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Chapter 1

Introduction

In this thesis we study global properties of Poisson manifolds using techniques
from symplectic topology, especially holomorphic curves. In particular, we study
the topology of regular Poisson manifolds (that is, symplectic foliations), log-
symplectic manifolds, and scattering-symplectic manifolds. The first two are
examined by looking at certain spaces of holomorphic curves, the last by relating
it to a composition of symplectic cobordisms between contact manifolds (such
relation can also be used to provide a framework for holomorphic curves).

Poisson manifolds

Poisson manifolds are manifolds endowed with a Poisson bracket, i.e., an anti-
symmetric binary operation on the space of smooth functions, which is a deriva-
tion in both entries and satisfies the Jacobi identity. In formulas, on a manifold
X, a Poisson structure is a bilinear map

{·, ·} : C∞(X)× C∞(X) −→ C∞(X) (1.1)

such that

• {f, g} = −{g, f}

• {f, gh} = g{f, h}+ {f, g}h

• {f, {g, h}} = {{f, g}, h}+ {g, {f, h}}

As first noted by Weinstein [38], Poisson brackets can be studied geometri-

cally: one can identify them with bivector fields π ∈ Γ(
∧2

TX) (or, equiva-
lently, with antisymmetric linear maps π# : T ∗X −→ TX), via the formula
{f, g} := π(df, dg). The Jacobi identity is equivalent to the vanishing of the
tensor [π, π], where [·, ·] is the Schouten bracket.

A Poisson bivector induces a singular symplectic foliation, such that the
tangent spaces to the leaves are pointwise generated by the Hamiltonian vector
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6 CHAPTER 1. INTRODUCTION

fields Xf := {f, ·}. Conversely every singular symplectic foliation determines
a Poisson structure – in particular, symplectic manifolds, and symplectically
foliated manifolds, are examples.

In contrast with symplectic geometry, Poisson manifolds have plenty of lo-
cal models, and the local theory is very rich. Moreover, every manifold admits
many different Poisson structures, hence it is clear that there is no correlation
between the existence of a Poisson structure and the topology of the manifold.
However, there are classes of Poisson structures that do relate to the topology
of the manifold, and have an interesting global theory: of course this is the case
for the class of non-degenerate Poisson structures (symplectic forms), as well
as codimension–1 symplectic foliations, just to name a few. The first step in
“Poisson topology” is thus to single out some classes of Poisson structures that
do interact non-trivially with the topology.

Many global aspects of Poisson brackets can be studied using Lie algebroids
and Lie groupoids, which we now define.

Definition 1. A Lie algebroid is a vector bundle A −→ X with a Lie bracket
[·, ·] on Γ(A), and a vector bundle map a : A −→ TX (the anchor map), such
that [v, fw] = f [v, w] + a(v)(f)w. A Lie groupoid is a category such that all
arrows are invertible, with set of arrows G and set of objects X, such that both
G and X are smooth manifolds, the source and target maps s, t : G −→ X are
smooth submersions, and all the structure maps (composition, inversion) are
smooth.

Each Poisson bivector gives rise to a Lie algebroid structure (T ∗X, [·, ·]π, aπ)
on T ∗X, by linearization. Each Lie groupoid gives rise to a Lie algebroid (via a
differentiation process), but not every Lie algebroid comes from a Lie groupoid
though. The requirement that the Lie algebroid (T ∗X, [·, ·]π, aπ) be coming
from a Lie groupoid (possibly with some extra properties) is a natural example
of a non-trivial global Poisson geometric property ([8], [9], [10]).

Another example which is going to play an important role in this thesis is
that of Lie algebroid symplectic structures, defined in [20] (see also [19]). Let
A −→ X be a Lie algebroid, with anchor map a : A −→ TX. A Lie algebroid
symplectic form on A is a 2–form ωA ∈ Γ(

∧2
A∗) which is non-degenerate, and

closed with respect to the Lie algebroid differential dA (an operator defined
analogously to the de Rham differential).
Let ω−1

A : A∗ −→ A be the inverse of a symplectic form on A. The following
diagram defines a Poisson structure on X

A A∗

T ∗X TX

ω−1
A

a

π

a∗ (1.2)
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Our setup

In this thesis, we identify certain classes of Poisson manifolds for which it is
possible to set up a theory of holomorphic curves, and study their topological
properties.
Originally, holomorphic curves were introduced in symplectic geometry by Gro-
mov [14]. On a symplectic manifold (X, ω) one can always find an almost
complex structure J : TX −→ TX which is suitably compatible with ω,
and is unique up to contractible choice. A J-holomorphic curve is a map
u : (Σ, j) −→ (X, J), with du ◦ j = Jdu, where (Σ, j) is a Riemann sur-
face. Gromov noticed that on a compact symplectic manifold the space of
J-holomorphic curves is well-behaved, and in particular has a natural compact-
ification. Holomorphic curves have since then been a major tool in the study of
symplectic topology.

Trying to apply the theory of holomorphic curves to the leaves of a general
Poisson manifold presents some problems, because, for example, the leaves might
be non-compact, and if the foliation is singular it is not clear how to sensibly
define almost complex structures that vary smoothly from leaf to leaf.
We focus on the following three special cases:

Symplectic foliations, i.e., foliations F of rank 2k together with a leaf-
wise symplectic form ω ∈ Γ(

∧2
T ∗F), such that dFω = 0 (ω is leafwise

closed) and ω ∧ · · · ∧ ω 6= 0 ∈ Γ(
∧2k

T ∗F)

Log-symplectic manifolds, i.e., even dimensional Poisson manifolds
(X2n, π) such that π ∧ · · · ∧ π t 0 ∈ Γ(

∧2n
TX) ([33], [16]).

Scattering-symplectic manifolds, i.e., a class of even dimensional Pois-
son manifolds that are almost everywhere symplectic, except on a hyper-
surface where the symplectic leaves are points ([20])

All the Poisson structures above are Lie algebroid symplectic structures, in
the sense of diagram (1.2), for some Lie algebroid A: the case of symplectic
foliations can be recovered setting A = TF ; log-symplectic manifolds are the
same as symplectic structures on the logarithmic tangent bundle TX(− logZ)
(or b-tangent bundle bTX; see Definition 3.2.6), where Z is the set π∧· · ·∧π = 0;
while scattering symplectic structures are by definition the Poisson structures
coming from symplectic structures on the scattering tangent bundle scTX (see
Definition 4.2.1).
The Lie algebroid A being symplectic, it admits a contractible set of compatible
complex structures, and it makes sense to try and define holomorphic maps as
those smooth functions whose tangent map lifts holomorphically to A. That is
indeed the strategy that we will follow.
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Main results

Symplectic foliations. Our main results about symplectic foliations are con-
tained in Chapter 5. We discuss the general theory of closed holomorphic curves
in compact symplectically foliated manifolds, with no assumptions on the leaves
or on the leafwise symplectic form. The main general result is the following
comstruction of a moduli space of simple curves, i.e., curves that do not factor
through a multiple cover (Corollary 5.4.3).

Theorem 2. Let (X2k+q, F2k, ω) be a symplectically foliated manifold, let A ∈
H2(X; Z). There exists a comeager set J reg ⊂ J (F) of the set of all compatible
complex structures on TF such that ∀ J ∈ J reg the moduli space Mg(A, J)∗

of simple J-holomorphic curves of genus g representing the class A is a smooth
manifold of dimension (k − 3)(2− 2g) + 2c1(A) + q

Moreover, we provide a simple argument to prove a foliated version of Gro-
mov’s compactness theorem, for a special class of foliations (Theorem 5.5.2).

Theorem 3. Assume (X2k+q, F2k, ω) is a symplectically foliated manifold with
stably complex normal bundle. Then Gromov’s compactness holds: a sequence
of holomorphic curves with bounded energy converges to a nodal holomorphic
curve with values in a leaf.

In particular the theorem holds for coorientable codimension–1 foliations.
Both theorems have versions that take marked points into account.
We use the previous two results to show the following (Theorem 5.6.7, Corol-
lary 5.6.8, Corollary 5.6.9).

Theorem 4. Let (X5, F4, ω) be a symplectically foliated 5–manifold. Assume
one of the leaves contains a symplectic sphere with trivial normal bundle. Then

• for each leaf F , π2(F ) · ω 6= 0

• if all leaves are compact, then they are all diffeomorphic to either CP 2, or
to a blow-up of a symplectic fibration with fiber CP 1

This is based on McDuff’s work from the early nineties ([26], [25], [24]).
In brief, one can always assume that a symplectic sphere with trivial normal
bundle is J–holomorphic with respect to some J ∈ J reg, and, using a standard
argument by McDuff ([25]), one can “transport” holomorphic curves throughout
the entire manifold, proving the first statement. The second statement follows
from the classification of (closed) symplectic rational and ruled surfaces ([24],
[40]), in terms of the existence of certain holomorphic spheres. In our case, the
existence of such spheres comes from the first part of the statement.

