Group theory - Mock Exam 2

Notes:

1. Write your name and student number ${ }^{* *}$ clearly** on each page of written solutions you hand in.

2. You can give solutions in English or Dutch.
3. You are expected to explain your answers.
4. You are not allowed to consult any text book, class notes, colleagues, calculators, computers etc.
5. Advice: read all questions first, then start solving the ones you already know how to solve or have good idea on the steps to find a solution. After you have finished the ones you found easier, tackle the harder ones.
1) Is $(\mathbb{R},+)$ isomorphic to $(\mathbb{R}-\{0\}, \cdot)$?

No. $\mathbb{R}-\{0\}$ has an element of order 2 , namely, -1 , while \mathbb{R} does not have any element of order 2 . Indeed, if $x \in \mathbb{R}$ is such that $x+x=0$ then $x=0$.
2) Show that if a finite group G has only two conjugacy classes, then $G \cong \mathbb{Z}_{2}$.

Let $\# G=n$. Since G is a group, it acts on itself by conjugation and the orbits of this action are the conjugacy classes. Since $\{e\}$ is always a conjugacy class of its own and G has only two conjugacy classes, we conclude that $G-\{e\}$ is the other class, which therefore has $n-1$ elements.

By the Orbit-Stabilizer theorem, the number of elements in a conjugacy class (orbit of the action by conjugation) must divide divide the order of the group, i.e., $n-1$ divides n. This is only possible for $n=2$, hence G has two elements and therefore is isomorphic to \mathbb{Z}_{2}, the only group of order two.
3) Let H be a subgroup of finite index of an infinite group G. Prove that G has a normal subgroup of finite index contained in H.

Let n be in index of H on G and let G act on the set of left H-cosets, G / H. This action corresponds to a group homomorphism $\phi: \mathcal{G} \longrightarrow S_{n}$. Let $\mathcal{I}<S_{n}$ be the image of G by this group homomorphism and $K \triangleleft G$ be its kernel. Then, according to the isomorphism theorem, $G / K \cong \mathcal{I}<S_{n}$. In particular $\# G / K$ is finite, hence K has finite index. Further, K, being the formed by the elements which act trivially, is the intersection of the stabilizers of all points in G / H. Since H is the stabilizer of $H \in G / H$, we see that $K<H$. Therefore K is a normal subgroup of finite index contained in H.
4) Given a group G, a subgroup H is a maximal normal subgroup if
i) H is normal and
ii) if $K<G$ is a normal subgroup and $H<K$ then $K=H$ or $K=G$, i.e., the only normal subgroup of G which contains H as a proper subgroup is G.

Show that a normal subgroup H is maximal normal subgroup if and only if G / H is a simple group.
We will start proving that if H is not maximal normal, then G / H is not simple. So, assume H is a normal subgroup which is not maximal, that is, there is $K \triangleleft G$ such that $H \supsetneqq K \supsetneqq G$. Let $\pi: G \longrightarrow G / H$ be the quotient map. Then, since K is a subgroup of $G, \pi(K)$ is a subgroup of G / H whose generic element is of the form $k H$ for $k \in K$. Hence, given $g H \in G / H$ and $k H \in \pi(K)$, we have

$$
g H \cdot k H \cdot g^{-1} H=g k g^{-1} H \in K H=\pi(K)
$$

where we have used in the step the fact that K is normal. Therefore we conclude that $\pi(K)$ is a normal subgroup of G / H. Since $H \supsetneqq K \supsetneqq G$, this is a nontrivial subgroup of G / H, showing that G / H is not simple.

Now we prove the converse. Assume that G / H is not simple and let \tilde{K} be a nontrivial normal subgroup of G / H. Now consider the set $K=\pi^{-1}(\tilde{K}) \subset G$. We claim that this set is a normal subgroup of G which contains H.

1. $H \subset K$: Indeed, since \tilde{K} is a subgroup of $G / H, e H \in \tilde{K}$ and hence $H=\pi^{-1}(e H) \subset \pi^{-1}(\tilde{K})=K$.
2. K is a subgroup: Indeed, from (i), we have that $e \in H \subset K$. Further, given $k_{1}, k_{2} \in K, \pi\left(k_{1} k_{2}^{-1}\right)=$ $\pi\left(k_{1}\right)\left(\pi\left(k_{2}\right)\right)^{-1} \in \tilde{K}$, since for any element $k \in K, \pi(k) \in \tilde{K}$ and \tilde{K} is a subgroup. Therefore $k_{1} k_{2}^{-1} \in \pi^{-1}(K)$ and K is a subgroup.
3. K is normal: Indeed, for $g \in G$ and $k \in K$, we have that $\pi\left(g k g^{-1}\right)=\pi(g) \pi(k) \pi(g)^{-1} \in \tilde{K}$, since $\pi(k) \in \tilde{K}$ and \tilde{K} is normal. Therefore $g k g^{-1} \in \pi^{-1}(\tilde{K})=K$ for every $k \in K$ and every $g \in G$, showing that K is normal.
4. Since $\{e H\} \supsetneqq \tilde{K} \supsetneqq G / H$, we also get $H \supsetneqq K \supsetneqq G$.

Therefore we have seen that if G / H is not simple, then H is not a maximal normal subgroup.
5) Let G be a finite group and let p be the smallest prime which divides the order of G. Show that is $H<G$ is a subgroup of index p then H is normal.

Consider G / H, the set of left H-cosets, so that $G / H=p$. Then G acts on G / H by left multiplication and this action corresponds to a group homomorphism $\varphi: G \longrightarrow S_{p}$.

