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Abstract

We study topological properties of log-symplectic structures and produce examples of compact
manifolds with such structures. Notably we show that several symplectic manifolds do not admit
log-symplectic structures and several log-symplectic manifolds do not admit symplectic structures,
for example #mCP 2#nCP 2 has log-symplectic structures if and only if m,n > 0 while they only
have symplectic structures for m = 1. We introduce surgeries that produce log-symplectic manifolds
out of symplectic manifolds and show that any compact oriented log-symplectic four-manifold can
be transformed into a collection of symplectic manifolds by reversing these surgeries. Finally we
relate log-symplectic structures to achiral Lefschetz fibrations and use this relation to conclude that

if M is a simply connected 4-manifold then M#(S2 × S2) and M#CP 2#CP 2
have log-symplectic

structures
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1 Introduction

A log-symplectic structure on a manifold M2n is a Poisson structure π ∈ X2(M) for which πn has
only nondegenerate zeros. This condition is weaker than asking that M is outright symplectic (in
which case πn would not vanish) and yet it is only a little less so, since it still requires that π is
generically symplectic and that its failure to be so everywhere is as well behaved as one could ask.
If we want to rule out log-symplectic structures which are in fact symplectic, we refer to them as
bona fide or nonsymplectic log-symplectic structures.

These structures have been classified on surfaces by Radko [12] and already in dimension two
there is a marked contrast with the symplectic case, namely, every surface (orientable or not) has a
log-symplectic structure. Recently log-symplectic structures received renewed attention: Guillemin,
Miranda and Pires [7] proved a local form for the Poisson structure in a neighbourhood of the zeros of
πn and Gualtieri and Li [5] managed to give a clear geometrical description of symplectic groupoids
integrating log-symplectic structures.

Despite these recent advances in the theory of log-sympletic manifolds, the area still lacks exam-
ples and even topological obstructions to the existence of these structures are unknown. So given a
manifold, the question “does it have a log-symplectic structure?” is a little hard to answer.

We tackle these shortcomings in this paper. Indeed, Marcut and Osorno-Torres’s paper [9, 11] and
the present one are the first to provide topological obstructions to the existence of log-symplectic
structures. While Marcut and Osorno-Torres prove that a log-symplectic manifold must have a
cohomology class a ∈ H2(M) such that an−1 6= 0, we prove a different property which is more
contrastive with symplectic geometry:

Theorem. A compact orientable manifold with a bona fide log-symplectic structure has a nontrivial
cohomology class b ∈ H2(M) such that b2 = 0.

Different from Marcut and Osorno-Torres’s topological constraint, this property is not necessarily
shared by symplectic manifolds and, in effect, shows that there are several symplectic manifolds for
which the only log-symplectic structures are outright symplectic while other manifolds do not admit
log-symplectic structures at all.

We then move on to produce examples of manifolds admitting such structures. The first aproach
consists simply of deforming a symplectic structure into a log-symplectic. We show:

Theorem. Let (M2n, ω) be a symplectic manifold and k > 0 be an integer. If M has a compact
symplectic submanifold F 2n−2 ⊂M with trivial normal bundle, then M has a log-symplectic structure
for which the zero locus of πn has k components, all diffeomorphic to F × S1.

Using symplectic blow-up we can then construct log-symplectic structures on #mCP 2#nCP 2 for
m,n > 0. Therefore coupling the two theorems we have a complete classification of which manifolds
in the family #mCP 2#nCP 2 for m,n ≥ 0 admit log-symplectic structures (see Figure 1).

Further we introduce two surgeries which produce log-symplectic manifolds out of log-symplectic
manifolds and which increase the number of components of the singular locus of the Poisson struc-
ture, hence even if the starting manifolds are symplectic, the resulting manifolds will only be log-
symplectic.

Following the lines of Gompf’s theorem relating symplectic structures to Lefschetz fibrations, we
prove an analogue result for log-symplectic manifolds

Theorem. Let M4 and Σ2 be compact connected manifolds and p : M −→ Σ be an achiral Lefschetz
fibration with generic fiber F . If F is orientable and [F ] 6= 0 ∈ H2(M ;R), then M has a log-
symplectic structure whose singular locus has one component and for which the fibers are symplectic
submanifolds of the symplectic leaves of the Poisson structure.

Using results of Etnyre and Fuller on such fibrations [2] we obtain a general existence result
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#mCP 2#nCP 2 symplectic bona fide log-symplectic

m > 1, n > 0 % X

m > 1, n = 0 % %

m = 1, n > 0 X X

m = 1, n = 0 X %

m = 0, n > 0 % %

Figure 1: Table showing the values of m and n for which mCP 2#nCP 2 has symplectic or bona fide log-
symplectic structures. In the symplectic case, we require that the orientation determined by the symplectic
structure agrees with the orientation of the manifold.

Theorem. Let M be a simply connected compact four-manifold. Then both M#(S2 × S2) and
M#CP 2#CP 2 admit bona fide log-symplectic structures.

We finish showing that in four dimensions any compact orientable log-symplectic manifold is
obtained out of a symplectic manifold using our surgeries. Expressed another way:

Theorem. Let (M4, π) be a compact, orientable, log-symplectic manifold with singular locus Z.
Then each unoriented component of M\Z can be compactified as a symplectic manifold.

This paper is organized as follows. Section 2 reviews the basics of Poisson geometry relevant
for our study and Section 3 reviews Guillemin–Miranda–Pires normal form theorem [7]. Section
4 introduces a simple topological invariant that allows us to show that there are many symplectic
manifolds which do not admit bona fide log-symplectic structures. Section 5 shows that under
general assumptions one can deform a symplectic structure into a log-symplectic structure and
Section 6 introduces the surgeries and gives the existence result for log-symplectic structures on
achiral Lefschetz fibrations. Finally, Section 7 shows that in four dimensions the surgeries can
be reversed and any compact, orientable, log-symplectic four manifold can be transformed into a
symplectic manifold by surgeries.
Acknowledgements: The author is thankful to Ioan Marcut, Ralph Klaasse, Pedro Frejlich, Marius
Crainic for useful conversations. The author is specially thankful to Ioan Marcut for the argument
of Theorem 3.6 and for explaining the results from [9].

While carrying out this research, the author was made aware that Frejlich, Martinez-Torres and
Miranda were carrying out a project [3] which overlaps with the results in this paper. Notably, they
had independently produced our “Construction 1” and our Theorem 7.1.

This research is supported by a VIDI grant from the Dutch Science Foundation (NWO).

