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Abstract. We study the (generalized Dolbeault) cohomology of generalized complex manifolds in
4 real dimensions. We show that in 4 real dimensions, the first cohomology around a nondegenerate
type change point is given by holomorphic (1,0) forms defined on the type change locus. We use
this to compute the cohomology of a neighbourhood of a compact component of the type change
locus as well as that of the blow-up of a type change point. Finally, we use these computations to
determine the generalized cohomology of some concrete examples.
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INTRODUCTION

Generalized complex structures, introduced by Hitchin [8] and further developed by
Gualtieri [7], provide a simultaneous generalization of complex and symplectic struc-
tures, are related to Poisson and Dirac geometry [7, 10, 5] and have applications to
string theory as they are a vital ingredient in general solution of the (2,2) supersymmet-
ric σ -model [6, 11].

Geometrically, generalized complex structures share several properties familiar from
complex and symplectic geometry. Particularly relevant for these notes is that a gener-
alized complex structure induces a decomposition of the space of forms similar to the
(p,q) decomposition on a complex manifold and, further, this decomposition provides a
decomposition of the exterior derivative into operators analogous to ∂ and ∂ [7]. There-
fore there is an analogue of Dolbeault cohomology for generalized complex manifolds
which agrees with Dolbeault cohomology of complex manifolds and is isomorphic to
ordinary cohomology of symplectic manifolds [1].

While symplectic and complex manifolds provide examples of generalized complex
manifolds, these are just two ends on an spectrum of generalized complex structures:
pointwise, generalized complex structures are distinguished by their type with symplec-
tic being type zero and complex corresponding to the maximal type. Furthermore, in a
manifold, the type does not need to be constant and can jump up at submanifolds. This
feature of type change was used in [2] and [3] to produce generalized complex structures
on (2n+1)CP2#mCP2, manifolds which do not admit complex or symplectic structures
for n > 1.

In these notes we show how to compute the generalized Dolbeault cohomology of
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these manifolds and prove that it concentrates in middle dimension. As a consequence,
we see that these manifolds satisfy the ∂∂ -lemma. This is done by computing the
cohomology around components of the type change locus as well as the effect of
generalized complex blow-up to cohomology. These computations can be used to study
the cohomology of other type changing generalized complex structures.

1. GENERALIZED COMPLEX STRUCTURES

In this section we recall the definition, basic properties and examples of generalized
complex structures, following [7]. We start with the linear algebra of a generalized
complex structure.

1.1. Linear algebra

For any vector space V , the sum V ⊕V ∗ has a natural symmetric pairing

〈X +ξ ,Y +η〉= η(X)+ξ (Y )
2

.

A (linear) generalized complex structure on V is a linear complex structure J on V⊕V ∗

orthogonal with respect to the natural pairing. A linear generalized complex structure,
J , splits the complexification VC⊕V ∗C into its ±i-eigenspaces. The +i-eigenspace of
J is a maximal isotropic subspace L⊂VC⊕V ∗C satisfying

L∩L = {0}. (1.1)

Given any such subspace, one can define a generalized complex structure by declaring
it to be linear, equal to +i on L and −i on L. Hence generalized complex structures on V
are equivalent to maximal isotropic subspaces L⊂VC⊕V ∗C satisfying (1.1).

Another description of generalized complex structures comes from the space of
spinors for V⊕V ∗. The space of forms ∧•V ∗ is naturally the space of spinors for V⊕V ∗,
since the action of X +ξ ∈V ⊕V ∗ on a form ρ given by

(X +ξ ) ·ρ = iX ρ +ξ ∧ρ

extends to an action of the Clifford algebra of V ⊕V ∗ on ∧•V ∗. Observe that given a
form ρ ∈ ∧•V ∗C, the subspace

Lρ := {v ∈VC⊕V ∗C : v ·ρ = 0} ⊂VC⊕V ∗C

is always an isotropic subspace which depends only on the line generated by ρ and not
ρ itself. The condition that Lρ is maximal isotropic translates into algebraic properties
of ρ , namely ρ must be of the form (see [4])

ρ = eB+iω ∧Ω, (1.2)



where B,ω ∈ ∧2V ∗ and Ω is a decomposable complex form.

Definition 1. Forms of the algebraic type (1.2) are called pure.

