, so ker(¢) < H. But by the argument above H and ker(y) have the
same number of elements, so they must coincide, i.e., H = ker(yp) and since H is the kernel of a group
homomorphism, it is normal.

6) Show that a group or order 2 -3 -5 - 292 is not simple.



Let nog be the number of 29-Sylows. By Sylow’s theorem, nog must divide 2 - 3 -5 and must be equal to
1 mod 29. There are only two numbers which satisfy these conditions, namely 1 and 30. If nog = 1, then
the 29-Sylow is a normal subgroup and hence G is not simple.

Now consider the case nog = 30. We let G act on the set of 29-Sylows by conjugation. By Sylow’s
theorem, this is a nontrivial action, hence it corresponds to a nontrivial group homomorphism

(pZG—>Sgo.

We prove now that this homomorphism has a nontrivial kernel and hence G is not simple. Since the action
is nontrivial, ker(p) # G. If ker(¢) = {e} then by the isomorphism theorem, G would be isomorphic to
its image, a subgroup of S3q3. By Langrange, the order of G would divide the order of S3p. But 30! is not
divisible by 292, while the order of G is. Therefore it can not be that ker(¢) = {e} and hence ker(y) is a
nontrivial normal subgroup of G.

7) Show that in a group of order 5-7-13 the 7-Sylow and the 13-Sylow are normal. Show that such group
has nontrivial center.

The number of 7-Sylows, n; must divide 5-13 and be equal to 1 modulo 7. The only possibility is ny = 1.
Similarly, ni3 must divide 5 - 7 and be 1 mod 13. The only possibility again is n13 = 1 So both the 7 and
the 13 Sylows are normal.

Now let H be the 13-Sylow. Since H has prime order, H is cyclic. Let h be a generator for H. Since
H is normal, for any ¢ € G we have ghg~! € H. Since h is a generator for H, there is n such that
ghg™! = h™. Let m be the order of g. Since the order of any element divides the order of the group, we
have that m can only be one of the following numbers:

possible values of m : 1,5,7,13,5-7,5-13,7-13,5-7-13. (1)

Further, we have
h=gm™hg~t=h"".

Hence n™ = 1 mod 13. And, thinking of n as element of the group Z;3 — {0}, we conclude that the order
of n divides m. Since the order of n must divide 12, the order of Z;3 — {0}, the order of n can be one of
the following numbers: 1, 2, 3, 4, 6 or 12. Since, except for 1, the numbers in this list do not divide any
of the numbers in the list (1), we see that n must have order 1 and hence n = 1 and ghg~* = h for all
g € G, showing that h € Zg and therefore H € Z.

8) Show that every element in SO(3) corresponds to rotation around an axis in R®.

Let A be a matrix in SO(3). Then A the characteristic polynomial of A is a cubic and therefore has at
least one real root, i.e., A has at least one real eigenvalue, A. Since A is orthogonal, it preserves lengths,
hence A\ = +1. Further either A has other two real eigenvalues or complex conjugate eigenvalues: e and
e 0.

In the first case all real eigenvalues must be +1 and their product must be 1, the determinant of A.
This means that at least one of them must be 1 and the other two may be either both 1 or both —1. If
they are both 1, A is the identity matrix which is a rotation of 0 degrees around any axis. If they are
both —1, then A fixes the axis generates by the l-eigenvector and rotates its orthogonal complement by
7 (multiplicaiton by —1).

In the second case, the determinant of A is 1 = \e?e™% = ), so the eigenvalue must be 1 and the
matrix A fixes the axis generated by the +1-eigenvector and rotates its orthogonal complement by 6, since

in the orthogonal complement of the +1-eigenspace A is the orthogonal matrix with eigenvalues e’ and
e .