2 Poisson structures

This section we give a short account of the basic material on Poisson and log-symplectic structures.
For more details we refer the reader to [5, 6, 7].

2.1 Log-symplectic manifolds

A Poisson structure on a manifold Mm is a bivector π ∈ X2(M) = Γ(∧2TM) for which

[π, π] = 0,

where the bracket used is the Schouten–Nijenhuis bracket of multivector fields. Assuming that
Mm is even dimensional, say, m = 2n, a generic bivector (at a point) would give an isomorphism
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π : T ∗pM
∼=−→ TpM . In this case πn is a non zero element in ∧2nTpM . If a Poisson bivector π is

everywhere generic (i.e., everywhere invertible) then the 2-form ω = π−1 is a symplectic structure
on M .

Definition 2.1. The locus where π : T ∗M −→ TM is an isomorphism is the symplectic locus of π
and its complement is the singular locus of the Poisson structure.

Moving to a move general situation which is still modeled on a “generic” case, one can require
that πn only has nondegenerate zeros:

Definition 2.2. A log-symplectic structure on M2n is a Poisson structure π for which the zeros of
πn are nondegenerate.

Since in a log-symplectic manifold the singular locus is given by the nondegenerate zero locus of
a section of a line bundle, we have that it is a smooth submanifold of codimension one. Further, as
the rank of the Poisson structure does not change along each of its symplectic leaves, we see that
each connected component of the singular locus is itself a Poisson submanifold of M , i.e., a union
of symplectic leaves.

Finally, any Poisson manifold comes equipped with two diferential operators which give rise to
cohomology theories. The first is the Poisson differential on multivector fields:

dπ : X•(M) −→ X•+1(M); dπ(ξ) = [π, ξ],

The Poisson condition and the Jacobi identity for the Schouten–Nijenhuis bracket imply that d2
π = 0

and its cohomology is known as the Poisson cohomology of (M,π).
The second is the Koszul differential on forms:

δ : Ω•(M) −→ Ω•−1(M); δρ = {π, d}ρ,

where {π, d} = πd − dπ is the graded commutator of operators and π acts on forms by interior
product. Again the Jacobi identity for {·, ·} and the Poisson condition imply that δ2 = 0 and its
cohomology is known as the canonical cohomology of (M,π).

These operators are related:

Lemma 2.3. Let (M,π) be a Poisson manifold, ξ ∈ X•(M) and ρ ∈ Ω•(M). Then

{δ, ξ}ρ = (dπξ) · ρ,

where ξ and dπξ act on forms by inner product.

Proof. This follows automatically from the description of the Schouten–Nijnehuis bracket as a de-
rived bracket:

{δ, ξ}ρ = {{π, d}, ξ}ρ = [π, ξ] · ρ = (dπξ)ρ.

2.2 The canonical bundle and the modular vector field

Given a Poisson manifold (Mm, π), the determinant bundle K = ∧mT ∗M is also known as the
canonical bundle of M . Given any nonvanishing local section ρ ∈ Γ(K) there is a unique vector field
X such that

δρ = ιXρ.

The vector field X is called the modular vector field. Notice that changing the trivialization ρ
by a nonvanishing function, say g, changes the modular vector field from X to X + π(d log |g|) =
X + dπ log |g|. In particular, changing ρ to −ρ does not change X and a modular vector field

4



is determined by a section of the quotient sheaf K/Z2. If M is nonorientable, there is no global
nonvanishing section of K, yet, K/Z2, the sheaf of densities, always has a nonvanishing section, so
one can always find globally defined modular vector fields.

Notice that any modular vector field X is an infinitesimal symmetry of the Poisson structure,
i.e., [π,X] = 0 since for a local section ρ ∈ Γ(Kπ) we have

0 = δ2ρ = δ(X · ρ) = (dπX) · ρ−X · (X · ρ) = (dπX) · ρ,

which implies [π,X] = 0. Since a different choice of section of Kπ/Z2 changes X to X + dπlog|g|
we see that the modular vector field gives a well defined degree one Poisson cohomology class. A
Poisson structure is unimodular if this class is trivial, which is therefore equivalent to the existence
of a globally defined δ-closed section of Kπ/Z2.

2.3 Representations

A representation of a Poisson structure is a vector bundle E −→ (M,π) together with a flat Poisson
connection ∇ : Γ(E) −→ Γ(TM ⊗ E).

Example 2.4. The canonical bundle of a Poisson manifold is a representation. Indeed, the operator
δ : K −→ Ωm−1(M) ∼= Γ(TM ⊗K) satisfies the properties required for a connection and δ2 = 0 is
the flatness condition. Note that if M is orientable, a Poisson structure is unimodular if and only if
its canonical bundle is the trivial representation. �

Example 2.5. Let Zd ⊂ Mm be a Poisson submanifold, then N ∗Z , the conormal bundle of Z, is a
representation for (Z, π). Indeed we define

∇ : Γ(T ∗Z ⊗N ∗Z) −→ N ∗Z ; ∇ηξ = ιπ(η ∧ dξ),

where above one must extend the section ξ ∈ Γ(N ∗Z) to a form on a neighbourhood of Z, but the
result does not depend on the chosen extension.

In particular we also get that ∧m−dN ∗Z is a representation. �

If Z ⊂M is a Poisson manifold of M , one has clearly the isomorphism of vector bundles.

∧mT ∗M |Z ∼= ∧dT ∗Z ⊗ ∧m−dN ∗Z .

Naturality of the representations discussed above, means that this is also an isomorphism of repre-
sentations, similar to the adjunction formula from complex geometry

Lemma 2.6 (Adjunction formula). Let Mm be a Poisson manifold and Z ⊂M be a d-dimensional
embedded Poisson submanifold and N ∗Z be its conormal bundle. Then

KM |Z ∼= KZ ⊗ ∧m−pN ∗Z .

as Poisson modules.

The following proposition adds up the basic facts about the singular locus of a log-symplectic
structure.

Proposition 2.7. Let M be a log-symplectic manifold, Z its singular locus, N ∗Z the conormal bundle
of Z and KM and KZ the canonical bundles of M and Z respectively. Then

1. Z is an orientable Poisson submanifold of M ;

2. KZ is the trivial representation;

3. N ∗Z = ∧2nT ∗M |Z as Poisson modules.

In particular if M is orientable each component of Z has trivial normal bundle.
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Proof. Since Z is the nondegenerate zero locus of πn ∈ Γ(∧2nTM), we have that, over Z, dπn gives
an isomorphism of Poisson representations

dπn : ∧2nTM |Z ⊗N ∗Z
∼=−→ R

that is ∧2nT ∗M |Z is isomorphic to N ∗Z . Finally, the adjunction formula gives that

∧2n−1T ∗Z ⊗N ∗Z ∼= ∧2nT ∗M |Z ∼= N ∗Z ,

that is ∧2n−1T ∗Z is the trivial representation and Z is orientable.

