Group theory - Sheet 12

The exercises from the book are 13.9, 13.10, 13.11, 13.12, 14.11, 14.12.

1) Let \mathbb{H} denote \mathbb{R}^{4} with the quaternion product:

$$
i^{2}=j^{2}=k^{2}=i j k=-1
$$

Given $p=p_{0}+p_{1} i+p_{2} j+p_{3} k$, we let $\bar{p}=p_{0}-p_{1} i-p_{2} j-p_{3} k$ be its quaternionic conjugate.
i) Show that $\overline{p q}=\bar{q} \bar{p}$;
ii) Show that $p \bar{p}=p_{0}^{2}+p_{1}^{2}+p_{2}^{2}+p_{3}^{2}=\|p\|^{2}$. Conclude that

- if $p \neq 0$, then $p^{-1}=\frac{\bar{p}}{\|p\|^{2}}$;
- if $p \in S^{3}$, then $p^{-1}=\bar{p}$;
- if $p \in S^{3}$ is purelly imaginary, then $p^{-1}=-p$, hence there is an S^{2} worth of elements which square to -1 .
- if $a, b \in \mathbb{H}$ and $\langle\cdot, \cdot\rangle$ denotes the Euclidean inner product in \mathbb{R}^{4}, show that

$$
\langle a, b\rangle=\frac{1}{2}(a \bar{b}+b \bar{a})
$$

- let $a, b \in S^{2}$ be purely imaginary quaternions of norm 1 and orthogonal to each other and let $c=a b$. Show that c is a purely imaginary quaternion of length 1 orthogonal to a and b. Further the following identities hold

$$
a^{2}=b^{2}=c^{2}=a b c=-1
$$

2) Define a map $A d: \mathbb{H} \backslash\{0\} \longrightarrow O(4)$ by

$$
q \mapsto A d_{q} \quad A d_{q}(x)=q x q^{-1}
$$

i) Show that $A d_{q}$ is indeed in $O(4)$, i.e., $\left\|A d_{q}(x)\right\|=\|x\|$ and that this is a group homomorphism,
ii) Show that the map

$$
\operatorname{det}: \mathbb{H} \backslash\{0\} \longrightarrow \mathbb{R}, \quad q \mapsto \operatorname{det}\left(A d_{q}\right)
$$

is continuous and maps $\mathbb{H} \backslash\{0\}$ into $\{ \pm 1\} \subset \mathbb{R}$. Conclude that $\operatorname{det}\left(A d_{q}\right)=1$ for all $q \in \mathbb{H} \backslash\{0\} ;$
iii) Show that $\mathbb{R} \cdot 1 \subset \mathbb{H}$ is fixed by $A d_{q}$ for all q hence $A d_{q}: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}$, where \mathbb{R}^{3} is the vector space of imaginary quaternions (the orthogonal complement of $\mathbb{R} \cdot 1$);
iv) Given $q \in \mathbb{H}$ a quaternion with nonzero imaginary part, write $q=q_{R}+q_{I}$, where q_{I} is a real number and q_{I} is purely imaginary. Let $a=\frac{q_{I}}{\left\|q_{I}\right\|}$ so that $q=q_{R}+\left\|q_{I}\right\| a=\|q\|(\cos (\theta)+a \sin (\theta))=\|q\| e^{a \theta}$ where a is an imaginary quaternion of norm 1 and θ in an appropriate angle.
Show that $A d_{q}(a)=a$ and that in the plane in \mathbb{R}^{3} orthogonal to $a A d_{q}$ corresponds to rotation by 2θ. Conclude that $A d: \mathbb{H} \longrightarrow S O(3)$ is surjective.
v) Compute the kernel of $A d$ and conclude that $\mathbb{H} \backslash\{0\} / \mathbb{R} \backslash\{0\} \cong S O(3)$;
vi) Show that $S^{3} / \mathbb{Z}_{2} \cong \mathbb{H} \backslash\{0\} / \mathbb{R} \backslash\{0\}$.
3) Consider S^{3} with the group structure it inherits from \mathbb{H} and define a map

$$
\varphi: S^{3} \times S^{3} \longrightarrow O(4) \quad \varphi(p, q)(x)=p x q^{-1}
$$

i) Show that φ is indeed a map into $O(4)$. Show that φ is a group homomorphism and that its kernel is isomorphic to \mathbb{Z}_{2};
ii) Show that

$$
\operatorname{det} \circ \varphi: S^{3} \times S^{3} \longrightarrow \mathbb{R}, \quad(p, q) \mapsto \operatorname{det}(\varphi(p, q))
$$

is continuous and takes values in $\{ \pm 1\}$ hence it is constant an equal to 1 . Therefore $\varphi: S^{3} \times S^{3} \longrightarrow$ $S O(4)$.
iii) Show that φ is surjective and conclude that $S O(4) \cong S^{3} \times S^{3} / \mathbb{Z}_{2}$. Hint: Observe that for $A \in S O(4)$, if $\tilde{p}=A(1)$, then $\tilde{p}^{-1} \circ A \in S O(4)$ and $\tilde{p}^{-1} A(1)=1$. Then use the previous exercise.