The proof of Theorem 2 mimics the standard proof for symplectic manifolds,
as presented in [28]: one realizes the Cauchy-Riemann equation as a section of
a Banach vector bundle over a Banach manifold of weakly differentiable maps,
and proves that such section can be made transverse by generically perturbing
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the complex structure. In order to apply this strategy in the foliated case,
we construct a manifold whose elements are maps f : M −→ X, with values
in the leaves of a foliation (leafwise maps). This follows the construction by
Eliasson ([12]) of a smooth structure on the space of all maps. More precisely,
one fixes a suitable regularity class S (e.g., C0, Ck, Sobolev...), and considers
S–regular maps, which form a manifold S(M, X). We give two equivalent
constructions (Theorem 5.2.8, Theorem 5.2.18) of a manifold structure on the
space S0(M, F) of all leafwise maps that satisfy a constraint on the holonomy
(we call them leafwise maps with trivial holonomy). This result holds for a
general foliated manifold (X, F) and compact domain M . We present it here
as we could not find it in the literature.

Theorem 5. The space S0(M, F) of leafwise maps with trivial holonomy is a
smooth submanifold of S(M, X).

Log-symplectic manifolds. A log-symplectic manifold (X, π) is symplectic
in the complement of its singular locus Z, where π is not invertible. Using a
normal form from [16], we show that X \Z is an example of symplectic manifold
with cylindrical ends (Section 2.3.1). Restricting one’s attention to complex
structures on TX(−logZ) that are compatible with the cylindrical structure on
X \Z, one can apply the tools of Symplectic Field Theory ([11]) and construct
moduli spaces of curves, and study their compactness.
More precisely, it is known ([16]) that the singular locus Z inherits a codimension–
1 symplectic foliation. A complex structure on TX(−logZ) induces both a com-
plex structure on X \Z and a complex structure on the leaves of the symplectic
foliation. Given a Riemann surface Σ, we will consider the following types of
maps:

(i) if ∂Σ = ∅, we study u : Σ −→ X such that either im(u) ⊂ X \Z, or im(u)
is contained in a symplectic leaf in Z

(ii) if ∂Σ 6= ∅, we require u−1(Z) = ∂Σ, and u|∂Σ to be transverse to the
symplectic foliation

We prove that the space of curves (i) is always compact up to nodal curves
(Definition 2.2.1), while in case (ii) compactness is achieved up to holomorphic
buildings (Section 2.3.5), which are the limiting objects of holomorphic curves
with cylindrical ends, studied in symplectic field theory. Smoothness of the
moduli space also follows from general results in case (ii), while it is problematic
in case (i). This is due to the fact that we are imposing the constraint that the
complex structure is cylindrical, while smoothness of the moduli space can be
achieved if one is allowed to perturb the complex structure generically. The
situation can be saved in the case Σ ∼= S2, under some hypothesis on Z, which
are always satisfied in dimension 4.
The results on the moduli spaces can be informally phrased as follows (in the
case of closed curves we focus on dimension 4 for simplicity, see Section 3.4.4,
Theorem 3.4.24, Theorem 3.5.1).
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Theorem 6. Let (X, π) be a 4–dimensional log-symplectic manifold. Then, for
a generic choice of cylindrical complex structure J on TX(−logZ), the moduli
space of simply covered J-holomorphic spheres is a smooth manifold, and it is
compact up to nodal curves.

Theorem 7. Let (X, π) be any log-symplectic manifold. Then, for a generic
choice of cylindrical complex structure J on TX(−logZ), the space of simply
covered holomorphic curves with non-empty boundary is a smooth manifold, and
it is compact up to holomorphic buildings.

Using Theorem 6, we extend a result of McDuff ([26]) on the classification
of rational and ruled symplectic manifolds to the log-symplectic case. It turns
out that the nice behaviour of the moduli space of spheres implies that the
log-symplectic 4–manifolds whose singular locus has a spherical leaf are very
special. In fact, they are disjoint from the log-symplectic manifolds with as-
pherical leaves, and can be classified up to symplectic deformation equivalence.
In the following statement, we will assume that the manifold is minimal, i.e., it is
not the blow-up of another log-symplectic manifold at a point in the symplectic
locus (Corollary 3.4.30, Proposition 3.4.37).

Theorem 8. Let (X, π) be a minimal log-symplectic 4–manifold. Assume that
Z contains a copy of S1 × S2. Then X supports an S2-fibration over a (not
necessarily orientable) closed surface B, with symplectic fibers, and such that
Z is a union of fibers. Moreover, the log-symplectic form depends only on the
diffeomorphism type, up to deformations.

Note that X need not be orientable. The proof of Theorem 8 is very similar
to that of Theorem 4, in that we use the moduli space to transport holomorphic
spheres throughout the manifold. One then needs an extra step to show that
such spheres actually foliate the manifold.
It is also possible to obtain a result similar to Theorem 8 using the moduli
space of curves with boundary constructed in Theorem 7. Such result will have
as input a sphere which intersects Z transversely, and is holomorphic, in the
complement of Z, with respect to a given cylindrical complex structure J . We
mention here a simplified version of the statement (see Corollary 3.5.18).

Theorem 9. Let (X, π) be a minimal log-symplectic 4–manifold, such that
Z ∼= t

i
S1 × Σgi . Fix a cylindrical complex structure J , and assume there exists

a J–holomorphic sphere S ⊂ X with S t Z and S · S = 0. Then

• gi = gj for all i, j

• there is a continuous fibration f : X −→ Σgi with fiber S2, such that Z is
a union of sections.

As before, there is a non-orientable version of the statement, where the
assumption of the existence of a holomorphic sphere is replaced by the existence
of an RP 2 that is holomorphic in the complement of Z. The proof of Theorem 9
is conceptually similar to that of Theorem 8, but technically much harder. The
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reason is that while we would like to move the holomorphic sphere through
the manifold, we can only move its holomorphic pieces, in the complement of
Z. This is possible if the pieces have genus 0, thanks to the properties of the
moduli spaces in such case. Then, we try to glue the pieces back together. The
gluing can be performed only if the resulting surface is topologically S2 or RP 2,
for purely combinatorial reasons. The fact that the resulting fibration is only
continuous is due to the fact that while performing the gluing we lose control
over the derivatives at Z of the holomorphic embeddings.

Scattering-symplectic manifolds. The scattering tangent bundle is a Lie
algebroid scTX associated with a manifold X with a hypersurface Z. It is by
definition the bundle whose sheaf of sections is generated by x2 ∂

∂x , x
∂
∂yi

, with

Z = {x = 0}, and yi forming a set of coordinates on Z. A scattering symplectic
structure is a Poisson structure induced by a symplectic structure on scTX, in
the sense of the diagram (1.2).
Like in the log-sympectic case, a scattering-symplectic structure π is symplectic
on X \ Z. The structure induced on Z is not a symplectic foliation, but a
cooriented contact structure. If Z is connected, then, each component of X \ Z
is a symplectic manifold such that the boundary inherits a contact structure
– i.e. it is a symplectic filling, which we call a scattering symplectic filling.
It is natural to ask how does such notion of fillability compare to the other
notions that already exist in the literature, and in fact such question was already
answered in a special case in [20]. We study the problem in the general case,
and show that scattering-fillability is equivalent to weak fillability, in the sense
of [23] (see Theorem 4.4.2).

Theorem 10. A cooriented contact manifold has an orientable scattering-filling
if and only if it is weakly fillable, in the sense of [23].

The proof is an explicit manipulation in normal form in a collar neighbour-
hood of the boundary. In fact, what the proof really shows is that any scattering
symplectic manifold is a gluing of weak symplectic cobordisms of contact man-
ifolds (up to deformation). The relation with holomorphic curves is somehow
implicit, in that [23] and [31] have shown that there is a sensible theory of holo-
morphic curves in weak symplectic cobordisms (based once again on symplectic
field theory). In the same paper [23] the authors prove (using a holomorphic
curve argument) that weak fillability is obstructed by overtwistedness. Hence:

Corollary 11. The singular locus of a scattering symplectic manifold, if con-
nected, is tight (i.e. not overtwisted).

Organization of the thesis

In Chapter 2 we provide some background material on holomorphic curves, in-
cluding a quick review of some aspects of the intersection theory of punctured
holomorphic curves that we will use in Chapter 3.
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Chapter 3 is devoted to log-symplectic manifolds. We quickly review some gen-
eral facts, making the relation with symplectic manifolds with cylindrical ends
explicit. We introduce a natural notion of holomorphic curves using the lan-
guage of logarithmic tangent bundles, and prove its equivalence with the usual
holomorphic curves in symplectic field theory, and construct the moduli spaces
via this equivalence. We first focus on closed curves, and use them to classify
ruled surfaces; then we move on to curves with boundary, and prove Theorem 9.
Chapter 4 deals with scattering-symplectic manifolds, contains a review of a few
notions of symplectic fillability of contact manifolds, and proves the equivalence
between scattering fillings and weak fillings.
Finally Chapter 5 contains the construction of the manifold of leafwise maps
(with trivial holonomy), and a construction of a moduli space of closed holo-
morphic curves. We conclude with a study of codimension–1 foliations on 5–
manifolds containing certain symplectic spheres.



Chapter 2

Holomorphic curves

This chapter contains the definitions and main properties of holomorphic curves
in symplectic manifolds, and the construction of their moduli spaces. It consists
of three parts: first we introduce and study curves with closed domain, and
their moduli spaces (Section 2.2). The second part deals with Symplectic Field
Theory (SFT), i.e. the theory of punctured holomorphic curves. The third
part develops the intersection theory of holomorphic curves, with a focus on the
punctured case.
The notation we use is the standard one, thus the reader who is familiar with
the basics of holomorphic curves, but not with SFT and/or intersection theory,
can safely skip the first few pages.
Our treatment is by no means exhaustive, as we only focus on the results that
we are going to need in the applications in the later chapters. We refer to [28]
for a general treatment of holomorphic curves, with a focus on the compact
case; to [42], [11], [3] for punctured holomorphic curves, and to [39], [35] for the
intersection theory of punctured holomorphic curves.