The condition L∩L = {0} can also be expressed in terms of ρ = eB+iω ∧Ω. Indeed,
this condition holds if and only if (see [4])

0 6= (ρ,ρ) = Ω∧Ω∧ (2iω)n−k, (1.3)

where k = deg(Ω), dim(V ) = 2n. and (·, ·) denotes the natural spin invariant pairing on
spinors, also known as the Chevalley pairing.

Definition 2. Given a generalized complex structure J on V , the line K ⊂ ∧•V ∗C
annihilating the +i-eigenspace of J is the canonical line. If eB+iω ∧Ω is one generator
for that line, the degree of Ω is the type of J and the parity of Ω is the parity of J .

A generalized complex structure J on V determines a decomposition of ∧•V ∗C
into the eigenspaces of the Lie algebra action of J . These spaces can be concretely
described as follows (see [7])

Uk = ∧n−kL ·K −n≤ k ≤ n,

where K is the canonical line and · denotes the Clifford action of ∧•L⊂ Clif(VC⊕V ∗C).

Example 3. A complex structure I on a vector space V induces a generalized complex
structure J I on V defined by the following matrix in the natural splitting V ⊕V ∗

J I =
(
−I 0
0 I∗

)
.

For this structure we see that L = V 0,1⊕V ∗1,0 and the canonical line is K = ∧n,0V ∗,
where dim(V ) = 2n.

In this case one can easily see that the spaces Uk decomposing the space of
forms ∧•V ∗C are given by Uk = ⊕p−q=k ∧p,q V ∗, where ∧p,qV ∗ is the standard (p,q)-
decomposition of forms on a complex space.

Example 4. A symplectic structure ω on a vector space V can be seen as an invertible
map ω : V −→ V ∗ and hence also induces a generalized complex structure J

ω
on V

defined by the following matrix in the natural splitting V ⊕V ∗

J
ω

=
(

0 −ω−1

ω 0∗

)
.

For this structure we see that L = {X − iω(X) : X ∈ VC} and the canonical line K is
generated by the form eiω .

The spaces Uk decomposing the space of forms ∧•V ∗C are given by (see [1])

Uk = eiωe
−ω−1

2i ∧n−k V ∗C, (1.4)



where ω−1 is regarded as a bivector and acts on forms by interior product, decreasing
the degree by 2. So, in the symplectic case, the Uk decomposition is different from the
decomposition according to degree, but these are isomorphic.

Example 5. A 2-form B ∈ ∧2V ∗ can be seen as a map B : V −→V ∗ and gives rise to an
orthogonal map of V ⊕V ∗, called a B-field transform, given by

eB =
(

Id 0
B Id∗

)
.

Therefore 2-forms act on generalized complex structures: given a generalized complex
structure J and a 2-form B, the automorphism J B = eBJ e−B is another generalized
complex structure. If J has canonical line K, then J B has canonical line eB ∧K
and similarly, the decomposition of forms for J B is given by (UJ B)k = eB ∧Uk

J .
In particular, for a structure obtained by a B-field transform of a symplectic structure ω

the canonical bundle is given by eB+iω and

Uk = eB+iωe−ω−1
∧n−k V ∗C. (1.5)

1.2. Integrability and cohomology

An almost generalized complex structure on a manifold M2n is a smooth assignment
of a generalized complex structure J to each tangent space TxM. Integrability of this
structure is a requirement of compatibility between the differential structure of M and
J . This requirement also depends on a pre-chosen real closed 3-form H on M which is
used to form the differential operator dH = d +H∧.

To state this precisely, recall that J splits the space ∧•T ∗CM into subspaces Uk, as in
(1.4). If we denote by U k the space of (local) sections of Uk, we say that J is integrable
with respect to to H, or if H is clear from the context, simply that J is integrable if

dH : U n −→U n−1.

The condition above is equivalent to requiring the existence of X +ξ ∈C∞(TCM⊕T ∗CM)
such that

dHρ = (X +ξ ) ·ρ for all ρ ∈U n.