3 Invariants and local forms

While Proposition 2.7 gives a list of simple invariants associated to a log-symplectic structure in [7]
Guillemin, Miranda and Pires showed that these are in fact all invariants associated to a neighbour-
hood of the singular locus. Indeed, the following is a direct consequence of the results in [7]:

Theorem 3.1. Let (M,π) be a log-symplectic manifold and let Z be a compact connected component
of the singular locus. Then a neighbourhood of Z is determined by the Poisson structure induced on
Z and its representation on the conormal bundle of Z.

Taking the inverse of the Poisson structure, one can translate this information into differential
forms (c.f. [7]):

Theorem 3.2. Let (M,π) be a log-symplectic manifold, let Z be a connected component of the
singular locus and X a modular vector field of π. Then the pair (π,X) determines the following
structure on Z:

1. The normal bundle of Z as a vector bundle, i.e., a class w1 ∈ H1(Z,Z2).

2. A closed 1-form θ ∈ Ω1(Z) such that θ(X) = −1.

3. A closed 2-form σ ∈ Ω2(Z) such that ιXσ = 0 and

θ ∧ σn−1 6= 0. (3.1)

Changing the modular vector field by dπf does not change θ and changes σ to σ + df ∧ θ.
Further, if Z is compact, any log-symplectic structure inducing the data above on Z is equivalent

to a neighbourhood of the zero section of the normal bundle of Z endowed with the following structure

d log |x| ∧ θ + σ, (3.2)

where |x| is the distance to the zero section measured with respect to a fixed fiberwise linear metric
on NZ .

Under the conditions of the theorem, the annihilator of the form θ corresponds to the distribution
in Z determined by the Poisson structure and σ agrees with the leafwise symplectic form on Z.

Definition 3.3. A cosymplectic structure on a manifold Z2n−1 is a pair of closed forms θ ∈ Ω1(Z)
and σ ∈ Ω2(Z) satisfying (3.1).

For special types of log-symplectic structure one can rephrase the data 1. — 3. above as a more
workable set.

Definition 3.4. A connected cosymplectic manifold (Z, σ, θ) is proper if it is compact and the
distribution given by the annihilator of θ has a compact leaf. A component Z of the singular locus
of a log-symplectic manifold is proper if the cosymplectic structure induced on Z is proper. A
log-symplectic manifold is proper if all components of the singular locus are proper.
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Given a cosymplectic manifold (Z, σ, θ), if we let X be a vector field such that θ(X) = −1 and
ιXσ = 0, we have that LXθ = 0 and hence the flow of X preserves the leaves of the distribution
determined by θ, hence, if Z is proper with compact (symplectic) leaf (F, σ) ⊂ Z, the flow of F by
the vector field X will provide further leaves of π. Since X is transverse to F and Z is compact, we
see that after finite time, say λ > 0, the flow of X brings F back to itself:

ϕλ : F −→ F,

Since LXσ = 0, the flow is a symplectomorphism of F and hence Z is a symplectic fiber bundle
with fiber (F, σ) over the circle:

Z = R× F/Z,

where the quotient is taken with respect to the Z-action generated by (y, p) 7→ (y+λ, ϕλ(p)). Further,
the modular vector field is −∂y hence θ = dy.

Different choices of nonvanishing sections of Kπ/Z2, change the modular vector field over Z
by adding Hamitonian vector fields of F so the symplectomorphism ϕλ is only determined up to
Hamiltonian symmetries, i.e., the relevant data is only its class in Symp(F )/Ham(F ).

Finally, the normal bundle of Z is determined by its first Stiefel–Whitney class w1 ∈ H1(Z,Z2) =
H1(F ;Z2)ϕλ ×H1(S1;Z2). So, in the proper case, Theorem 3.2 becomes (c.f. [7, 5])

Theorem 3.5. Let Z be a proper component of the singular locus of a log-symplectic structure π
and F ⊂ Z be a compact symplectic leaf of π. Then π determines the following data:

1. The normal bundle of Z, i.e., a class w1 ∈ H1(Z,Z2) = H1(F ;Z2)ϕ ×H1(S1;Z2).

2. The symplectic structure σ of F ;

3. A class [ϕ] ∈ Symp(F )/Ham(F );

4. A period λ > 0;

Further, any two log-symplectic structures inducing the same set of data are equivalent and given a
set of data 1. — 4. there is a proper log-symplectic structure which realises it.

Notice that given a nonorientable Poisson manifold, M , one can always pass to the oriented
double cover M̃ of M which inherits a Poisson structure from M . For the log-symplectic case, this
allows us to get a simpler local model for the singular locus as now its neighbourhood depends on
one less parameter, since according to Proposition 2.7 w1 = 0 in M̃ .

The following theorem, communicated to the author by Ioan Marcut (see also [11]), shows one
can always deform a log-symplectic structure into a proper one.

Theorem 3.6. If the components of the singular locus of a log-symplectic structure are compact,
then the structure can be deformed into a proper one.

Proof. Let Z be a connected component of the singular locus. The proof consist of two steps. Firstly
we notice that one can deform the cosymplectic structure (θ, σ) of Z into (θ̃, σ) so that the kernel of

θ̃ gives a fibration structure to Z. The second step is to show that this deformation can be realised
as a deformation of the log-symplectic structure.

For the first step, let θ̃ be a closed 1-form representing a class in H1(Z,Q) which is close enough
to θ so that we still have

θ̃ ∧ σn−1 6= 0.

Since [θ̃] represents a rational class, [θ̃](H1(Z;Z)) is a lattice Λ in R. Then we define the projection
map

p : Z −→ R/Λ; p(z) =

∫ z

z0

θ̃,
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where z0 ∈ Z is a fixed reference point and the value of the integral modulo Λ does not depend
of choice of path connecting z0 to z. By construction dp = θ̃ is nowhere vanishing and hence
p : Z −→ S1 is a fibration.

