Group theory – Sheet 10

Recall Sylow's theorems:

If G is a group of order kp^n where p is a prime number and k and p are coprimes then

- 1. There is a subgroup of G of order p^n ;
- 2. If H_1 and H_2 are subgroups of G of order p^n then there is $g \in G$ such that $gH_1g^{-1} = H_2$;
- 3. The number of subgroups of order p^n is equal to 1 modulo p and divides k.

Exercises

The exercises from the book are all exercises from chapter 20 except exercise 20.14.

1) Let G be a group of order 203 = 7.29. Show that if G has a normal subgroup of order 7 then G is Abelian.

2) Let G be a group of order $351 = 3^3 \cot 13$. Show that one of the Sylow subgroups of G is normal.

3) Let G be a group of order $231 = 3 \cdot 7 \cdot 11$. Show that the 7-Sylow and the 11-Sylow are normal. Show that the 11-Sylow is in the center of G.

4) Let G be a group of order $3^3 \cdot 13^n$ with n > 2. Show that G is not simple.

(Hint: in the case of existence of 27 13-Sylows, consider the action of G on the set of 13-Sylows by conjugation. This action is given by a group homomorphism $\Phi: G \longrightarrow S_{27}$. Use Lagrange and isomorphism theorems to show that this action has nontrivial kernel.)