Whenever J is integrable, one also has that (see [7])

dH : U k −→U k+1⊕U k−1,

which allows us to define operators

∂J : U k −→U k+1 and ∂J : U k −→U k−1



as the projections of dH into the relevant space. If there is no danger of confusion, e.g.,
when there is only one generalized complex structure in consideration, we denote these
operators simply by ∂ and ∂ . From d2

H = 0, we get that

∂
2 = ∂

2
= ∂∂ +∂∂ = 0.

Therefore we can define the generalized (Dolbeault) cohomology of a generalized com-
plex manifold as the cohomology of the operator ∂ .

In [7], Gualtieri proved that generalized cohomology of a compact generalized com-
plex manifold M2n is finite dimensional. In [1], the author proved that for M compact,
the Mukai pairing gives rise to a nondegenerate pairing between GHk(M) and GH−k(M)
and hence these spaces have the same dimension. Further, the Euler characteristic can
be computed directly from GH(M):

χ(M) = (−1)n+par(J )

(
n

∑
i=−n

(−1)igbi

)
,

where par(J ) is the parity of J and gbi = dim(GH i(M)) are the generalized Betti
numbers.

Example 6. If M is endowed with an almost complex structure I, it has an almost
generalized complex structure induced by I, J I , as in Example 1.1. Taking H = 0
to be the underlying 3-form, integrability of the generalized complex structure means
that d : Ωn,0(M)−→Ωn,1(M), which implies integrability of I as a complex structure. In
this case, one easily sees that the decomposition d = ∂ +∂ is nothing but the usual one
for complex manifolds. In this case the generalized cohomology agrees with Dolbeault
cohomology.

Example 7. If M is endowed with a nondegenerate 2-form ω , it has an almost gen-
eralized complex structure induced by ω , J

ω
, as in Example 1.1. Taking H = 0 to

be the underlying 3-form, integrability of the generalized complex structure means that
dω = 0 and hence M is a symplectic manifold. Further, U k = eiωe

−ω

2i Ωn−k(M) and one
can show that ∂ and ∂ are given by (see [1])

∂ (eiωe
−ω

2i α) = eiωe
−ω

2i dα

∂ (eiωe
−ω

2i α) =
1
2i

eiωe
−ω

2i dJ
ω α,

(1.6)

where dJ
ω = −i(∂ − ∂ ) and in this case it is also given by dJ

ω = [d,ω−1], which is
the symplectic adjoint of d, as introduced in [9].

Observe that, due to equation (1.6), in this case the generalized cohomology is iso-
morphic to the usual cohomology of the manifold.

Example 8. Given B ∈ Ω2(M), we can use it to produce the B-field transform of
T M⊕T ∗M. Since this is an orthogonal tranformation of T M⊕T ∗M, in order for it to
map generalized complex structures to generalized complex structures one only needs



that the corresponding map on pure forms, i.e, eB∧, commutes with dH . This means that
we need [dH ,eB] = 0, but one can easily compute

[dH ,eB] = dHeB− eBdH = eB(dB+dH)− eBdH = eBdB,

showing that this map will preserve integrability independently of the structure in con-
sideration if and only if B is closed.

Diffeomorphisms and closed B forms form the symmetry group of T M⊕T ∗M hence
given a generalized complex structure J we consider any other generalized complex
structure obtained from J by diffeomorphisms and B-field transforms equivalent to
J .

Example 9. A generalized complex structure does not necessarily have constant type.
For example, still with H = 0, consider the following form defined on C2:

ρ = z1 +dz1dz2.

Pointwise, this form has the right algebraic type, satisfies (ρ,ρ) 6= 0, hence it defines an
almost generalized complex structure J . Further

dρ = z1 =−∂ z2 ·ρ,

showing that J is integrable.

If z1 6= 0, J is determined by the line generated by e
dz1dz2

z1 , showing that it is a B-field
transform of a symplectic structure (hence type 0). For z1 = 0, the canonical bundle is
given by dz1∧dz2, showing that J is of complex type (type 2).

Example 10. For an example with compact type change locus, one can observe that this
structure is invariant under translations in the z2 coordinate. This allows us to take a
quotient of C2 by a Z2 action to obtain a type changing generalized complex structure
on C×T 2, where the type change is the elliptic curve over z1 = 0.

In 4-dimensions, any nondegenerate type change point has a neighbourhood where
the generalized complex structure is equivalent to the one given in Example 1.2 [3].
This makes that example particularly interesting as it tells us that studying particular
features of that generalized complex structure has applications to generalized complex
structures on other spaces.