2.1 General definitions

Pseudo-holomorphic curves were introduced in [14], and studied ever since to
address a variety of problems in symplectic geometry.
The setup is the following. Given two almost complex manifolds (Y, JY ) and
(X, JX), it makes sense to say when a smooth map f : (Y, JY ) −→ (X, JX) is
holomorphic: one requires that the differential be complex-linear, i.e.

df ◦ JY = JX ◦ df (2.1)

Equation (2.1) is the Cauchy-Riemann equation. The Cauchy-Riemann opera-
tor is the non-linear differential operator ∂JY JXf = 1

2 (df + JX ◦ df ◦ JY ). Of

course ∂JY JXf = 0 if and only if Equation (2.1) holds.

13
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In principle, finding solutions of Equation (2.1) in the “almost” setting
might be harder than in the integrable case. For example, consider maps
f : (Y, J) −→ C. The integrability of JY is the existence of dim(Y ) independent
solutions of Equation (2.1). However, whenever Y is 2-dimensional (i.e. it is a
Riemann surface) the behaviour of the set of solutions of the Cauchy-Riemann
equation does not depend (in general) on the integrability of JX . If Y is 2-
dimensional, we normally use the notation u : (Σ, j) −→ (X, J), and we say
that u is a holomorphic curve.

The most common strategy to employ holomorphic curves consists of con-
structing good moduli spaces of them. First of all, one declares two holomorphic
curves to be equivalent is they differ by a reparametrization of the domain. An
equivalence class of holomorphic curves modulo reparametrization of the do-
main is called an unparametrized holomorphic curve. Then one considers sets
of unparametrized holomorphic curves, normally with the same domain S (at
least as smooth surfaces). These sets come naturally endowed with the topology
induced from the Fréchet topology on the set of smooth maps {u : S −→ X}.
The two main problems that one faces in general are:

(i) is the space of holomorphic curves a smooth manifold1?

(ii) is the resulting space compact?

In general, the answer to (ii) is no, but the failure of compactness is well under-
stood – it generally depends on the topology of Σ and X. Question (i) is also
known as the transversality problem, as one wants to realize the moduli space
as the zero set of a transverse section of a vector bundle.

How is this related to symplectic geometry? First of all any symplectic man-
ifold (X, ω) is almost complex. Moreover, the symplectic form and the complex
structure can be used to define a Riemannian metric, with which one can esti-
mate the area of surfaces, which proves very useful in practise.
More precisely, there exists a non-empty, contractible set of tame almost com-
plex structures, i.e. almost complex structures J such that the symmetrization
g(·, ·) of ω(·, J ·) is a Riemannian metric. One could also consider compati-
ble almost complex structures, for which the tensor ω(·, J ·) is already a met-
ric. Compatible almost complex structures also form a non-empty contractible
space. What one does is to choose an almost complex structure which is com-
patible/tame with the given symplectic form ω, and study holomorphic curves
with respect to such complex structure. Another natural question is

(iii) (how) does the space of holomorphic curves depend on the choice of almost
complex structure?

It turns out that the space of J-holomorphic curves does depend on the choice
of J . Even the answer to question (i) above does, and complex structures for

1In a way compatible with the setup, for example compatible with the Fréchet manifold
structure of the space of smooth maps.
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which (a certain class of) holomorphic curves form smooth moduli spaces are
called (Fredholm) regular (for that particular class). It is a crucial problem to
determine which complex structures are regular (and before that, if they exist at
all). Given two regular almost complex structures, under some conditions one
can prove that the moduli spaces of curves with respect to the two structures
are closely related (though not diffeomorphic). More details will be given in the
next sections.

2.2 Closed holomorphic curves in closed mani-
folds

We restrict now our attention to the case of closed Riemann surfaces (Σ, j)
mapped to closed symplectic manifolds (X, ω). The standard reference for this
is [28]. Endow X with a tame almost complex structure J .

2.2.1 Energy

To each smooth map u : (Σ, j) −→ (X, J) one can associate a non-negative real
number, called energy of the map, defined as

E(u) :=

∫
Σ

|du|2dvolΣ (2.2)

Here the norm of du is defined using the Riemannian metrics on Σ and X
constructed using the complex structures and the symplectic forms dvolΣ and
ω. It is a key fact that E(u) is a topological quantity, whenever u is holomorphic
and J is tame. Indeed, if u is holomorphic, one has

E(u) =

∫
Σ

u∗ω (2.3)

This equality is known as the energy identity. It implies that the energy of
a holomorphic curve only depends on its homology class [u] := u∗([Σ]) ∈
H2(X; Z) (in particular it does not depend on the choice of tame almost complex
structure). A first consequence of the energy identity is that a homologically
trivial holomorphic curve needs to be constant.

2.2.2 Compactness

A sequence of (unparametrized) holomorphic curves might not converge to a
holomorphic curve, in the C∞ topology. However, there exist more general ob-
jects, called nodal holomorphic curves, that can appear as limits of sequences
of holomorphic curves, with respect to a certain notion of limit known as “Gro-
mov convergence”. It is a well-known fact, due to Gromov, that any sequence
of holomorphic curves with bounded energy admits a subsequence converging
to a nodal curve - which implies that the set of nodal curves is compact. Here
we give the definition of nodal curve, after which we state the results.
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Definition 2.2.1 (Nodal curves). A nodal holomorphic curve consists of the
following data:

• a Riemann surface (S, j) = t
a
(Sa, ja)

• a holomorphic map u = (ua)a : t
a
Sa −→ X, where none of the ua’s is

constant

• a set N of points in tSa, called nodes, with a fixed-point-free involution
σ : N −→ N , such that u(n) = u(σ(n)) ∀n ∈ N , and such that the
singular surface obtained by glueing n with σ(n) is connected

We define the homology class of a nodal curve as
∑
a[ua]. Taking connected

sums of the components Sa at corresponding nodes, one obtains a smooth surface
S. The genus of a nodal curve (S, u, N) is by definition the genus of S.

Theorem 2.2.2 (Gromov compactness, [28], Theorem 4.6.1). Let X be a com-
pact manifold, and let Jk be a convergent sequence of almost complex structures
on X, and let J∞ be the limit. Let uk be a sequence of Jk-holomorphic curves
satisfying a uniform energy bound E(uk) ≤ C. Then there exists a subsequence
converging to a J∞-holomorphic nodal curve u∞. If all the curves have the same
genus, then so does the limit. If [uk] = A, then [u∞] = A.

Remark 2.2.3. If (X, ω) is symplectic, and Jk is a sequence of tame almost
complex structures, the energy bound can be provided by the requirement that
all curves represent the same homology class [uk] = A (Equation (2.3)).

Note that if the homology class A cannot be split as a sum A = A1+· · ·+AN ,
with Ai representable by a holomorphic map (e.g. if A = A1 + · · ·+ AN (non-
trivially) then Ai · ω ≤ 0), then Theorem 2.2.2 implies that the set of curves
u : Σ −→ X with [u] = A is compact.

2.2.3 Moduli spaces

One can collect holomorphic curves of the same genus in moduli spaces, i.e. one
can give a geometric structure to the set of holomorphic maps from a surface
with a fixed genus. More precisely, one would like to consider unparametrized
holomorphic curves, in the following sense. We say that two holomorphic curves
u : (Σ, j) −→ (X, J), u′ : (Σ′, j′) −→ (X, J) are equivalent if there is a
biholomorphism φ : (Σ, j) −→ (Σ′, j′) such that u′ ◦ φ = u (they differ by a
reparametrization). The set of self equivalences of a holomorphic curve is called
automorphism group.
We consider

Mg(J) := {(j, u) : u : Σg −→ X smooth such that du ◦ j = Jdu}/ ∼

The topology of this set is the quotient topology induced by the (Fréchet) topol-
ogy on the set of all smooth maps. To give a smooth structure to this space,
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one views the operator ∂J , defined as

∂Ju =
1

2
(du+ Jdu ◦ j) (2.4)

as a section of an infinite dimensional vector bundle, in the following way. En-
large the set of smooth maps considering a set B = B(Σ, X) of continuous
Sobolev maps u : Σ −→ X. Given u ∈ B smooth, take the Banach space
Eu ⊃ Ω0,1(Σ; u∗TX), (a suitable Sobolev completion of the space) of complex
antilinear 1-forms on Σ with coefficients in u∗TX. The union of those Banach
spaces forms a Banach bundle π : E −→ B, of which ∂J is a section. This sec-
tion is Fredholm. If it is transverse (i.e. its vertical component at solutions is
surjective) then the zero set is smooth, as a consequence of the implicit function
theorem, and finite dimensional.

Definition 2.2.4. A holomorphic curve u is Fredholm regular if the linearization
at u of the operator ∂J is surjective.