For the second step, according to Theorem 3.2 there is δ > 0 such that the log-symplectic
structure in a neighbourhood of Z is equivalent to (3.2) for |x| < δ. If we let ψ be a smooth function
such that

ψ : [0, 1] −→ [0, 1];

{
ψ(x) = 1 if x < δ/3

ψ(x) = 0 if x > 2δ/3

then the log-symplectic form

d log |x| ∧ ((1− ψ(|x|)θ + ψ(|x|)θ̃) + σ,

induces the cosymplectic structure (θ̃, σ) on Z and agrees with the original log-symplectic structure
if |x| > 2δ/3 hence can be extended to the rest of M by the original log-symplectic structure.

4 A simple topological invariant

One of the simplest and yet restrictive topological property of compact symplectic manifolds is the
existence of a class a ∈ H2(M) whose top power is nonzero. Of course, this does not hold on all
log-symplectic manifolds, yet log-symplectic manifolds are just a little shy of satisfying this property
as shown by Marcut and Osorno-Torres:

Theorem 4.1 (Marcut–Osorno-Torres [9, 11]). Let M2n be a log-symplectic manifold whose singular
locus has a compact component. Then there is a cohomology class a ∈ H2(M ;R) such that an−1 6= 0.
Further, if Z ⊂ M is a proper component of the singular locus and has (F, σ) as a symplectic leaf,
a can be chosen so that [a]|F = [σ].

Here we use a little more of the log-symplectic structure in the orientable case to find another
topological property of these manifolds.

Theorem 4.2. A compact oriented manifold with a bona fide log-symplectic structure has a coho-
mology class b ∈ H2(M ;R)\{0} such that b2 = 0.

Proof. Assume that M has a log-symplectic structure with singular locus Z 6= ∅. Then, due to
Theorem 3.6, we may assume that the structure is proper, hence Z is a symplectic fibration over
the circle with fiber a symplectic manifold F . On the one hand, due to Marcut–Osorno-Torres’s
Theorem there is a globally defined closed 2-form ω̃ ∈ Ω2(M) which restricts to the symplectic form
on F , i.e., the homology class of F pairs nonzero with a cohomology class on M , so we have that
[F ] 6= 0 ∈ H2n−2(M ;R). On the other hand, since, even within Z, F appears as a fiber of a fibration,
we conclude that the Poincaré dual of F , b ∈ H2(M ;R)\{0}, must satisfy b2 = 0.

A few immediate corollaries:

Corollary 4.3. An orientable, compact, bona fide log-symplectic manifold M of dimension greater
than two has b2(M) ≥ 2.

Proof. If M is four dimensional the class b from Theorem 4.2 is non zero and squares to zero,
hence nondegeneracy of the intersection form implies the existence of a second class β ∈ H2(M ;R)
which has nonvanishing cup product with b. If the dimension of M is greater than four the classes
from Marcut–Osorno-Torres’s theorem and from Theorem 4.2 are necessarily different. Either way,
H2(M ;R) must be at least 2-dimensional.
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Corollary 4.4. For n > 1, CPn has no bona fide log-symplectic structure and, for n > 2, the
blow-up of CPn along a symplectic submanifold of real codimension greater than 4 also does not
carry bona fide log-symplectic structures.

Corollary 4.5. A smooth orientable compact four-manifold with definite intersection form does
not admit bona fide log-symplectic structures. In particular, for n > 0, #nCP 2 and #nCP 2 do not
admit bona fide log-symplectic structures

Proof. Indeed, under the hypothesis of both corollaries there is no element in second cohomology
whose square is zero.

Notice that due to Taubes result on Seiberg–Witten invariants of symplectic manifolds [13],
#nCP 2 does not admit symplectic structures for n > 1, i.e., #nCP 2 simply does not admit log-
symplectic structures bona fide or not.

5 Birth of singular loci

This section we show that under mild assumptions one can transform a symplectic structure into a
log-symplectic structure with non-empty singular locus. As a consequence of this seemingly inoffen-
sive fact we conclude that #mCP 2#nCP 2 has a log-symplectic structure with non-empty singular
locus as long as m > 0 and n > 0.

Theorem 5.1. Let (M2n, ω) be a symplectic manifold and k > 0 be an integer. If M has a compact
symplectic submanifold F 2n−2 ⊂M with trivial normal bundle, then M has a log-symplectic structure
for which the zero locus of πn has k components all diffeomorphic to F × S1.

Proof. Due to the symplectic neighbourhood theorem, F has a tubular neighbourhood diffeomorphic
to D2 × F endowed with the product symplectic structure, where D2 is the 2-disc of radius ε > 0.
To prove the theorem it is enough to endow D2 with a log-symplectic structure whose singular locus
has k components and which agrees with the standard symplectic structure near the boundary of the
disc. Indeed, in this case we can consider D2×F with the product of the log-symplectic structure on
D2 and the symplectic structure on F . Since this new structure agrees with the original symplectic
structure on the boundary of the disc, we can extend it to M using the original symplectic structure.

To produce the desired log-symplectic structure on D2 we observe that in two dimensions every
bivector is automatically Poisson, hence all we need to do is find a bivector in D2 with the desired
number of nondegenerate zeros. To achieve this we let π ∈ Γ(∧2TD) be the inverse of the standard
symplectic structure on D2 and consider the bivector fπ where f is a smooth function which in
polar coordinates has the graph shown in Figure 2. Then fπ is a log-symplectic structure of the
desired type on D2.

1

0 ε

...

Figure 2: Graph of a possible scaling function that can be used to create a singular locus with an even
number of components.
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Corollary 5.2. For any positive integers m,n the manifolds #mCP 2#nCP 2 have a log-symplectic
structure whose singular locus is diffeomorphic to S1 × S2.

Proof. The blow-up of CP 2 at a point, i.e., CP 2#CP 2, has the structure of a symplectic CP 1

fibration over CP 1. In particular, the fibers satisfy the properties of Theorem 5.1 and hence we
can endow CP 2#CP 2 with a log-symplectic structure with non-empty singular locus, say, with one
component diffeomorphic to S1 × S2. Therefore, the top power of the log-symplectic form on the
symplectic locus agrees with the orientation of CP 2#CP 2 at some points and disagrees in other
points. By the Symplectic Blow-up Theorem [10], we can blow up points in the symplectic locus
and the result still has a log-symplectic structure. If we blow up points in the symplectic locus
where the orientation of the log-symplectic form agrees with the orientation of CP 2#CP 2, we are
performing a connected sum with CP 2, while if we blow up points in the symplectic locus where the
log-symplectic form gives the opposite orientation we are performing a connected sum with CP 2.