2. COHOMOLOGY COMPUTATIONS

Now we start with our cohomology computations. We start off with the generalized
cohomology around a nondegenerate type change point. With that basic result at hand,
we can compute the cohomology of a neighbourhood of a type change torus (which in a
sense is the generic compact type change locus) and effects of blow-up to the generalized
cohomology of a 4-manifold.

The first result is known since Gualtier’s thesis [7], but to my knowledge no reference
can be found for it. Since we will need it in the sequence, I will commit it to paper.



Lemma 2.1. If M2n has a generalized complex structure which is generically symplectic,
but whose type is not constant, then GHn(M) = {0}

Proof. Indeed, any ∂ -closed section of the canonical bundle is also dH-closed, since
∂ : U n −→ U n+1 vanishes trivially and dH = ∂ + ∂ . In the symplectic locus the
canonical bundle is generated by eB+iω , hence, in this locus, sections of the canonical
bundle are given by f eB+iω and these are dH-closed if and only if f is constant. However,
the degree zero part of any section of the canonical bundle defined at the type change
locus must vanish, hence the form eB+iω is not well defined in the type change locus and
the only globally defined ∂ -closed form on U n is the trivial one.

Now we study GH1(M).

Proposition 2.2. Let M be C2 endowed with the generalized complex structure of
Example 1.2. Then GH1(M) is given by holomorphic (1,0)-forms defined on [z1 = 0].

Proof. Since C2 is naturally endowed with a complex structure, we will use symbols ∂

and ∂ to refer to the usual operators in C2 which go by these names and will use ∂J

and ∂J to refer to the operators induced by J .
We start characterizing sections of U 2. Since J is symplectic away from [z1 = 0],

we see that the decomposition of forms and the ∂ operator are given by the B-field
transform of equations (1.4) and (1.6). So, for example, the generic element in U 2,
away from [z1 = 0], is of the form

eB+iωe
−ω−1

2i f =
(

1+
dz1dz2

z1

)
f ,

with f ∈ Ω0(C2\[z1 = 0]). This defines an element in U 2(C2) if and only if it extends
smoothly to the locus [z1 = 0], which means that f ∈Ω0(C2) and it must be of the form
f = z1g, for some smooth function g.

Now we move on to determine the forms in U 1. As before, the generic element in
U 1 is given, away from [z1 = 0], by

eB+iωe
−ω−1

2i α =
(

1+
dz1dz2

z1

)
α

with α ∈ Ω1(C2\[z1 = 0]). And this is an element in U 1(C2) if and only if we can
extend α so that the right hand side is a well defined form. From the degree 1 part, we
see that α must extend smoothly and, from the degree 3 part, we see that α0,1, the (0,1)
component of α , must be of the form

α
0,1 = z1β , with β ∈Ω

0,1(C2). (2.1)

Now we determine the ∂J -closed forms in U 1(M). Firstly, for α as above,

∂J (eB+iωe
−ω−1

2i α) = (eB+iωe
−ω−1

2i dα)



and, checking the components of different degrees in the expression above, one sees that
α must be d-closed for the expression above to vanish. So, the ∂J -closed forms in U 1

are in bijection with d-closed forms α ∈Ω1(C2) for which (2.1) holds.
From (2.1), we see that ∂α|[z1=0] = 0, hence a(z2) = α|[z1=0] is a holomorphic (1,0)-

form defined on the type change locus and, denoting by π the projection onto the second
coordinate, α̃ = α − π∗a is a closed form satisfying (2.1) (hence determines a closed
form on U 1(C2)) and whose restrictionto the type change locus vanishes.

