Differentiable manifolds – sheet 1

Exercise 1 (The birth of long exact sequences). A cochain complex is a collection, U, of Abelian groups U^k , $k \ge 0$, together with a coboundary operator, $\partial_U : U^k \longrightarrow U^{k+1}$ which is a group homomorphism for all k satisfying $\partial_U^2 = 0$. A cocycle is an element in the kernel of the ∂_U and a coboundary is an element in the image. We define cohomology as usual, e.g.,

$$H^{k}(U) = \frac{\ker(\partial_{U} : U^{k} \longrightarrow U^{k+1})}{\operatorname{im}(\partial_{U} : U^{k-1} \longrightarrow U^{k})}$$

Below we let (U, ∂_U) , (V, ∂_V) and (W, ∂_W) be cochain complexes.

1. Let $f: U \longrightarrow V$ be a group homomorphism (of degree zero), that is $f: U^k \longrightarrow V^k$, is a group homomorphism for all k. Show that if f commutes with the coboundary operators, i.e., the diagram

$$\cdots \xrightarrow{\partial_U} U^k \xrightarrow{\partial_U} U^{k+1} \xrightarrow{\partial_U} \cdots$$
$$\downarrow_f \qquad \qquad \downarrow_f \\ \cdots \xrightarrow{\partial_V} V^k \xrightarrow{\partial_V} V^{k+1} \xrightarrow{\partial_V} \cdots$$

commutes, then f sends coboundaries to coboundaries and cocycles to cocycles. In particular, f induces a map in cohomology:

$$f^*: H^k(U) \longrightarrow H^k(V), \qquad f_*[u] = [f(u)], \quad \text{for all } k.$$

2. Let $f: U \longrightarrow V$ and $g: V \longrightarrow W$ be group homomorphisms (of degree zero) which commute with the coboundary operators. Assume that f is injective, g is surjective and im(f) = ker(g), that is, we have a short exact sequence of cochain complexes

$$0 \longrightarrow U \xrightarrow{f} V \xrightarrow{g} W \longrightarrow 0.$$

Show that the induced maps

$$H^k(U) \stackrel{f^*}{\longrightarrow} H^k(V) \stackrel{g^*}{\longrightarrow} H^k(W)$$

satisfy $\operatorname{im}(f^*) = \operatorname{ker}(g^*)$.

3. Next we try to define a map $\delta : H^k(W) \longrightarrow H^{k+1}(U)$ as follows. Given a cocycle $w \in W^k$ $(\partial_W w = 0)$, let $v \in V^k$ be such that g(v) = w. Then

$$0 = \partial_W w = \partial_W g(v) = g(\partial_V v),$$

that is $\partial_V v \in \ker(g) = \operatorname{im}(f)$, hence there is $u \in U^{k+1}$ such that $f(u) = \partial_V v$. Show that $\partial_U u = 0$ and set $\delta[w] = [u]$. Show that δ is well defined.

4. Show that the sequence

$$\cdots \xrightarrow{\delta} H^k(U) \xrightarrow{f^*} H^k(V) \xrightarrow{g^*} H^k(W) \xrightarrow{\delta} H^{k+1}(U) \xrightarrow{f^*} \cdots$$

is exact at every point, that is, the image and kernel of consecutive maps agree.