Notice that the manifolds obtained in Corollary 5.2 have vanishing Seiberg–Witten invariants
and, for m and n even, those manifolds do not admit almost complex structures for either choice of
orientation. These are contrasts between log-symplectic and symplectic geometries since symplectic
manifolds have nonzero Seiberg–Witten invariants [13] and admit almost complex structures.

As for higher dimensions, Donaldson proved that every symplectic manifold admits a Lefschetz
pencil [1] and hence is related to a Lefschetz fibration via the blow-up of the base locus of the pencil.
Due to Theorem 5.1 any such fibration has log-symplectic structures.

6 Surgeries for log-symplectic manifolds

This section we introduce surgeries which produce new log-symplectic structures out of old ones. A
main feature is that in these surgeries we create new components of the singular locus hence even if
the starting manifolds are symplectic the results will be only log-symplectic.

6.1 Construction 1

This first construction produces (possibly) orientable log-symplectic manifolds out of pairs with
matching data.

Building block: Using the language of Theorem 3.2, the local model that gives rise to the con-
struction corresponds to the case when Z has trivial normal bundle. Given a cosymplectic manifold
(Z, σ, θ), we let

N = (−2, 2)× Z

and endow N with a log-symplectic structure for which {0} × Z is the singular locus, namely, we
consider the 2-form

Ω = dlog|x| ∧ θ + σ, (6.1)

where |x| denotes the absolute value of the real number x.

Ingredients: To perform this surgery we will need a (not necessarily connected) log-symplectic
manifold (M2n, π) together with two embeddings of a compact, connected, cosymplectic manifold
(Z, σ, θ), ιi : Z2n−1 ↪→M , such that

1. Each ιi(Z) is a separating submanifold of M lying in the symplectic locus of π and ι1(Z) ∩
ι2(Z) = ∅;
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2. There is f ∈ C∞(Z) such that ι∗1ω = ι∗2ω − df ∧ θ = σ, where ω is the symplectic form on the
symplectic locus of M

The surgery: Since each ιi(Z) is in the symplectic locus of π, the underlying symplectic structure
gives rise to an orientation of a neighbourhood of ιi(Z). Since Z is cosymplectic, it has a natural
orientation as defined by the volume form θ ∧ σn−1. Since ιi(Z) are separating submanifolds, each
of them defines an interior and an exterior region: a vector n ∈ Tιi(p)M is outward pointing if for
any positive basis {v1, · · · , v2n−1} ∈ TpZ the set {n, ιi∗v1, · · · , ιi∗v2n+1} is a positive basis for TpM .
We let M+ be the closures of the intersection of the exterior regions determined by ι1(Z) and ι2(Z),
then M+ has two boundary components: ι1(Z) and ι2(Z).

Theorem 6.1. Let (M,π), (Z, θ, σ) and ι1, ι2 : Z −→ M be the ingredients for the surgery and let
M+ be the closure of the intersection of the exterior regions defined by ι1(Z) and ι2(Z). Then the
manifold

M+/ ∼

obtained by identifying the boundary components of M+ via the map ι2 ◦ ι−1
1 has a log-symplectic

structure which agrees with the original structure on M+ outside a neighbourhood of Z = ∂M+/ ∼
and for which Z is part of the singular locus.

Proof. Notice that we have an embedding Z ↪→ N , as {−1} × Z. For this embedding, Z lies
in the symplectic locus of the log-symplectic structure and the restriction of the symplectic form
(6.1) to Z is just σ. Hence, by Weinstein’s coisotropic neighbourhood theorem, a neighbourhood of
{−1} × Z ⊂ N is symplectomorphic to a neighbourhood of ι1(Z). Using this symplectomorphism,
we can glue the exterior of ι1(Z) in M to (−1, 2)× Z ⊂ N , the interior of {−1} × Z in N , and the
resulting manifold has a log-symplectic structure.

Similarly, given a function f ∈ C∞(Z), if we take ε > 0 small enough we have an embedding

ϕ : Z ↪→ N , ϕ(z) = (εef(z), z)

and the restriction of the symplectic form from N to this embedding is df ∧ θ + σ, that is, this
symplectic form agrees with ι−1

2 ω and hence we can repeat the previous argument, but now to the
embedding ι2 and this second copy of Z inside N .

It is clear that the manifold obtained by this gluing procedure is diffeomorphic to M+/ ∼ and
that the structure on the complement on N is the original structure on M+.

Observe that even if M is a symplectic manifold, and hence has a preferred orientation, the
diffeomorphism used to glue the two boundaries together does not respect these orientations hence
M̃ does not have a preferred orientation.

As far as examples go, Theorem 6.1 leaves us with the question of how to find suitable subman-
ifolds Z to which it can be applied. Next we identify two situations in which manifolds with the
desired structure appear naturally. We start with the simplest setting:

Corollary 6.2. Let (M2n, ω) be a log-symplectic manifold and ιi : (F 2n−2, σ) −→ (M,ω), i = 1, 2
be embeddings of a compact symplectic manifold F in the symplectic locus of M for which the
images have trivial normal bundle. Let

M̃ = M\(N 1 ∪N 2)/ ∼,

where ∼ indicates the natural identification of the boundaries ∂N 1
∼= ∂N 2. Then M̃ has a log-

symplectic structure which agrees with the original structure outside a tubular neighbourhood of
∂N i ⊂ M̃ . The Euler characteristic of M̃ is

χ
M̃

= χM − 2χF .

11



Proof. Weinstein’s symplectic neighbourhood theorem implies that ιi(F ) have neighbourhoods sym-
plectomorphic to D2×F with the product symplectic structure. In particular the boundary of such
neighbourhoods are diffeomorphic to Z = S1 × F with the cosymplectic structure given by the
volume from of S1,θ, and σ = ω|F and the restriction of the symplectic form to Z is simply the
symplectic form of F pulled back to the product. Hence we can use the theorem to conclude that
M̃ has a log-symplectic structure.

The last claim follows from the additive properties of the Euler characteristic.

Next we present a setting which is a little more elaborate:

Corollary 6.3. Let pi : Mi −→ Σi, i = 1, 2, be symplectic Lefschetz fibrations with the same generic
fiber (F, σ). Let γi : R/λZ −→ Σi be separating loops which avoid the critical values of pi, let M+

i

be the exterior region of p−1
i (γi) and let ϕi : F −→ F be the symplectomorphism of F = p−1

i (γi(0))
obtained from symplectic parallel transport along γi. If there is a symplectomorphism ϑ : F −→ F
such that ϕ2 = ϑ ◦ ϕ1 ◦ ϑ−1, then

M+
1 ∪M

+
2 / ∼

has a log-symplectic structure with singular locus ∂M+
1
∼= ∂M+

2 .

