Group theory - Sheet 8

The exercises from the book are $15.2,15.5,15.6,15.7,15.8,15.11,15.12,15.14,15.15,15.16$.
15.1) Let $H, K<G$. Show that the set

$$
H K=\{h \cdot k \mid h \in H \text { and } k \in K\}
$$

is a subgroup if and only if $H K=K H$.
Conclude that if K is normal, and $H<G$ then $H K$ is a subgroup of G.
2) (Upper central series) Given a group G, let $Z_{0}=\{e\}$ and define inductively

$$
Z_{i}=\left\{g \in G: g h g^{-1} h^{-1} \in Z_{i-1}, \quad \text { for all } h \in G\right\}
$$

1. Show that Z_{1} is the center of G, that $Z_{i} \subset Z_{i+1}$ and that Z_{i} is a normal subgroup of G for every i. Finally, Show that Z_{i+1} / Z_{i} is the center of G / Z_{i}.

Remark: The series

$$
\{e\} \subset Z_{1} \triangleleft Z_{2} \triangleleft \cdots \triangleleft Z_{i} \triangleleft Z_{i+1} \cdots
$$

is called the upper central series.

A group G is called nilpotent if there is an $n \in \mathbb{N}$ for which $Z_{n}=G$. The first n for which this happens is called the nilpotency class of G.
2. Compute the upper central series for G, the group of real upper triangular 3 by 3 matrices whose entries along the diagonal are 1, i.e., the elements in G look like

$$
\left(\begin{array}{ccc}
1 & a_{12} & a_{13} \tag{1}\\
0 & 1 & a_{23} \\
0 & 0 & 1
\end{array}\right)
$$

3. Can you guess what the upper central series is for be the group of real upper triangular n by n matrices whose entries along the diagonal are 1?
4. Show that if the center of G is trivial, then the upper central series is given by $Z_{i}=\{e\}$. Compute the upper central series for D_{7}, D_{28} and D_{8}.
3) (Lower central series) Given a group G, let $G_{0}=G$ and define inductively

$$
G_{i}=\left\langle g h g^{-1} h^{-1}: g \in G_{i-1}, h \in G\right\rangle,
$$

where $\langle\cdot\rangle$ denotes "the group generated by". So, for example, G_{1} is the commutator subgroup of G.

1. (1 pt) Show that $G_{i+1}<G_{i}$. Further, show that G_{i+1} is a normal subgroup of G_{i} and that the quotient G_{i} / G_{i+1} is Abelian.
Remark: The series

$$
G=G_{0} \triangleright G_{1} \cdots \triangleright G_{i} \triangleright G_{i+1} \triangleright \cdots
$$

is called the lower central series.
2. Compute the lower central series for G, the group of real upper triangular 3 by 3 matrices whose entries along the diagonal are 1.
3. Compute the lower central series of D_{7}, D_{28} and D_{8}.
4. Show that if G is nilpotent with nilpotency class n, then $G_{n}=\{e\}$. Further, if there is an n for which $G_{n}=\{e\}$, then G is nilpotent.