Given u : Σ −→ X, denote with [u] := u∗([Σ]) ∈ H2(X; Z) the homology
class of the map. Letting A ∈ H2(X; Z) be a singular homology class, define

Mg(A, J) := {[(j, u)] ∈Mg(J) : [u] = A}

The dimension of the component of this set containing a solution u is computed
using the Fredholm index of the operator ∂J at u (which is also called the index
of u). This only depends on the homology class [u] = A: one has ind(u) =
nχ(Σ) + 2c1(A). The dimension of the moduli space is obtained from the index
adding the dimension of the space of complex structures on Σ, and subtracting
the dimension of the automorphism groups. The resulting integer is called the
virtual dimension of Mg(A, J). One can compute that for all Σ and A the
virtual dimension is vdimMg(A, J) = (n− 3)χ(Σ) + 2c1(A).

Theorem 2.2.5 ([41], Theorem 4.43). The set Mg(A, J)reg ⊂ Mg(A, J) of
Fredholm regular curves is a smooth orbifold of dimension vdimMg(A, J).

In order to study the regularity of holomorphic curves it is important to
make a distinction between simple and multiply covered curves:

Definition 2.2.6. A holomorphic map u : Σ −→ X is multiply covered if
there exists a (non-trivial) branched cover c : Σ −→ Σ′ and a holomorphic map
v : Σ′ −→ X such that u = v ◦ c. A curve which is not multiply covered is called
simple.

In general, multiply covered curves pose more problems to the transversality.
For closed simply covered curves one has the following result. Denote with J (ω)
a set of ω-compatible or ω-tame almost complex structures on X.

Theorem 2.2.7 ([41], Theorem 4.48). There exists a comeager2 subset of com-
plex structures J reg = J reg(ω) ⊂ J (ω) such that for all J ∈ J reg, every simple
u ∈Mg(J) is Fredholm regular.

2A countable intersection of open dense subsets.
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Let A ∈ H2(X; Z). Denote with M∗g(A, J) the set of genus g simple J-
holomorphic curves in the homology class A.

Corollary 2.2.8. There exists a comeager subset of complex structures J reg =
J reg(ω) ⊂ J (ω) such that for all J ∈ J reg the space M∗g(A, J) is a smooth
manifold of dimension vdimMg(A, J) = (n− 3)χ(Σ) + 2c1(A)

The proof of Corollary 2.2.8 goes more or less as follows. One considers the
manifold B(Σ, X) of suitably regular maps u : Σ −→ X, and the space J (X, ω)
of suitably regular tame or compatible almost complex structures. Let Mg be
the moduli space of Riemann surfaces of genus g. The key point of the proof is
to show that the subset

M̃g(X) ⊂ B(Σ, X)×Mg × J (X, ω)

defined as
M̃g(X) = {(u, j, J) : ∂j,Ju = 0}

is a smooth submanifold. This can be proven showing that the vertical differ-
ential of the map

∂ : B ×Mg × J −→ E (2.5)

is surjective. Now, denoting by pJ : M̃g(X) −→ J the restriction of the pro-
jection onto the second factor, one has by definition that Mg(J) = p−1

J (J)/ ∼
(as sets). One can check (see proof of 3.1.6 (II) in [28]) that the differential of
pJ and the vertical differential of ∂J have isomorphic kernel and cokernel, in
particular one is surjective if and only if the other is. Hence, for regular values
J of pJ , J is Fredholm regular. In particular, by Sard’s theorem, the set of
regular almost complex structures is comeager, and in particular dense.

The discussion above is useful to prove that “regular holomorphic curves are
stable under deformations”, in the sense of the following lemma.

Lemma 2.2.9 ([28], Remark 3.2.8). Let J be an almost complex structure, and
let u be a Fredholm regular J-holomorphic curve. Then there exists a regular
almost complex structure J̃ , close to J , and a J̃-holomorphic curve ũ close to
u.

Proof. Since pJ is a submersion at (u, J), it is a submersion in a neighbourhood
U of (u, J). By density of the set of regular complex structures, there is a regular
J̃ in a neighbourhood of J contained in pJ (U). The pair (ũ, J̃) can be found
in U ∩ p−1

J (J̃).

We conclude the section mentioning some criteria to ensure that a holomor-
phic curve is Fredholm regular.

Proposition 2.2.10 ([28], Lemma 3.3.1). Let (X, J) be an integrable complex
manifold, and u : CP 1 −→ X holomorphic. Write u∗TX = L1 ⊕ · · · ⊕ Ln, Li
holomorphic line bundle. u is Fredholm regular if and only if c1(Li) ≥ −1 ∀ i’s.
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The proof of this is a simple cohomology computation using the Riemann-
Roch formula and Serre duality. A variation of Proposition 2.2.10 can be used
to prove the following:

Proposition 2.2.11 ([28], Corollary 3.3.5). Let (M, ω) be a symplectically as-
pherical symplectic manifold (π2(M) · ω = 0). Let X = S2 × M , and A =
[S2 × {∗}]. Consider a product complex structure J = j × JM on X, where
JM is an ω-tame almost complex structure. Then any holomorphic u in the
homology class A is Fredholm regular.

A different more difficult automatic transversality result, that only holds in
dimension 4, is the following.

Theorem 2.2.12 ([17], Theorem 1). Let (M, J) be an almost complex 4-
manifold, and u : Σ −→ X an immersed holomorphic curve, such that ind(u) >
2g− 2. Then u is Fredholm regular. In particular if u is an immersed sphere of
non-negative index it is Fredholm regular.

2.3 Punctured holomorphic curves

We describe here some general aspects of the theory of punctured holomorphic
curves in open symplectic manifolds, under some assumptions on the geometry
at infinity. In particular, we will study open manifolds which can be constructed
from a compact manifold with boundary by attaching a cylindrical end (i.e. a
copy of the boundary times a half line). Moreover the boundary needs to be a
special type of manifold, i.e. it needs to carry a so called stable Hamiltonian
structure.
The study of punctured holomorphic curves in manifolds with cylindrical ends is
part of a theory known as Symplectic Field Theory (SFT), which was introduced
in 2000 in [11].
A piece of notation: we will denote with Σ a closed Riemann surface, and given
a finite set of punctures Γ ⊂ Σ, we will denote the corresponding punctured
surface Σ \ Γ with Σ̇.

2.3.1 Stable Hamiltonian structures and cylindrical ends.

Definition 2.3.1. A stable Hamiltonian structure on a (2n − 1)-dimensional
manifold Z is a pair (α, β) consisting of a 1-form α and a 2-form β such that

• dβ = 0

• α ∧ βn−1 is a volume form

• kerβ ⊂ ker dα

The Reeb vector field of a stable Hamiltonian structure is the unique vector field
R such that ιRβ = 0 and α(R) = 1.
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Remark 2.3.2. The form ω = d(sα) + β is symplectic on (−ε, ε)× Z.

Example 2.3.3. If α is a contact form, then (α, dα) is stable Hamiltonian.

Example 2.3.4. If α and β are both closed, with α ∧ βn−1 6= 0, then (α, β) is
stable Hamiltonian. In this case d(sα) +β = ds∧α+β is symplectic on R×Z.
These stable Hamiltonian structures are called cosymplectic structures.

Definition 2.3.5. A symplectic manifold (W, ω) has stable Hamiltonian bound-
ary ∂W = Z+ tZ− if there exists a vector field V (defined in a neighbourhood
of the boundary), which points outwards at Z+ and inwards at Z−, such that
((ιV ω)|T∂W , ω|T∂W ) is a stable Hamiltonian structure on ∂W , inducing the
boundary orientation on Z+, and the opposite orientation on Z−.

Let us assume for simplicity that Z− = ∅. A collar neighbourhood of a stable
Hamiltonian boundary is symplectomorphic to (−ε, 0] × ∂W with symplectic
form ω = d(sα) + β (Moser argument). The symplectomorphism is obtained

by realizing the vector field V as V = ∂
∂s . This naturally endowes Ŵ := W ∪

[0, ∞)× ∂W with a smooth structure. Moreover, the form ω extends smoothly

as a closed form ω̂ϕ on Ŵ , with ϕ : (−ε, ε) −→ R a diffeomorphism equal to
the identity near 0. The extension is defined by the formula ω̂ϕ|[0,∞)×∂W :=

d(sα) + β. One calls the manifold (Ŵ , ω̂ϕ) the completion of (W, ω).

2.3.2 Cylindrical complex structures and holomorphic maps

We shall restrict our attention to a special class of complex structures.

Definition 2.3.6. A complex structure J on Ŵ is cylindrical if it is ω̂-tame,
and on the cylindrical end it satisfies

• J is s-invariant

• J∂s = R

• J(kerα) = kerα

• J is β-compatible on kerα

As in the closed case, there is a useful notion of energy of a holomorphic
curve. Let u : Σ̇ −→ Ŵ be a holomorphic map.

Definition 2.3.7. The energy of a punctured holomorphic curve is the quan-
tity E(u) := sup

ϕ

∫
Σ
ω̂ϕ. The supremum is taken over all diffeomorphisms

ϕ : [0, +∞) −→ [0, ε) equal to the identity near 0.

Finite energy curves enjoy special geometric properties, under the following
non-degeneracy assumption on the stable Hamiltonian boundary.