Proof. Under the hypothesis, Z1 = p−1
1 (γ1) is given by the quotient of R × F by the Z-action

generated by

(x, z) ∼= (x+ λ, ϕ1(z)).

The form θ = dx together with the symplectic form σ ∈ Ω2(F ) make Z1 into a cosymplectic manifold.
Similarly, Z2 = p−1

2 (γ2) is a cosymplectic manifold and the map

Z1 −→ Z2, (x, z) = (z, ϑ(z))

is an isomorphism of cosymplectic structures as long as ϕ2 = ϑ ◦ ϕ1 ◦ ϑ−1. The result now follows
from Theorem 6.1.

Example 6.4 (Log-symplectic structures on #nS2×S2). Next we provide an explicit log-symplectic
structure on #nS2×S2. Our starting point is the elliptic surface E(2k): the fiber sum of 2k copies of
CP 2#9CP 2. This is a Lefschetz fibration p : E(2k) −→ CP 1 which, after appropriate identifications,
has 24k singular fibers for which the vanishing cycles correspond to two basis elements {a, b} ∈ H1(F )
appearing in an alternating fashion, as depicted, for E(2), in Figure 3 (c.f. [4], Example 8.2.11).

a

a

b

b
a

ab
b

a

a

b

b

a

a

a

a

a

a

b

b

b

b b

b

Figure 3: Graphic representation of the base of E(2), showing the singular values of the projection map,
a regular value of the map for reference and paths connecting the regular value to the singular values to
determine the homology class of the vanishing cycles. In this case, a and b, the vanishing cycles which form
an integral basis for H1(F ;Z).

12



a

b

a

a

b

b

a

b

...

...

γ

Figure 4: Graphic representation of the base of E(2k) and a path whose exterior contains four consecutive
singular values of the projection map.

In order to use Construction 1 we consider two copies of E(2k) and in both of them consider the
same path, namely one whose exterior contains n+ 1 consecutive singular fibers (see Figure ??).

Since we are starting with two copies of the same data we can use Corollary 6.3 to introduce a
log-symplectic structure

M̃ = M+ ∪∂ M+,

where M+ = p−1(Σ+) is the inverse image of the closure of the exterior points of γ. Hence we see
that Construction 1 consists of taking two identical copies of M+ ⊂ E(2k) and then glue them along
the boundaries using the identity map. The resulting manifold is also known as the double of M+.
To precisely determine M+ we observe two simple facts:

• Firstly, M+ admits a handlebody decomposition which contains a zero handle, n 2-handles and
no handles of other indices (that is M is a 2-handlebody). Indeed, according to [4], Example
8.2.8, a Kirby diagram for M has n+ 2 2-handles and two 1-handles and one zero handle, but
we can cancel two of 2-handles against the two 1-handles to obtain the desired handlebody
decomposition);

• Secondly, since the interior of M+ is an open subset of E(2k) and E(2k) is spin, the intersection
form on M+ is even.

These facts, together with the following Proposition determine the result of the surgery:

Proposition 6.5 ([4], Corollary 5.1.6). Let M4 be a 2-handlebody with n 2-handles. Then the double
of M is diffeomorphic to #nS2×S2 if the intersection form of M is even and to #nCP 2#nCP 2 if
the intersection form of M is odd.

In our case, we conclude that M̃ is diffeomorphic to #nS2 × S2. �

6.2 Achiral Lefschetz fibrations

Related to the construction of Corollary 6.3 is the notion of an achiral Lefschetz fibration:

Definition 6.6. Let M2n be a manifold. An achiral Lefschetz fibration on M is a proper, smooth
map p : M −→ Σ2 such that the pre-image of any critical value has only one critical point and
for any such pair of critical value, y, and critical point, x, there are complex coordinate systems
centered at x and y for which p takes the following form

p(z1, · · · , zn) = z2
1 + · · ·+ z2

n.

Notice that in this definition we do not require M or Σ to be orientable. If they are, one can
assign a sign to each critical point x: we demand that the complex structure on Σ is compatible
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with the orientation and then we say that x is positive if the complex structure on M used in the
definition is compatible with the orientation of M and negative otherwise.

Given the construction of Corollary 6.3 and the issuing example, one might expect that achiral
Lefschetz fibrations are related to log-symplectic structures in the same way that Lefschetz fibrations
are related to symplectic structures. This is indeed the case, as we show next:

Theorem 6.7. Let M4 and Σ2 be compact connected manifolds and p : M −→ Σ be an achiral
Lefschetz fibration with generic fiber F . If F is orientable and [F ] 6= 0 ∈ H2(M ;R), then M
has a log-symplectic structure whose singular locus has one component and for which the fibers are
symplectic submanifolds of the symplectic leaves of the Poisson structure.

Proof. The proof follows closely that of Gompf’s Theorem relating Lefschetz fibrations and sym-
plectic structures ([4], Theorem 10.2.18). Before we delve into the proof we will fix some notation.
We let

• Fy = p−1(y) for y ∈ Σ;

• ∆ be the set of singular points of p;

• ∆′ be the set of the singular values of p;

• Σ0 = Σ\∆′ and M0 = p−1(Σ\∆′), so that p : M0 −→ Σ0 is a proper fibration.

Firstly, we observe that we can assume that p has connected fibers. Indeed, for achiral Lefschetz
fibrations we have a short exact sequence of homotopy groups:

π1(F ) −→ π1(M)
p∗−→ π1(Σ) −→ π0(F ) −→ {0}. (6.2)

Since M is compact, π0(F ) is finite and hence (6.2) implies that p∗(π1(M))has finite index in π1(Σ).

Let Σ̃ be the cover of Σ corresponding to the subgroup p∗(π1(M)) ⊂ π1(Σ). Then Σ̃ is compact

and the map p : M −→ Σ lifts to a map p̃ : M −→ Σ̃. The projection p̃ is still an achiral Lefschetz
fibration and, by construction, p̃∗(π1(M)) = π1(Σ̃), hence (6.2) implies that the fibers of p̃ are
connected. From now on we assume that the fibers of p : M −→ Σ are connected.