By Lagrange's theorem and the first isomorphism theorem, we have

$$
\# G=\# \operatorname{ker}(\varphi) \# \operatorname{Im}(\varphi)
$$

so $\# \operatorname{Im}(\varphi)$ must divide $\# G$. But also, $\operatorname{Im}(\varphi)<S_{p}$, so $\# \operatorname{Im}(\varphi)$ must divide p !. Since p is the smallest prime dividing $\# G$, we see that the only common factor between $\# G$ and $p!$ is p, so $\# \operatorname{Im}(\varphi)$ can only be either 1 or p. Since the group action is nontrivial, $\# \operatorname{Im}(\varphi)=p$ and hence $\# \operatorname{ker}(\varphi)=\# G / p$.

Now observe that H is the stabilizer of the point $e H \in G / H$, and the kernel of φ made by the group elements which fix all points in G / H, so $\operatorname{ker}(\varphi)<H$. But by the argument above H and $\operatorname{ker}(\varphi)$ have the same number of elements, so they must coincide, i.e., $H=\operatorname{ker}(\varphi)$ and since H is the kernel of a group homomorphism, it is normal.
6) Show that a group or order $2 \cdot 3 \cdot 5 \cdot 29^{2}$ is not simple.

Let n_{29} be the number of 29-Sylows. By Sylow's theorem, n_{29} must divide $2 \cdot 3 \cdot 5$ and must be equal to $1 \bmod 29$. There are only two numbers which satisfy these conditions, namely 1 and 30 . If $n_{29}=1$, then the 29-Sylow is a normal subgroup and hence G is not simple.

Now consider the case $n_{29}=30$. We let G act on the set of 29 -Sylows by conjugation. By Sylow's theorem, this is a nontrivial action, hence it corresponds to a nontrivial group homomorphism

$$
\varphi: G \longrightarrow S_{30}
$$

We prove now that this homomorphism has a nontrivial kernel and hence G is not simple. Since the action is nontrivial, $\operatorname{ker}(\varphi) \neq G$. If $\operatorname{ker}(\varphi)=\{e\}$ then by the isomorphism theorem, G would be isomorphic to its image, a subgroup of S_{30}. By Langrange, the order of G would divide the order of S_{30}. But 30! is not divisible by 29^{2}, while the order of G is. Therefore it can not be that $\operatorname{ker}(\varphi)=\{e\}$ and hence $\operatorname{ker}(\varphi)$ is a nontrivial normal subgroup of G.
7) Show that in a group of order $5 \cdot 7 \cdot 13$ the 7 -Sylow and the 13 -Sylow are normal. Show that such group has nontrivial center.

The number of 7 -Sylows, n_{7} must divide $5 \cdot 13$ and be equal to 1 modulo 7 . The only possibility is $n_{7}=1$. Similarly, n_{13} must divide $5 \cdot 7$ and be $1 \bmod 13$. The only possibility again is $n_{13}=1$ So both the 7 and the 13 Sylows are normal.

Now let H be the 13-Sylow. Since H has prime order, H is cyclic. Let h be a generator for H. Since H is normal, for any $g \in G$ we have $g h g^{-1} \in H$. Since h is a generator for H, there is n such that $g h g^{-1}=h^{n}$. Let m be the order of g. Since the order of any element divides the order of the group, we have that m can only be one of the following numbers:

$$
\begin{equation*}
\text { possible values of } m: 1,5,7,13,5 \cdot 7,5 \cdot 13,7 \cdot 13,5 \cdot 7 \cdot 13 \tag{1}
\end{equation*}
$$

Further, we have

$$
h=g^{m} h g^{-1}=h^{n^{m}} .
$$

Hence $n^{m}=1 \bmod 13$. And, thinking of n as element of the group $\mathbb{Z}_{13}-\{0\}$, we conclude that the order of n divides m. Since the order of n must divide 12 , the order of $\mathbb{Z}_{13}-\{0\}$, the order of n can be one of the following numbers: $1,2,3,4,6$ or 12 . Since, except for 1 , the numbers in this list do not divide any of the numbers in the list (1), we see that n must have order 1 and hence $n=1$ and $g h g^{-1}=h$ for all $g \in G$, showing that $h \in Z_{G}$ and therefore $H \in Z_{G}$.
8) Show that every element in $S O(3)$ corresponds to rotation around an axis in \mathbb{R}^{3}.

Let A be a matrix in $S O(3)$. Then A the characteristic polynomial of A is a cubic and therefore has at least one real root, i.e., A has at least one real eigenvalue, λ. Since A is orthogonal, it preserves lengths, hence $\lambda= \pm 1$. Further either A has other two real eigenvalues or complex conjugate eigenvalues: $e^{i \theta}$ and $e^{-i \theta}$.

In the first case all real eigenvalues must be ± 1 and their product must be 1 , the determinant of A. This means that at least one of them must be 1 and the other two may be either both 1 or both -1 . If they are both $1, A$ is the identity matrix which is a rotation of 0 degrees around any axis. If they are both -1 , then A fixes the axis generates by the 1-eigenvector and rotates its orthogonal complement by π (multiplicaiton by -1).

In the second case, the determinant of A is $1=\lambda e^{i \theta} e^{-i \theta}=\lambda$, so the eigenvalue must be 1 and the matrix A fixes the axis generated by the +1 -eigenvector and rotates its orthogonal complement by θ, since in the orthogonal complement of the +1 -eigenspace A is the orthogonal matrix with eigenvalues $e^{i \theta}$ and $e^{-i \theta}$.