Definition 2.3.8. A stable Hamiltonian structure (α, β) on Z is Morse-Bott
if for all T > 0
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• the set ZT ⊂ Z of points belonging to a T -periodic Reeb orbit is a closed
submanifold

• rank dα|MT
is locally constant

• TpZT = ker(dpφ
T − 1) for all p ∈ ZT , where φT is the time–T map of the

Reeb flow.

Example 2.3.9. Take a closed disc (D2, ωstd) and a symplectic manifold (M, η).
The product (D2 ×M, ωstd + η) is a symplectic manifold whose boundary is
S1×M . The boundary inherits a stable Hamiltonian structure of cosymplectic
type, namely (dt, η) (t is the coordinate on the circle R/Z). Such structure
is Morse-Bott. Indeed, the Reeb vector field is ∂t, thus the Reeb orbits have
integer period, and are iterations of the standard cover of the circle, with image
S1× p. In the notation of Definition 2.3.8 ZN = S1×M for all N ∈ N, hence it
is a closed manifold. Also the second condition in Definition 2.3.8 is satisfied, as
α = dt is closed. Also the Reeb flow is the identity map, so the third condition is
trivially satisfied. This example is going to play an important role in Chapter 3.

The following theorem is proved in [2].

Theorem 2.3.10 ([2], Proposition 3.4). A finite energy holomorphic curve with
values in the completion of a symplectic manifold with Morse-Bott stable bound-
ary is proper, and is asymptotic to a closed Reeb orbit. This means that for
each puncture, there are holomorphic coordinates reiθ centered at the puncture,
and a closed Reeb orbit γ, such that u(reiθ)→ γ(eiθ) for r → 0.

If Σ̇ = Σ \Γ, we say that a puncture z ∈ Γ is positive is it is asymptotic to a
Reeb orbit in Z+, negative otherwise. We split the set of punctures accordingly
as Γ = Γ+ ∪ Γ−.

2.3.3 Asymptotic operators

In order to study punctured holomorphic curves, it is useful to have a detailed
understanding of the behaviour of the Cauchy-Riemann operator near the punc-
tures. In this section we describe some properties of (non-degenerate) asymp-
totic operators, which are exactly the operators that arise as certain limits of
Cauchy-Riemann operators at the punctures. We refer to [42] for a complete
account.

Definition 2.3.11. Let (E, J, ω) −→ S1 be a Hermitian vector bundle over
a punctured Riemann surface. An asymptotic operator A : Γ(E) −→ Γ(E) is
an operator that can be written, in a unitary trivialization τ : E ∼= S1 × R2n,
as Aτ : C∞(S1, R2n) −→ C∞(S1, R2n), Aτ = −J0

d
dt − S(t), where J0 is the

standard complex structure and S(t) is a loop of symmetric matrices. We say
that A is non-degenerate if ker(A) = 0.

It is crucial for the index theory of Cauchy-Riemann operators and the inter-
section theory of holomorphic curves to understand the Conley-Zehnder index
and the spectrum of asymptotic operators.
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Conley-Zehnder index

The Conley-Zehnder index is an integer µCZ(Ψ) which is associated to a path
of symplectic matrices Ψ(t), such that Ψ(0) = I, and det(Ψ(1) − I) 6= 0. We
will not present a construction of µCZ , but we will define it as the unique map
satisfying certain properties (see [34]).

Definition 2.3.12. • µCZ is invariant under homotopy with fixed end points;

• let Φ be a loop of symplectic matrices, with Φ(0) = Φ(1) = I. Then
µCZ(ΦΨ) = µCZ(Ψ) = 2µ(Ψ), where µ denotes the Maslov index3;

• if S is a symmetric matrix with norm ||S|| < 2π, and Ψ(t) = exp(J0St),

then µCZ(Ψ) =
1

2
sign(S), where sign(S) is the signature of S.

The last property is the most important to us, as we will only need to com-
pute the Conley-zehnder index explicitly for matrices of the form exp(J0St) (see
Chapter 3).

One can define µCZ(A) for a non-degenerate trivialized asymptotic operator
of the form A = −J0

d
dt − S(t) as µCZ(Ψ(t)), where Ψ(t) is the unique solution

to (−J0
d

dt
− S(t))Ψ = 0

Ψ(0) = I
(2.6)

The solution to this system is unique and symplectic, and by non-degeneracy of
A one has det(Ψ(1)− I) 6= 0, thus the definition makes sense.

Definition 2.3.13. Let A be an asymptotic operator on smooth sections of
(E, J, ω) −→ S1. Let τ : E ∼= S1×R2n be a unitary trivialization. The Conley-
Zehnder index (relative to τ) of A is by definition the Conley-Zehnder index of
the trivialized operator Aτ . That is,

µτCZ(A) := µCZ(Aτ )

Spectrum of asymptotic operators

We collect here some facts about the spectrum of asymptotic operators, as
well as the relation between eigenvalues and the Conley-Zehnder index. Again,
in applications we will only deal with very simple explicit cases, where we
can compute spectrum and eigenfunctions explicitely. Nonetheless, the general
treatment will be useful later, especially when discussing intersection theory of
punctured holomorphic curves (see Section 2.4.3).

3The Maslov index is a map realizing the isomorphism π1(Sp(n)) ∼= Z. Roughly, one first
retracts the symplectic group onto the unitary group, then one takes the complex determinant.
The Maslov index µ is the induced map in π1. See [27]
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First of all, asymptotic operators are Fredholm and self-adjoint, as oper-
ators between Sobolev spaces H1(S1, R2n) −→ L2(S1, R2n) ([42]), hence the
spectrum is real and discrete. Moreover, they have infinitely many positive and
negative eigenvalues (see Proposition 3.27 in [42]).
In low dimension (E ∼= R2) one can also get a precise description of the eigen-
functions, due to [18] (see Theorem 3.35 in [42]).

Theorem 2.3.14. Let A : H1(S1, R2n) −→ L2(S1, R2n) be an asymptotic
operator, of the form A = −J0

d
dt − S(t). Denote by σ(A) ⊂ R the spectrum of

A, and for each λ ∈ σ(A) let Eλ ⊂ H1(S1, R2) be the corresponding eigenspace.
Then

• every non-zero eλ ∈ Eλ is nowhere 0. In particular, the winding number
wind(eλ) of eλ is well defined;

• every two non-zero elements in Eλ have the same winding number, which
we denote by wind(λ);

• if λ, λ′ ∈ σ(A) with λ < λ′, then wind(λ) ≤ wind(λ′);

• for each k ∈ Z, there exist exactly two eigenvalues (counted with multi-
plicity), such that their winding number is k.

Given this result, it makes sense to define the extremal winding numbers
of an asymptotic operator A defined on sections of a two-dimensional vector
bundle (relative to a trivialization). Given a trivialization τ , these numbers are,
by definition

ατ+(A) := min{wind(λ) : λ ∈ σ(Aτ ) ∩ (0, +∞)}
ατ−(A) := max{wind(λ) : λ ∈ σ(Aτ ) ∩ (−∞, 0)}

(2.7)

One defines the parity of A as

p(A) := ατ+(A)− ατ−(A) (2.8)

The number p(A) does not depend on the trivialization τ , and if A is non-
degenerate, is either 0 or 1. These numbers will appear in the intersection
formulas of punctured holomorphic curves. They are also related to the Conley-
Zehnder index, in the following way.

Theorem 2.3.15 ([42], Theorem 3.36). If A is a non-degenerate asymptotic
operator on a complex line bundle, one has

µτCZ(A) = 2ατ−(A) + p(A) = 2ατ+(A)− p(A)

Asymptotic operators and Reeb orbits

Let (Z, α, β) be stable Hamiltonian, with ξ := kerα, and let γ : S1 −→ Z be a
Reeb orbit of period T . Let J be a β-compatible complex structure on ξ.
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Lemma 2.3.16 ([42], Exercise 3.27). Let ∇ be a symmetric connection on TZ.
Let Aγ : Γ(γ∗ξ) −→ Γ(γ∗ξ) be defined as

Aγη = −J(∇t − T∇ηR) (2.9)

Then Aγ is an asymptotic operator in the sense of Definition 2.3.11

Definition 2.3.17. Aγ is the asymptotic operator associated to the Reeb orbit
γ.

Remark 2.3.18. Given a punctured holomorphic curve u : Σ̇ −→ R× Z, with
a puncture z ∈ Σ asymptotic (at +∞) to γ, one can realize Aγ as a limit at
+∞ of the linearized Cauchy-Riemann operator on u∗T (R × Z). The details
are provided in [42].

2.3.4 Moduli spaces

Consider a punctured surface Σ̇ = Σ\Γ, and let R = (R1, . . . ,Rk) be a k-tuple
of connected sets of Reeb orbits.

Definition 2.3.19. We say that a set of asymptotic constraints c is the datum
of

• a partition Γ = Γ±C t Γ±U into (positive or negative) constrained and un-
constrained punctures;

• for each z ∈ ΓC , a Reeb orbit γz;

• for each z ∈ ΓU , a connected manifold Sz ⊂ ∂W of points belonging to a
family Rz of Reeb orbits.

We say that a punctured holomorphic curve u : Σ̇ −→ Ŵ satisfies the constraints
c if each puncture z ∈ ΓC is asymptotic to γz, and each puncture z ∈ ΓU is
asymptotic to a Reeb orbit belonging to Rz.