Now we prove that α̃ represents the trivial cohomology class in GH1(C2). Since
H1(C2) = {0}, α̃ = d f , for some f ∈Ω0(C2) and we can choose f so that f (0,0) = 0,
which implies that f vanishes along the type change locus. Then the element we are
considering is

eB+iωe
−ω−1

2i α̃ = d f +
dz1∧dz2

z1
∂ f ,

subject to (2.1), i.e.,
∂ f = z1β for some smooth β . (2.2)

Applying ∂ to (2.2), we see that ∂β = 0 and hence β = ∂ϕ , for some ϕ ∈ Ω0(C2), so
∂ f = ∂ (z1ϕ) and f̃ = f − z1ϕ is a holomorphic function which vanishes along [z1 = 0],
hence it must be of the form z1ϕ̃ , for some holomorphic function ϕ̃ . Therefore we have
f = z1(ϕ + ϕ̃). According to the first part of this proof, the function z1(ϕ + ϕ̃) gives rise
to a well defined element in U 2(M) namely, (1+ dz1∧dz2

z1
)z1(ϕ + ϕ̃) and

∂J (1+
dz1∧dz2

z1
)z1(ϕ + ϕ̃) = (1+

dz1∧dz2

z1
)d f = (1+

dz1∧dz2

z1
)α̃,

so the ∂J -closed form determined by α̃ represents the trivial ∂J cohomology class
and the class determined by α is the same as

(1+
dz1∧dz2

z1
)a(z2) = a(z2).

Conversely, one can easily see that any nontrivial holomorphic (1,0)-form on z2 deter-
mines a nontrivial cohomology class.

According to [2], any compact component of the type change locus containing only
nondegenerate points is a torus, which itself inherits a complex structure making it
into a smooth elliptic curve. The argument used above can be adapted to compute the
generalized cohomology of a neighbourhood of such torus.

Theorem 2.3. Let M be a 2-disc bundle over a 2-torus with a generalized complex
structure which is symplectic away from the zero section, T , and which has nondegen-
erate type change along T . Then GH2(M) = {0} and GH1(M) = C, generated by the
holomorphic (1,0) differential in the elliptic curve T .

Proof. Due to Lemma 2.1, we only need to prove that GH1(M) = C.
Since all the points in the type change locus are nondegenerate, according to [3]

around each point in the type change locus we can find a B-field and a diffeomorphism



which renders the structure equal to the structure from Example 1.2. Observe however
that now the complex structure is not canonical but depends on our choices (B-field and
diffeomorphism). So we find a good cover for a neighbourhood of the zero section by
open sets Vi so that in each set the structure is B-diffeomorphic to the standard one.

As before, we consider first the symplectic locus, where elements of U 1 are given by
forms of the form

eB+iω
α α ∈Ω

1(M\T ;C). (2.3)

In order for this to be a globally defined element of U 1 we need that α is smooth and
that, on Vi,

α
0,1 = z1βi for some βi ∈Ω

0,1(Vi). (2.4)

The same argument used in Proposition 2.2 shows that for (2.3) to be ∂J -closed, one
must have dα = 0 and restricting α to the zero section, we see that a := α|T is a
holomorphic (1,0) form on T . Letting π : M −→ T be the projection, α̃ = α − π∗a
is a closed form which restricts to zero on the zero section, therefore it is exact, say
α̃ = d f , and we can choose f so that it vanishes at a point (and hence everywhere) in T .

From the proof of Proposition 2.2 we see that on each Vi, f = z1ϕ i, for some function
ϕ i, showing that eB+iω f is a well defined section of U 2 and that

∂J (eB+iω f ) = eB+iω
α̃.

Hence (2.3) is in the same ∂J -cohomology class as

eB+iωa

which is a nontrivial class, as it is nontrivial even locally. This shows that GH1(M) is
isomorphic to the space of holomorphic (1,0) differentials on the type change locus.
Since the type change locus in this case is an elliptic curve, we have that GH1(M) =
C.

3. BLOW-UP

In joint work with Gualtieri the author introduced the generalized complex blow-up in
[3]. In a nutshell, the idea is simply to take a nondegenerate type change point, which
therefore has a neighbourhood in which the generalized complex structure is equivalent
to the one in Example 1.2 and then do the complex blow up of the origin in C2. In this

setting, the pull back of the canonical bundle to the blow up C̃2 determines a generalized
complex structure on that space. Concretely, C2 is endowed with generalized complex
structure

z1 +dz1∧ z2,



and C̃2 is parametrized by two coordinate charts (u1,u2) and (v1,v2) and the blow down
map is given in each of these charts by

z1 = u1 z2 = u1u2 for u1 6= 0
z1 = v1v2 z2 = v2 for v2 6= 0.

Hence the pull back of the canonical bundle of the structure on C2 is a multiple of

1+du1∧du2 and v1 +dv1∧dv2.