Next we deal with the general lack of orientation of the manifolds involved. Firstly, since F
is orientable, we fix an orientation for F for the remaining of this proof. If p : M0 −→ Σ0 was
a nonorientable fibration, there would be a loop α : (I, ∂I) −→ M0 based at some point y ∈ Σ,
where I is the unit interval, for which parallel transport (after a choice of connection) provided an
orientation reversing diffeomorphism of Fy. In this case p−1(α(I)) would provide a chain whose
boundary is 2[Fy], contradicting the condition [F ] 6= 0 ∈ H2(M ;R). Therefore p : M0 −→ Σ0 is
an orientable fibration. Further this orientation induces orientations on the singular fibers of p and
hence we can also integrate forms over the (components of the singular) fibers. It also follows that
M is orientable if and only if Σ is.

If Σ and M are orientable, after choosing orientations, we can split the critical points of p into
positive and negative ones. If there are no positive or no negative points, Gompf’s Theorem ([4],
Theorem 10.2.18) implies that M admits a symplectic structure and due to Theorem 5.1 it admits
a log-symplectic structure with the desired properties. If there are positive and negative critical
points, we can choose a separating loop Γ ⊂ Σ0 whose interior locus contains all the negative points
and whose exterior locus contains all the positive points. If Σ is nonorientable, we can choose a
loop Γ ⊂ Σ0 such that Σ\Γ is orientable and hence so is M\p−1(Γ). After choosing orientations
on both Σ\Γ and M\p−1(Γ) we may homotope the loop Γ through the negative critical values of p
so that all singular points of p : M\p−1(Γ) −→ Σ\Γ are positive. In either case, M\p−1(Γ) is an
oriented manifold and p : M\p−1(Γ) −→ Σ\Γ is a proper Lefschetz fibration possibly after changing
the orientation of one of the components of M\Γ and Σ\Γ. From now on we orient both M\Γ and
Σ\Γ so that p is a Lefschetz fibration there.

The next steps aim to construct a closed 2-form σ on M which restricts to a symplectic form in
every fiber.
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Lemma 6.8. Under the hyphothesis of Theorem 6.7, there is a closed 2-form ζ ∈ Ω2(M) such that

1.
∫
S
ζ = 1 over any fiber and

2. if a singular fiber Fy is a plumbing of two surfaces S1 and S2, and we are given sy ∈ (0, 1) then
ζ can be chosen so that

∫
S1
ζ = sy.

Proof. Since [F ] 6= 0 ∈ H2(M ;R), there is a closed form ξ ∈ Ω2(M) which integrates to 1 over the
generic fibers and hence over all fibers. Next we need to argue that one can change ξ so that the
property 2. holds. In this case, with the orientations chosen before on M\Γ, the intersection number
of S1 and S2 is 1. Since S1 ∪ S2 is homologous to a regular fiber,

∫
S1
ξ +

∫
S2
ξ = 1. If

∫
S1
ξ = r,

let ψ be a form with support in a neighbourhood of S2 ⊂M\p−1(Γ) which represents the Poincaré
dual of S2 and consider ξ′ = ξ + (−r + sy)ψ. Then for any closed surface S′ inside another fiber
Fy′ ,

∫
Fy′

ψ = 0 as Fy′ does not intersect S2 hence
∫
S′
ξ′ =

∫
S′
ξ. On the other hand∫

S1

ξ′ =

∫
S1

ξ ± (−r + sy)

∫
S1

ψ = sy.

That is, after a change in ξ, we found another closed form for which the claim holds at a specific
singular fiber. Since there are only finitely many such fibers, we can repeat the process for each of
them to obtain the desired ζ.

Lemma 6.9. Under the hyphothesis of Theorem 6.7, there is a finite good open cover U of Σ such
that for each Uα ∈ U , there is a closed form ηα ∈ Ω2(p−1(Uα)) which is symplectic on the fibers of
p.

Proof. Since p : M\p−1(Γ) −→ Σ\Γ is a proper Lefschetz fibration for which [F ] 6= 0, it follows
from Gompf’s Theorem ([4], Theorem 10.2.18) that each component of M\p−1(Γ) has a symplectic
form for which the fibers are symplectic of area 1. Letting N be a small tubular neighbourhood of
Γ without singular values of p, it follows that, p : p−1(N ) −→ N is a proper Lefschetz fibration for
which [F ] 6= 0 hence we can also apply Gompf’s result here to conclude that there is a symplectic
form ω0 on p−1(N ) for which the fibers are symplectic of area 1. Finally, let U be a finite good
refinement of the cover {Σ\Γ,N} and for each Uα ∈ U let ηα be the restriction of one of the
symplectic forms above to p−1(Uα).

Lemma 6.10. Under the hyphothesis of Theorem 6.7, there is a closed 2-form σ ∈ Ω2(M) such
that σ|Fy is a symplectic form for every fiber Fy.

Proof. The forms ηα and ζ are cohomologous on p−1(Uα) (in the case of singular fibers, one must
choose the value sy so that the integrals of these forms over each cycle agree). Therefore there are
θi ∈ Ω1(p−1(Ui)) such that ηi = ζ + dθi. Let {κα} be a partitition of unity subbordinate to the
cover U and consider the form

σ = ζ + d
∑
i

p∗(κi)θi.

Since p∗κ|Fy is a constant, we have that

σ|Fy = ζ|Fy +
∑
i

p∗(κi)dθi|Fy =
∑
i

p∗(κi)(ζ|Fy + dθi|Fy ) =
∑
i

p∗(κi)ηi|Fy .

Since each ηi|Fy is a symplectic form and all of them determine the same orientation
∑
i p
∗(κi)ηi|Fy

is a symplectic form on Fy.
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End of proof of Theorem 6.7. Finally, to obtain the log-symplectic structure on M , observe that since
Σ\Γ is oriented, Γ is a real divisor on Σ representing ∧2TΣ, i.e., there is a section π ∈ Γ(∧2(TΣ))
which has Γ as its (transverse) zero locus. Since Σ is two-dimensional, π is a log-symplectic structure
whose singular locus is Γ. We further choose π so that it agrees with the orientation of Σ\Γ.
Inverting π we obtain ωΣ ∈ Ω2(Σ) with a log-singularity at Γ. Then the standard argument shows
that ω = p∗ωΣ + εσ is a log-symplectic structure for ε small enough. Indeed, away from critical
points of p, ωΣ dominates σ and hence determines a log-symplectic structure on the complement
of a small neighbourhood of ∆. In particular, ω determines an orientation on its symplectic locus.
With respect to this orientation on M\p−1(Γ) and the orientation determined by π on Σ\Γ, all
singular points are positive and the argument from [4], Exercise 10.2.21, shows that ω is symplectic
on M\p−1(Γ).

Remarks (The condition [F ] 6= 0).