A curve with k punctures, subject to a constraint c, determines a relative
homology class A ∈ H2(W,

⋃
z∈ΓC

γz ∪
⋃

z∈ΓU

Sz). Define

Mg(A, J)c

as the set of equivalence classes of punctured genus g J-holomorphic curves,
subject to the constraint c, in the homology class A. As in the closed case,
there is a generic transversality result, and a dimension formula for the moduli
space.

In order to give the dimension formula, we need to define the relative first
Chern number of a vector bundle over a surface with boundary, and the total
Conley-Zehnder index.
Let E −→ Σ be a complex vector bundle, let τ be a trivialization of E|∂Σ. If
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rk = C(E) = 1, one defines cτ1(E) as the number of zeros of a transverse section
of E, which is constant on ∂Σ with respect to the trivialization τ . For higher
rank bundles, we extend the definition additively.
Let u : Σ −→ Ŵ be holomorphic. Fix a trivialization τ of u∗TW in a neigh-
bourhood of the punctures, we can define

cτ1(u) := c1(u∗TŴ )

Define the total Conley-Zehnder index as

µτ (c) :=
∑
z∈Γ+

µτCZ(γz + δz)−
∑
z∈Γ−

µτCZ(γz − δz) (2.10)

where

δz =

{
ε if z ∈ ΓC

−ε if z ∈ ΓU
(2.11)

for ε > 0 suitably small.
Define

vdimMg(A, J)c := (n− 3)χ(Σ̇) + 2cτ1(A) + µτ (c) (2.12)

(if u ∈Mg(A, J, S), this is also called the index of u, and denoted by ind(u)).

Theorem 2.3.20 ([42], Theorem 7.1). Let Ŵ be the completion of a mani-
fold with Morse-Bott stable Hamiltonian boundary. Let V be an open subset.
Fix a complex structure Jfix on Ŵ \V , and consider the subset M∗g(A, J ; V )c ⊂
Mg(A, J ; V )c of simple curves with an injective point mapped to V . Let J (ω, Jfix)
be the set of compatible almost complex structures that coincide with Jfix on

Ŵ \ V . Then there exists a comeager subset J (ω, Jfix)reg ⊂ J (ω, Jfix) such
that for all J ∈ J (ω, Jfix)reg the space M∗g(A, J ; V )c is smooth of dimension
vdimMg(A, J ; V )c.

Analogously to the closed case presented in Theorem 2.2.12, an automatic
transversality result for punctured holomorphic curves holds in dimesion 4. In
order to state it, we introduce the normal Chern number :

cN1 (u) = cτ1(u)− χ(Σ̇) +
1

2
µ(c) +

∑
z∈Γ+

ατ−(γz + δz)−
∑
z∈Γ−

ατ+(γz − δz) (2.13)

Theorem 2.3.21 ([39], Theorem 1). Let u be an immersed punctured holomor-
phic curve. If ind(u) > cN1 (u), then u is Fredholm regular.

2.3.5 Compactness

The compactness theory of punctured holomorphic curves is more complicated
than its closed analogue. As in the closed case, bubbling of spheres might oc-
cur; moreover, another phenomenon, called breaking, might occur. The objects
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that describe the bubbling behaviour and the breaking are called holomorphic
buildings. We will not explain the definition of buildings in full generality, but
indicate the main ideas. For a complete definition see ([42], Section 9.4.2).

Assume that Ŵ = R × Z, and consider spheres with two punctures (i.e.
cylinders), with one puncture asymptotic to {−∞} × γ− (negative puncture),
and the other asymptotic to {+∞} × γ+ (positive puncture). Assuming that
no bubbling can occur, the limiting objects in the moduli space of cylinders are
so-called broken cylinders: finite sets u = (u1, . . . , uN ) of cylinders with values
in R × Z, such that: u1(−∞, t) = {−∞} × γ−, uN (+∞, t) = {+∞} × γ+,
and uj(+∞, t) = uj+1(−∞, t). The integer indexing the cylinders is called the

level. In the case of a completion Ŵ , the behaviour is the same, except that u1

will be a map with values in Ŵ , while uj takes values in R × Z for all j > 1.
Another important point is that if the complex structure is R invariant on R×Z,
the compactness can only be achieved if we mod out by the group of translations.

A building is, roughly, a set of curves as above, that additionally allows for
the curves uj to be nodal curves. When one considers curves with a bigger
number of punctures and positive genus, the notation becomes more elaborate,
but the behaviour of sequences is similar. See [3], Section 7.2 and 8.1, and [42]
Section 9.4, for details.

Theorem 2.3.22 ([3], Theorem 10.2). A sequence uk of punctured holomorphic
curves with Morse-Bott asymptotics and uniformly bounded energy admits a
subsequence converging to a holomorphic building.

One denotes by M = Mg(A, J ; V )c the set of holomorphic buildings. The
Theorem 2.3.22 implies thatM is compact – we will refer to it as the compact-
ification of M.

2.4 Intersection theory and adjunction formula

We recall here some useful results on the intersection theory of holomorphic
curves, as stated in [41] (see also [28]).

2.4.1 Local theory

Consider two functions f1 : M1 −→ X, f2 : M2 −→ X, with dim(M1) +
dim(M2) = dim(X). We say that an intersection point (p1, p2) ∈ M1 ×M2,
f1(p1) = f2(p2) is isolated if there are neighbourhoods pi ∈ Ui ⊂ Mi such that
f1(U1 \ p1) ∩ f2(U2 \ p2) = ∅. Recall that an isolated intersection has an inter-
section index, defined as ±1 if the intersection is transverse (depending on the
orientation), while if the intersection is not transverse, one takes a small pertur-
bation of fi on Ui, to make them transverse, and counts the (signed) number of
intersections between the perturbed functions on the neighbourhoods Ui.
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The first theorem, so-called “positivity of intersections”, states that the local
intersection index of a holomorphic curve is positive.

Theorem 2.4.1 (Positivity of intersections, [41], Theorem 2.88). Let (X, J)
be an almost complex manifold of dimension 2n > 2, let H ⊂ X be a complex
hypersurface, and u : D −→ X a holomorphic disc, with u(0) ∈ H. Then either
u(D) ⊂ H, or u(0) is an isolated intersection. Moreover, the local intersection
index at 0 is bigger or equal to 1, with equality if and only if the intersection is
transverse at 0.

2.4.2 Intersections of closed curves

In dimension 4 it makes sense to compute the (global) intersection number
between two closed curves. The adjunction formula relates the topology of the
curve with its self-intersection number, and gives a tool to detect whether a
curve is embedded.

Theorem 2.4.2 (Adjunction formula, [40] Theorem 2.51). Let u : Σ −→ X be
a simple holomorphic curve with values in a 4-manifold X. Then there exist a
non-negative integer δ(u), called the singularity index, such that δ(u) = 0 ⇔ u
is embedded. Moreover, letting A = u∗([Σ]) ∈ H2(X; Z), the following equality
holds, known as the adjunction formula:

A ·A = 2δ(u) + c1(A)− χ(Σ) = 2δ(u) +
1

2
(ind(u)− χ(Σ)) (2.14)

In particular, one can read the fact that a curve is embedded off its homology
class.

2.4.3 Intersection theory of punctured holomorphic curves

In the punctured case things become more intricate, as there is no notion of
homotopically invariant topological intersection number between two punctured
surfaces. However, there is a well defined notion of number of intersections of
two punctured holomorphic curves in the context of symplectic field theory,
which is invariant under homotopies of punctured holomorphic curves. This is
developed in [35] in the non-degenerate case, and [39] and [36] in the Morse-Bott
case. Moreover, an adjunction formula generalizing Theorem 2.4.2 holds.

2.4.4 Intersection number

Let (W, ∂W, ω) be a 4-dimensional symplectic manifold, and assume ∂W inher-
its a Morse-Bott stable Hamiltonian structure. Let u be a punctured holomor-
phic curve, with set of punctures Γ.
Let us assume for simplicity that all Reeb orbits are simply covered.

Theorem 2.4.3 ([39], Section 4.1). Given two distinct holomorphic curves
u, u′, with asymptotic constraints c, c′, there exists a number i∞(u, u′) such
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that the pairing
u ? u′ := u · u′ + i∞(u, u′) ∈ Z (2.15)

(where u ·u′ is the number of intersection points, with multiplicity) depends only
on the components of the moduli spaces Mc, Mc′ containing respectively u and
u′.

The number u ? u′ is the intersection number between the two punctured
holomorphic curves. The dependence only on the corresponding components of
the moduli spaces can be stated as the invariance of the intersection number
under homotopies of punctured holomorphic curves with asymptotics c, c′. The
intersection number does depend on the choice of asymptotic constraint (i.e.,
whether we consider a punctured to be constrained or unconstrained), so it re-
ally should be seen as a pairing between pairs of curves together with constraints.

A way to compute the intersection number is by relating it to the spectrum of
the asymptotic operators. Let us introduce some notation. Let τ denote a choice
of asymptotic trivialization of the hyperplane distribution for each puncture.
Consider the asymptotic operator associated to a Reeb orbit γ, which in the
trivialization τ can be written as Aτγ = −J0

d
dt − S(t) (Lemma 2.3.16).