Observe that, by construction π∗U2 =U2, where π : C̃2−→C2 is the blow-down map.
Therefore we also have π∗(Uk) = Uk and hence π∗ gives rise to a map of generalized
cohomologies.

Lemma 3.1. In the situation above GH1(C̃2) = π∗GH1(C2).

Proof. C̃2 is covered by two open sets, U and V , the u and v coordinate charts. On U
the structure is purely symplectic, and due to (1.6), the generalized cohomology of that
set is equivalent to the cohomology of C2, i.e., it is trivial. On V , the structure is the
same as in Example 1.2, hence, according to Proposition 2.2, GH1(V ) is given by the
holomorphic (1,0) differentials along the type change locus.

Now, Mayer–Vietoris tells us that GH1(C̃2) fits in a long exact sequence

0−→ GH1(C̃2)−→ GH1(U)⊕GH1(V )−→ GH1(U ∩V )−→ ·· · ,

so GH1(C̃2) is a subspace of GH1(V ). More precisely, GH1(C̃2) corresponds to the
holomorphic forms d f (v2), defined on a neighbourhood of the type change locus on V

which can be extended smoothly to C̃2. But it is clear that any such form can be extended
smoothly, just by multiplying f by a bump function supported in a neighbourhood of the

type change locus, hence GH1(C̃2) = GH1(V ) = π∗GH1(C2).

Theorem 3.2. Let M be a compact generalized complex manifold and M̃ be the blow up
of M on a nondegenerate type change point. Then GH i(M̃) = π∗GH i(M) for i 6= 0 and
GH0(M̃) = π∗GH0(M)⊕C.

Proof. By Meyer–Vietoris, denoting by Σ de exceptional divisor introduced by the blow
up, we have the following map of exact sequences

· · · // GHk+1(C2)⊕GHk+1(M\{p}) //

(π∗ , Id)

��

GHk+1(C2\{0}) //

Id

��

GHk (M) //

π∗

��

GHk (C2)⊕GHk (M\{p}) //

(π∗ , Id)

��

GHk (C2\{0}) //

Id

��

· · ·

· · · // GHk+1(C̃2)⊕GHk+1(M̃\Σ) // GHk+1(C̃2\Σ) // GHk (M̃) // GHk (C̃2)⊕GHk (M\Σ) // GHk (C̃2\Σ) // · · ·



For k = 2 and 1 the outer maps are isomorphisms (for k = 1, this uses Lemma 3.1) and
by the Five Lemma, the middle map is an isomorphism. For k = 0 the sequence above

yields GH0(M̃)∼= GH0(C̃2)⊕GH0(M).
To compute the dimesion of GH0(M) we observe that blowing up increases the Euler

characteristic by 1, hence

2gb2(M̃)−2gb1(M̃)+gb0(M̃) = 1+ χ(M) = 1+2gb2(M)−2gb1(M)+gb0(M),

showing that gb0(M̃) = gb0(M)+1, i.e., GH0(C̃2)∼= C.
The increase in the middle cohomology is related to the fact that the exceptional

divisor introduced by the blow-up is a brane in M̃ and these roughly correspond to
classes in GH0(M̃) [1].

4. A SURGERY

In joint work with Gualtieri, the author introduced a surgery for generalized complex
manifolds in [2] which is used to create type changing generalized complex manifolds
out of ordinary symplectic manifolds. In this section we describe this surgery and
compute the generalized cohomology of some manifolds obtained this way.

Given a 2-torus with trivial normal bundle embedded on M4, a neighbourhood of this
torus is diffeomorphic to D2×T 2. We can parametrize D2\{0}×T 2 using polar coor-
dinates (r,θ1) for D2\{0} and two angle coordinates (θ2,θ3) for T 2. The surgery then
consists in removing this neighbourhood of T 2 and gluing it back using the following
diffeomorphism of ∂ (D2×T 2)∼= T 3:

ϕ(θ1,θ2,θ3) = (θ3,θ2,−θ1).

This is a particular case of C ∞-log transforms. Observe that by construction M̂\T̂ ∼=
M\T , where T̂ and T represent the tori over 0 ∈ D2 in M̂ and in M, respectively.