• If the genus of the fiber is different from 1, then ker(p) defines a line bundle over M\∆ and this
line bundle extends to the singular locus. Letting c1 be the first Chern class of this bundle,
naturality implies that c1|F is just the Euler class of the fiber and hence, if the genus of the
fiber is not 1, c1 evaluates nonzero on [F ], showing that [F ] 6= 0;

• If an achiral Lefschetz fibration over an oriented surface has a section, then any fiber represents
a nontrivial class since it has nontrivial intersection with the section.

• S4 admits an achiral Lefschetz fibration. Since H2(S4) = {0}, the fibers are homologically
trivial and hence are tori and there is no section. Further, S4 also does not admit log-symplectic
structures due to Theorem 4.1. Therefore the condition [F ] 6= 0 can not be removed from
Theorem 6.7.

Achiral Lefschetz fibrations have been studied by Etnyre and Fuller [2] and are present in several
four-manifolds:

Theorem 6.11 (Etnyre–Fuller [2]). Let M be a simply-connected compact four-manifold. Then
both M#(S2 × S2) and M#CP 2#CP 2 admit achiral Lefschetz fibrations with a section over S2.

Combining Theorem 6.7 with Etnyre–Fuller’s Theorem we get:

Theorem 6.12. Let M be a simply connected compact four-manifold. Then both M#(S2×S2) and
M#CP 2#CP 2 admit bona fide log-symplectic structures.

6.3 Construction 2

The second construction is a nonorientable version of the first which produces proper log-symplectic
manifolds.

Building block: Given a symplectic manifold (F, σ) a symplectomorphism ϕ : F −→ F and λ > 0
we form the quotient of the log-symplectic manifold

N = (−2, 2)× R× F ; Ω|(x,y,p) = d log |x| ∧ dy + σ

by the Z-action generated by (x, y, p) ∼ (−x, y + λ, ϕ(p)):

Nϕ = N/Z.

Then Nϕ is a log-symplectic manifold with singular locus Z = {0}×R×F/Z. Notice that Nϕ\Z is
a fiber bundle over R+, with projection map induced by the invariant map π1(x, y, p) = |x| defined
on (−2, 2)×R×F . Then Z ′ = π−1

1 (1) is a coisotropic submanifold of the symplectic locus given by

Z ′ = R× F/Z (y, p) ∼ (y + 2λ, ϕ2(p)). (6.3)
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Ingredients: We will need a proper cosymplectic manifold (Z ′, θ, σ) with symplectic fiber F for
which the monodromy map is the square of a symplectomorphism ϕ : F −→ F , i.e., Z ′ is given by
(6.3). We will need further a log-symplectic manifold (M,π) and a separating embedding ι : Z ′ ↪→M
in the symplectic locus of M such that ι∗ω = σ, where ω is the induced symplectic structure on M .

The surgery: The surgery follows the same lines of Construction 1: Since ι(Z) is separating, it
defines an exterior and an interior region of M . Let M+ be the closure of the exterior. Then there
is a Z2-action on Z ′ = ∂M+, namely, in terms of (6.3), the action is generated by the map

(y, p) 7→ (y + λ, ϕ(p))

and the orbits of this action form an equivalence relation on ∂M+ which allows us to form the space

M̃ = M+/ ∼

obtained by taking the quotient of ∂M+ by this equivalence relation.

Theorem 6.13. Let (M,π), (Z ′, θ, σ) and ι : Z ′ −→ M be the ingredients for the surgery and let
M+ be the closure of the exterior region defined by ι(Z ′). Then the manifold

M̃ = M+/ ∼

obtained by taking the quotient of ∂M+ by the Z2-action has a log-symplectic structure which agrees
with the original structure on M+ outside a neighbourhood of Z = ∂M+/ ∼ and for which Z is part
of the singular locus.

The proof of this theorem is completely analogous to that of Theorem 6.1. A particular case of
this surgery has a geometric interpretation.

Corollary 6.14 (Real blow-up). Let (M2n, ω) be a log-symplectic manifold and let F 2n−2 ⊂M be
a symplectic submanifold which does not intersect the singular locus and has trivial normal bundle.
Then the real blow-up of M along F has a log-symplectic structure for which the exceptional divisor
is a component of the singular locus.

Proof. Just as in Corollary 6.2, the requirement that F has trivial normal bundle implies that a
neighbourhood of F is symplectomorphic to D2×F and hence we obtain an embedding of the proper
cosymplectic manifold S1×F into M . The monodromy of this cosymplectic manifold is the identity
map which is obviously the square of a symplectomorphism. Now, the local model is based on using
ϕ = Id, that is NF = M× F , where M is the Möbius band and the effect of the surgery is that we
remove a neighbourhood of F (which is diffeomorphic to D2 × F ) and glue back M × F . This is
precisely the underlying surgery of the real blow-up of F .

7 Reversing the surgeries

Last section we managed to produce several examples of log-symplectic manifolds out of symplectic
manifolds. One might rightfully expect that there are more examples of such structures: for one
thing the Stiefel–Whitney class either vanished (first construction) or corresponded to the generator
of H1(S1;Z2) (second construction), therefore leaving out a number of possibilities. On the other
hand, if we assume that M is orientable or, in the nonorientable case, take the orientable double
cover, then any singular locus automatically is associated to the zero Stiefel-Whitney class and
hence it has neighboorhood diffeomorphic, as a Poisson, manifold to the building blocks used in
Construction 1. Next we show that in four dimensions any log-symplectic structure is created out of
our surgeries and hence can be cut up and filled into a collection of compact symplectic manifolds.
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Theorem 7.1. Let (M4, π) be a compact, orientable, log-symplectic manifold with singular locus Z.
Then each unoriented component of M\Z can be compactified as a symplectic manifold.

Proof. According to Theorem 3.2, a neighbourhood of each connected component of Z is equivalent
to the building block of Construction 1 and hence we have two copies of Z in such neighbourhood
(one on either side of the singular locus) as a coisotropic submanifold. To reverse the surgery, one
would need to prove that such coisotropic submanifold appears as the boundary of the (interior of)
a symplectic manifold. But in four dimensions any cosymplectic manifold is automatically a taut
foliation and hence the conclusion follows from the following theorem:

Theorem 7.2 ([8], Theorem 41.3.1). Let Z be a closed 3-manifold and F ⊂ TZ be a smooth taut
foliation. Let σ ∈ Ω2(Z) be the closed form which is positive on the leaves of F . Then there is a
closed symplectic manifold (X,ω) containing Z as a separating submanifold such that ω|Z = σ.
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