
Group theory – Mock Exam 2

Notes:

1. Write your name and student number **clearly** on each page of written solutions you
hand in.

2. You can give solutions in English or Dutch.

3. You are expected to explain your answers.

4. You are not allowed to consult any text book, class notes, colleagues, calculators, computers etc.

5. Advice: read all questions first, then start solving the ones you already know how to solve or have
good idea on the steps to find a solution. After you have finished the ones you found easier, tackle
the harder ones.

1) Is (R,+) isomorphic to (R− {0}, ·)?

No. R−{0} has an element of order 2, namely, −1, while R does not have any element of order 2. Indeed,
if x ∈ R is such that x+ x = 0 then x = 0.

2) Show that if a finite group G has only two conjugacy classes, then G ∼= Z2.

Let #G = n. Since G is a group, it acts on itself by conjugation and the orbits of this action are the
conjugacy classes. Since {e} is always a conjugacy class of its own and G has only two conjugacy classes,
we conclude that G− {e} is the other class, which therefore has n− 1 elements.

By the Orbit-Stabilizer theorem, the number of elements in a conjugacy class (orbit of the action by
conjugation) must divide divide the order of the group, i.e., n − 1 divides n. This is only possible for
n = 2, hence G has two elements and therefore is isomorphic to Z2, the only group of order two.

3) Let H be a subgroup of finite index of an infinite group G. Prove that G has a normal subgroup of
finite index contained in H.

Let n be in index of H on G and let G act on the set of left H-cosets, G/H. This action corresponds to
a group homomorphism φ : G −→ Sn. Let I < Sn be the image of G by this group homomorphism and
K CG be its kernel. Then, according to the isomorphism theorem, G/K ∼= I < Sn. In particular #G/K
is finite, hence K has finite index. Further, K, being the formed by the elements which act trivially, is
the intersection of the stabilizers of all points in G/H. Since H is the stabilizer of H ∈ G/H, we see that
K < H. Therefore K is a normal subgroup of finite index contained in H.

4) Given a group G, a subgroup H is a maximal normal subgroup if

i ) H is normal and



ii ) if K < G is a normal subgroup and H < K then K = H or K = G, i.e., the only normal subgroup
of G which contains H as a proper subgroup is G.

Show that a normal subgroup H is maximal normal subgroup if and only if G/H is a simple group.

We will start proving that if H is not maximal normal, then G/H is not simple. So, assume H is a normal
subgroup which is not maximal, that is, there is K C G such that H � K � G. Let π : G −→ G/H be
the quotient map. Then, since K is a subgroup of G, π(K) is a subgroup of G/H whose generic element
is of the form kH for k ∈ K. Hence, given gH ∈ G/H and kH ∈ π(K) , we have

gH · kH · g−1H = gkg−1H ∈ KH = π(K),

where we have used in the step the fact that K is normal. Therefore we conclude that π(K) is a normal
subgroup of G/H. Since H � K � G, this is a nontrivial subgroup of G/H, showing that G/H is not
simple.

Now we prove the converse. Assume that G/H is not simple and let K̃ be a nontrivial normal subgroup
of G/H. Now consider the set K = π−1(K̃) ⊂ G. We claim that this set is a normal subgroup of G which
contains H.

1. H ⊂ K: Indeed, since K̃ is a subgroup of G/H, eH ∈ K̃ and hence H = π−1(eH) ⊂ π−1(K̃) = K.

2. K is a subgroup: Indeed, from (i), we have that e ∈ H ⊂ K. Further, given k1, k2 ∈ K,π(k1k
−1
2 ) =

π(k1)(π(k2))−1 ∈ K̃, since for any element k ∈ K, π(k) ∈ K̃ and K̃ is a subgroup. Therefore
k1k

−1
2 ∈ π−1(K) and K is a subgroup.

3. K is normal: Indeed, for g ∈ G and k ∈ K, we have that π(gkg−1) = π(g)π(k)π(g)−1 ∈ K̃, since
π(k) ∈ K̃ and K̃ is normal. Therefore gkg−1 ∈ π−1(K̃) = K for every k ∈ K and every g ∈ G,
showing that K is normal.

4. Since {eH} � K̃ � G/H, we also get H � K � G.

Therefore we have seen that if G/H is not simple, then H is not a maximal normal subgroup.

5) Let G be a finite group and let p be the smallest prime which divides the order of G. Show that is
H < G is a subgroup of index p then H is normal.

Consider G/H, the set of left H-cosets, so that G/H = p. Then G acts on G/H by left multiplication
and this action corresponds to a group homomorphism ϕ : G −→ Sp.