For all |δ| small enough, the asymptotic operator Aτγ + δ := −J0
d
dt − S(t) + δI

is non-degenerate. Moreover, the extremal winding numbers α±(Aτγ + δ) (see
Equation (2.7)) are independent on δ if |δ| is small enough. We define the
extremal winding numbers of a Reeb orbit as

ατ±(γ + δ) := α±(Aτγ + δ) (2.16)

In order to write a computable formula for the ? pairing, we introduce the
following two numbers:

• u •τ u′ is the intersection number of u and a perturbation of u′ “in the di-
rection of τ”. By definition, the perturbation is supported in a neighbour-
hood of infinity, and is of the following type. Assume u′ is asymptotic to γ
at z. We deform u′ so that it is asymptotic to expγ(t) η(t), for η ∈ Γ(γ∗ξ)
small, with wind(η) = 0. One can ensure that u and u′ intersect in a finite
number of points.

• Let z, z′ be punctures of the domain of u, u′ respectively, asymptotic to
γ, γ′. Define

Ωτ±(γ + δ, γ′ + δ) =

{
0 if γ 6= γ′

∓ ατ∓(γ + δ) if γ = γ′
(2.17)

Now, given a puncture z, and ε > 0 suitably small, define

δz =

{
ε if z ∈ ΓC

−ε if z ∈ ΓU
(2.18)

And we define the perturbed asymptotic operator as {Az ± δz}z∈Γ±
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Theorem 2.4.4 ([39], Section 4.1).

u ? u′ = u •τ u′ −
∑

(z, z′)∈Γ±×Γ′±

Ωτ±(γz ± δz, γz′ ± δz′) (2.19)

Note that this allows to define the self-intersection number u ? u.

2.4.5 Adjunction formula

Let us introduce some notation in order to state the adjunction formula. Define
the normal Chern number of a punctured holomorphic curve u as

cN (u) = cτ1(u)− χ(Σ̇) +
∑
z∈Γ+

ατ−(γz + δz)−
∑
z∈Γ−

ατ+(γz − δz) (2.20)

Since Aγz±δz is non-degenerate, Equation (2.8) holds. We can write Γ = Γ0tΓ1,
with z ∈ Γi ∩ Γ± if and only if p(Aγz ± δz) = i (Γ0 and Γ1 are said the sets of
even/odd punctures). Using Equation (2.12), one easily checks that

2cN (u) = ind(u)− χ(Σ̇)−#Γ1 (2.21)

Theorem 2.4.5 (Adjunction formula, [39], Section 4.1). For a holomorphic
curve with constraint c, with value in a 4-manifold with cylindrical ends, there
exist a homotopy invariant number sing(u; c) ≥ 0, such that u is embedded
whenever sing(u; c) = 0, and

u ? u = 2sing(u; c) + cN (u) = 2sing(u; c) +
1

2
(ind(u)− χ(Σ̇)−#Γ1) (2.22)
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Chapter 3

Log-symplectic manifolds

3.1 Introduction

A log-symplectic structure on a manifold X2n is a Poisson tensor π ∈ Γ(
∧2

TX)

for which π∧n ∈ Γ(
∧2n

TX) vanishes transversely. Morally this means that a
log-symplectic structure is very close to being a symplectic structure: the def-
inition implies that π is invertible in the complement of the codimension–1
submanifold Z = (π∧n)−1(0). Hence ω = π−1 is a symplectic form on X \ Z.
The singular behaviour in a neighbourhood of Z is also very much constrained
by the transverse vanishing requirement: there exist local coordinates such that
ω = dx

x ∧ dy1 + dy2 ∧ dy3 + · · ·+ dy2n−2 ∧ dy2n−1.
Log-symplectic structures were introduced by Radko on orientable surfaces in
[33], and a general definition first appeared in [16]. A crucial observation of [16]
is that one can view a log-symplectic structure as a symplectic form on a Lie
algebroid, called the “log-tangent bundle”. That is a vector bundle, denoted by
TX(−logZ), with a Lie bracket on the space of its sections, and a compatible
infinitesimal action on X (this bundle is often also denoted by bTX, and called
the “b-tangent bundle”). The Lie algebroid picture is very useful as it allows us
to apply some techniques of symplectic geometry to log-symplectic structures:
this is the case for Moser’s argument and its consequences like the Darboux
theorem, the existence of some cohomological constraints to the existence ([21],
[4]), and also for more sophisticated results like Gompf’s construction ([13]) of
symplectic forms on Lefschetz fibrations ([6]).

In this chapter we go further in this direction, extending the use of pseu-
doholomorphic curves to log-symplectic structures. We study what we call
“log-holomorphic maps”, meaning maps from a surface with boundary Σ to
a log-symplectic manifold X with singular locus Z, satisfying a holomorphicity
condition. To be more precise, the log-tangent bundle TΣ(−log ∂Σ) of a sur-
face relative to the boundary, as well as the log-tangent bundle TX(−logZ)
of a log-symplectic manifold, both carry almost complex structures. We study

31
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moduli spaces of maps u : Σ −→ X such that there is an induced complex
linear map du : TΣ(−log ∂Σ) −→ TX(−logZ). These moduli spaces turn out
to behave well enough. As in symplectic geometry there are natural compactifi-
cations, and we give criteria for them to be smooth. In particular, we construct
moduli spaces of spheres, and of Riemann surfaces with non-empty boundary
of arbitrary genus. In order to prove compactness and smoothness we translate
everything back to the symplectic world, and borrow from the general theory
(especially Symplectic Field Theory).

As applications we deduce several results on the (symplectic) topology of
log-symplectic manifolds, especially in dimension 4, in which case the theory is
more powerful. To start with, we use an argument of McDuff ([25]) to prove a
list of non-existence results for log-symplectic manifolds (possibly with bound-
ary). The key point is that McDuff’s argument relies on a maximum principle
for holomorphic curves near a contact hypersurface, which also holds in a neigh-
bourhood of the singular locus in a log-symplectic manifold. In dimension 4 the
results can be phrased as follows.

Theorem 3.1.1. Let (X, Z, ω) be a closed 4–dimensional log-symplectic man-
ifold. If one component of Z contains a symplectic sphere, then all components
are diffeomorphic to S1 × S2. If (X, Z, ω) has non-empty boundary of contact
type. Then none of the components of Z contains a symplectic sphere. More-
over, the boundary cannot be contactomorphic to the standard sphere.

A finer analysis of the moduli spaces of spheres allows to prove a classification
theorem up to diffeomorphism for a certain class of log-symplectic 4–manifolds.
To be more precise, we prove that if the singular locus of a log-symplectic mani-
fold contains a symplectic sphere, then the moduli space of holomorphic spheres
can be compactified adding nodal curves with (−1)-spheres as irreducible com-
ponents. In particular the moduli space is compact whenever the log-symplectic
manifold is minimal, i.e. its symplectic locus is not a blow-up of another sym-
plectic manifold. In that case we say that the manifold is a ruled surface. This
is the log-symplectic analogue of a famous result of McDuff ([26]).

Theorem 3.1.2. Let (X, Z, ω) be a minimal log-symplectic 4–manifold. As-
sume that Z contains a copy of S1×S2. Then X supports an S2-fibration over
a (not necessarily orientable) closed surface B, with symplectic fibers, and such
that Z is a union of fibers. Moreover, the log-symplectic form depends only on
the diffeomorphism type, up to deformations.

Moreover, the non-minimal case can be characterized in terms of Lefschetz
fibrations. It might also be worth pointing out that in the Theorems A and B
above, as well as in the general construction of the moduli spaces of curves, X
is not assumed to be orientable.

The results above only use maps of spheres. As an application of our study
of surfaces with boundary, we can prove a result analogous to Theorem 3.1.2,
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constructing a “log-symplectic fibration”, instead of a symplectic one. We state
here a simplified version of the result (for a precise statement we refer to Corol-
lary 3.5.18).

Theorem 3.1.3. Let (X, Z, ω) be log-symplectic, such that Z ∼= t
i
S1 × Σgi .

Assume there exists a holomorphic sphere S ⊂ X with S t Z and S · S = 0.
Then

• gi = gj for all i, j

• there is a continuous fibration f : X −→ Σgi with fiber S2, such that Z is
a union of sections.

In fact, one can show that f is smooth on X \Z, and the fibers of f |X\Z are
symplectic. There is also a “non-orientable” version of this statement, producing
a fibration with fiber RP 2, out of a single holomorphic RP 2 (holomorphic in
the logarithmic sense). Theorem 3.1.3 is proven using the intersection theory of
punctured holomorphic curves ([35], [36]).

3.2 Log-symplectic manifolds

In this section we give the definition of log-symplectic manifold and list some
well-known properties. The properties are formulated in a way which is useful
for the purpose of studying holomorphic curves.

3.2.1 Definition and first properties.

Definition 3.2.1. A log-symplectic manifold is a manifold X together with a
Poisson bivector π, such that

• πn t 0

• (πn)
−1

(0) 6= ∅

Remark 3.2.2. A Poisson bivector satisfying the first but not the second con-
dition in Definition 3.2.1 is the inverse of a symplectic form. In the literature
people mostly omit the second condition in the definition of a log-symplectic
structure. In [4] and [6] the authors call a Poisson bivector satisfying our Def-
inition 3.2.1 a bona fide log-symplectic structure. Since we will mostly consider
log-symplectic manifolds which are not symplectic, we preferred to avoid the
use of additional terminology, and put this requirement in the definition.