The result proved in [2] is

Theorem 4.1. If M is symplectic and T 2 ↪→M4 is a symplectic torus with trivial normal
bundle, then M̂, the result of the surgery, has a type changing generalized complex
structure integrable with respect to the 3-form Poincaré dual to the circle paramatrized
by θ2.

This structure is obtained by identifying part of the symplectic locus of the generalized
complex structure from Example 1.2 with the neighbourhood of T 2 ⊂M4. This surgery
was then used in [3] to prove that (2n + 1)CP2#mCP2 has a generalized complex
structure for all n,m ∈ N. This was achieved by taking M to be En, the symplectic fiber
sum of n copies of CP2#9CP2 and then performing the surgery in one of the regular
fibers and following this process by blow-up/blow down of appropriate submanifolds.



A common feature of all the examples in this family is that H1(M̂\T̂ ) = {0}, where
T̂ is the type change torus. Now we shall prove that this implies that all the generalized
cohomology of these manifolds concentrates in the middle dimension.

Theorem 4.2. Let M4 be a simply connected, compact manifold and J be a type
changing generalized complex structure whose type change locus T is connected and
nondegenerate. If H1(M\T ) = {0}, then GH2(M) = GH1(M) = {0} and GH0(M) =
χ(M).

Proof. According to Lemma 2.1, GH2(M) = {0}. Since the type change locus is com-
pact and nondegenerate, it is a torus [2]. Letting N be a small neighbourhood of the type
change locus, according to Theorem 2.3 GH1(N) is given by the pull back of holomor-
phic (1,0)-differentials α1,0 on the torus to the N. More precisely, the cohomology is
generated by

eB+iω
α

1,0. (4.1)

Since H1(M\T ) = 0, Mayer–Vietoris for the operator ∂J implies that GH1(M) can
only be C or {0} and what determines which is the case is whether the form (4.1) can
be extended to the rest of M as a ∂J -closed form, or equivalently, whether α1,0 can
be extended as a closed form. Now, if α1,0 6= 0, it has nonvanishing integrals over both
cycles in H1(T 2). Since H1(M\T ) = {0} both of these cycles are boundaries and hence
α can not be extended as a closed form, therefore showing that GH1(M) = {0}.

To finish the proof we recall that the Euler characteristic can be computed using the
generalized cohomology, hence GH0(M) = χ(M).

5. ∂∂ -LEMMA

A generalized complex manifold satisfies the ∂∂ -lemma if

Im(∂ )∩ker(∂ ) = ker(∂ )∩ Im(∂ ) = Im(∂∂ ).

In this short section we prove that the type changing generalized complex structure on
(2n+1)CP2#mCP2 encountered in [3] satisfies the ∂∂ -lemma.

Theorem 5.1. If the generalized cohomology of a generalized complex manifold M4

concentrates in GH0(M), then the generalized complex structure satisfies the ∂∂ -lemma.
In particular, the manifolds (2n+1)CP2#mCP2 with the generalized complex structure
described in the previous section satisfy the ∂∂ -lemma.

Proof. We will prove this by checking that the lemma holds in every degree.
1) Let α2 ∈ U 2 be ∂ and ∂ -closed. Since there is no ∂ -cohomology is degree 2,

∂α2 = 0 implies that α2 = 0 and hence the lemma holds trivially.
2) Let α1 ∈U 1 be ∂ and ∂ -closed. Again, since there is no cohomology in degree 1,

α1 = ∂β2. Since there is no ∂ -cohomology in degree 2 and ∂β2 ∈U 3 = {0}, β2 = ∂β1
and hence α1 = ∂∂β1.

3) Let α0 ∈ U 0 be ∂ -closed and ∂ -exact, say α0 = ∂β1. Then, from ∂∂β1 = 0, we
see that ∂β1 is a ∂ -closed form in U 2. Since GH2(M) = {0}, we see that ∂β1 must be



∂ -exact and hence must vanish, by Lemma 2.1, showing that β1 is ∂ -exact, say β1 = ∂β0
and α0 =−∂∂β0.

The cases of α0 ∈U 0 ∂ -exact and ∂ -closed as well as α−1 ∈U −1 and α−2 ∈U −2

follow by observing that α falls in one of the three cases already studied, hence α is in
Im(∂∂ ), and hence so is α .
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