By Lagrange’s theorem and the first isomorphism theorem, we have

#G = # ker(ϕ)#Im(ϕ),

so #Im(ϕ) must divide #G. But also, Im(ϕ) < Sp, so #Im(ϕ) must divide p!. Since p is the smallest
prime dividing #G, we see that the only common factor between #G and p! is p, so #Im(ϕ) can only be
either 1 or p. Since the group action is nontrivial, #Im(ϕ) = p and hence # ker(ϕ) = #G/p.

Now observe that H is the stabilizer of the point eH ∈ G/H, and the kernel of ϕ made by the group
elements which fix all points in G/H, so ker(ϕ) < H. But by the argument above H and ker(ϕ) have the
same number of elements, so they must coincide, i.e., H = ker(ϕ) and since H is the kernel of a group
homomorphism, it is normal.

6) Show that a group or order 2 · 3 · 5 · 292 is not simple.



Let n29 be the number of 29-Sylows. By Sylow’s theorem, n29 must divide 2 · 3 · 5 and must be equal to
1 mod 29. There are only two numbers which satisfy these conditions, namely 1 and 30. If n29 = 1, then
the 29-Sylow is a normal subgroup and hence G is not simple.

Now consider the case n29 = 30. We let G act on the set of 29-Sylows by conjugation. By Sylow’s
theorem, this is a nontrivial action, hence it corresponds to a nontrivial group homomorphism

ϕ : G −→ S30.

We prove now that this homomorphism has a nontrivial kernel and hence G is not simple. Since the action
is nontrivial, ker(ϕ) 6= G. If ker(ϕ) = {e} then by the isomorphism theorem, G would be isomorphic to
its image, a subgroup of S30. By Langrange, the order of G would divide the order of S30. But 30! is not
divisible by 292, while the order of G is. Therefore it can not be that ker(ϕ) = {e} and hence ker(ϕ) is a
nontrivial normal subgroup of G.

7) Show that in a group of order 5 · 7 · 13 the 7-Sylow and the 13-Sylow are normal. Show that such group
has nontrivial center.

The number of 7-Sylows, n7 must divide 5 · 13 and be equal to 1 modulo 7. The only possibility is n7 = 1.
Similarly, n13 must divide 5 · 7 and be 1 mod 13. The only possibility again is n13 = 1 So both the 7 and
the 13 Sylows are normal.

Now let H be the 13-Sylow. Since H has prime order, H is cyclic. Let h be a generator for H. Since
H is normal, for any g ∈ G we have ghg−1 ∈ H. Since h is a generator for H, there is n such that
ghg−1 = hn. Let m be the order of g. Since the order of any element divides the order of the group, we
have that m can only be one of the following numbers:

possible values of m : 1, 5, 7, 13, 5 · 7, 5 · 13, 7 · 13, 5 · 7 · 13. (1)

Further, we have
h = gmhg−1 = hn

m

.

Hence nm = 1 mod 13. And, thinking of n as element of the group Z13 − {0}, we conclude that the order
of n divides m. Since the order of n must divide 12, the order of Z13 − {0}, the order of n can be one of
the following numbers: 1, 2, 3, 4, 6 or 12. Since, except for 1, the numbers in this list do not divide any
of the numbers in the list (1), we see that n must have order 1 and hence n = 1 and ghg−1 = h for all
g ∈ G, showing that h ∈ ZG and therefore H ∈ ZG.

8) Show that every element in SO(3) corresponds to rotation around an axis in R3.

Let A be a matrix in SO(3). Then A the characteristic polynomial of A is a cubic and therefore has at
least one real root, i.e., A has at least one real eigenvalue, λ. Since A is orthogonal, it preserves lengths,
hence λ = ±1. Further either A has other two real eigenvalues or complex conjugate eigenvalues: eiθ and
e−iθ.

In the first case all real eigenvalues must be ±1 and their product must be 1, the determinant of A.
This means that at least one of them must be 1 and the other two may be either both 1 or both −1. If
they are both 1, A is the identity matrix which is a rotation of 0 degrees around any axis. If they are
both −1, then A fixes the axis generates by the 1-eigenvector and rotates its orthogonal complement by
π (multiplicaiton by −1).

In the second case, the determinant of A is 1 = λeiθe−iθ = λ, so the eigenvalue must be 1 and the
matrix A fixes the axis generated by the +1-eigenvector and rotates its orthogonal complement by θ, since
in the orthogonal complement of the +1-eigenspace A is the orthogonal matrix with eigenvalues eiθ and
e−iθ.