Remark 3.2.3. Log-symplectic manifolds are necessarily even dimensional. We
will always denote dimX = 2n.

A log-symplectic manifold contains a distinguished submanifold, namely the
locus where the Poisson structure does not have maximal rank.
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Definition 3.2.4. The singular locus of a log-symplectic structure π on a man-
ifold X is the codimension–1 submanifold Z := (πn)

−1
(0).

We will always denote the singular locus of a log-symplectic manifold X as
ZX , or just Z.

Remark 3.2.5. Since the singular locus Z is the zero set of a generic section of
the bundle

∧top
TX, it is coorientable if X is orientable. For the same reason

if X is orientable, then Z is trivial in homology.

Local forms.

As a consequence of the Weinstein splitting theorem, for each point in Z there
exists a coordinate neighbourhood V with coordinate functions (x, y1, . . . , y2n−1)
such that

• V ∩ Z = {x = 0}

• π = x∂x ∧ ∂y1 + ∂y2 ∧ ∂y3 + · · ·+ ∂y2n−2
∧ ∂y2n−1

One could also look at the inverse of the Poisson structure, obtaining a non-
smooth symplectic form

dx

x
∧ dy1 + dy2 ∧ dy3 + · · ·+ dy2n−2 ∧ dy2n−1 (3.1)

(the existence of such local form is referred to as Darboux theorem, and was
originally proven in [16]). This can actually be viewed as a smooth form in a
Lie algebroid called the logarithmic tangent bundle.

Definition 3.2.6. Let (X, Z) be a manifold with a codimension–1 submanifold.
The logarithmic tangent bundle TX(−logZ) is the rank-2n vector bundle whose
sheaf of section is the sheaf XZ(X) of vector fields on X tangent to Z. We call
its dual logarithmic cotangent bundle, and we denote it with T ∗X(logZ).

This bundle exists and is unique up to isomorphism by the Serre-Swan theo-
rem. The inclusion XZ ↪→ X induces a map ρ : TX(−logZ) −→ TX, called the
anchor map, which is an isomorphism almost everywhere (namely, on X \ Z).
TX(−logZ) is in fact a Lie algebroid.

Definition 3.2.7. A logarithmic differential form is a section of
∧•

(T ∗X(logZ)).
We say that a logarithmic differential form ω is closed if dω = 0, where d denotes
the Lie algebroid exterior differential.

Remark 3.2.8. dω = 0 is equivalent to d((ρ|−1
X\Z)∗ω) = 0, as an ordinary

differential form.

The local form Equation (3.1) implies that one can view a log-symplectic
structure as a logarithmic 2-form. This implies in particular that the vector
bundle TX(−logZ) admits a complex structure. To be more precise, it admits
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a contractible space of compatible complex structures, and a contractible space
of tame complex structures ([27]).
The correspondence between log-symplectic structures and logarithmic symplec-
tic forms is in fact one to one ([16]). Based on this, from now on we will treat
a log-symplectic manifold as a triple (X, Z, ω) consisting of:

• a smooth manifold X

• a codimension–1 submanifold Z

• a logarithmic symplectic form ω on TX(−logZ)

3.2.2 Maps of log-symplectic manifolds.

Definition 3.2.9 ([6]). Let (X, ZX), (Y, ZY ) be pairs of manifold with a
codimension–1 submanifold. A (smooth) map of pairs f : (Y, ZY ) −→ (X, ZX)
is a smooth map f : Y −→ X such that f t ZX , and f−1(ZX) = ZY .

Example 3.2.10. f : (Y, ∅) −→ (X, Z) is a smooth map of pairs if and only if
f is an ordinary smooth map f : Y −→ X \ Z.

The differential of a smooth map of pairs lifts uniquely to the logarithmic
tangent bundles, meaning that there is a commutative diagram

TY (− logZY ) TX(− logZX)

TY TX

df

df

(3.2)

The restricted bundle TX(−logZ)|Z carries a “canonical transverse section”
ξX = ξ, constructed as follows. Choose a local coordinate system φ = (x, y1, . . . , y2n−1))
on an open set U with x a defining function for Z ∩U and yi a coordinate chart
for Z. Define ξ|U := φ∗(x∂x). Given another chart φ′ = (x′, y′1, . . . , y

′
2n−1)) as

above, it is easy to compute that φ∗(x∂x)|Z = φ′∗(x
′∂x′)|Z , which ensures that

ξ is well defined on Z. Moreover, this canonical transverse section is preserved
under maps of pairs:

Proposition 3.2.11. Let f : (Y, ZY ) −→ (X, ZX) be a smooth map of pairs.
Then f∗(ξZY

) = ξZX
.

Proof. Consider a local defining function x for ZX . By transversality, its pull-
back y = f∗x via f is a local defining function for ZY . By definition we can
compute ξZX

and ξZY
by looking at x ∂

∂x and y ∂
∂y . f∗(y

∂
∂y ) = x ∂

∂x + xV , where
V is tangent to ZX . Restricting to ZX gives the desired equality.

The following lemma due to Cavalcanti and Klaasse [6] is useful in order
to define embeddings of pairs, and in particular log-symplectic submanifolds.
Below we provide a short proof in local coordinates, different from the original
one.
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Lemma 3.2.12 ([6], Proposition 2.14). Let f : (Y, ZY ) −→ (X, ZX) be a
smooth map of pairs, such that f−1(ZX) = ZY . The anchor map ρ : TY (−logZY ) −→
TY induces an isomorphism ρ : ker df −→ ker df at all points, where df is the
lift of df , in the sense of (3.2).

Proof. The statement is local. Pick coordinates (x, yi) on Y , such that ZY =
{x = 0}, and (x′, y′j) on X such that ZX = {x′ = 0}. The lift df , at points in
Z, acts as

df(x∂x) = x′∂x′ (3.3)

df(∂yi) = df(∂yi) ∈ span(∂yi) (3.4)

where the first line is a consequence of Proposition 3.2.11. Since f is a map of
pairs, ∂x 6∈ ker df . Then 0 = df(v) = df(aξ+ bi∂yi) = aξ+ bidf(∂yi). Now since

df(∂yi) ∈ span(∂yi), one has a = 0, and bidf(∂yi) = bidf(∂yi) = 0, proving the
lemma.

This means that an embedding induces an inclusion at the level of the log-
arithmic tangent bundles. Hence the following definition makes sense.

Definition 3.2.13. A log-symplectic submanifold of (X, ZX , ω) is a pair of
manifolds (Y, ZY ) with a smooth embedding f : (Y, ZY ) −→ (X, ZX) such that
ω restricts to a symplectic form (i.e. nondegenerately) to f∗(TY (−logZY )).

The same meaning can be given to the expression complex submanifold of a
manifold with a logarithmic complex structure. The following fact is obvious:

Proposition 3.2.14. Let J be an ω-tame complex structure on TX(−logZ).
Any complex submanifold is symplectic. Moreover, for each log-symplectic sub-
manifold (Y, ZY ) there exists a compatible complex structure on TX(−logZ)
for which (Y, ZY ) is a complex submanifold.

3.2.3 A normal form around the boundary, and the stable
Hamiltonian geometry of the singular locus.

Fix a Riemannian metric on X and consider the function “distance from Z”,
denoted with λ. We can write the log-symplectic form in a neighbourhood of Z
as

ω =
dλ

λ
∧ a+ b

for a and b respectively a 1- and a 2-form (in the ordinary sense) on a neigh-
bourhood of Z. It follows easily from ω being symplectic that α := a|TZ and
β := b|TZ determine a cosymplectic structure on Z (that is by definition a pair
(α, β) such that dα = dβ = 0, α∧ βn−1 6= 0). The cosymplectic structure on Z
completely determines the log-symplectic structure in a neighbourhood of Z.

Proposition 3.2.15 ([16], [21]). Let (X, Z, ω) be log-symplectic, with Z com-
pact. There exists a cosymplectic structure (α, β) on Z, and a metric g on NZ
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such that a tubular neighbourhood of Z is isomorphic to the normal bundle NZ
with the log-symplectic form

dλ

λ
∧ α+ β (3.5)

and λ is the g-distance from the zero section of NZ.

As a consequence, there exists a vector field V on X – defined by α(V ) =
β(V ) = 0, dλ

λ (V ) = 1 – such that LV ω = 0, and V is transverse to the level
sets of λ, for values of λ small enough. Let U be a tubular neighbourhood of Z,
with smooth boundary, so that V t ∂U . The condition LV ω = 0 implies that
W := X \ U is a symplectic manifold with stable Hamiltonian boundary −∂U .
The induced stable Hamiltonian structure is pulled back from (−α, β) as above,
via the normal bundle projection. Via the change of coordinates s := −logλ,
one can write ω = ds ∧ (−α) + β, as in Example 2.3.4. Hence one has the
following proposition, which is crucial to set up a theory of holomorphic curves.

Proposition 3.2.16. The complement X \Z of the singular locus is symplecto-
morphic to the completion of the manifold W := X \U , with stable Hamiltonian
boundary of cosymplectic type. ∂W is a double cover of Z (disconnected if and
only if X is orientable) and the cosymplectic structure on the boundary coincides
(up to isomorphism) with the pullback via the covering map of the cosymplectic
structure on Z.

An alternative normal form around the singular locus.

One could write a more concrete model around Z, just by writing explicitely
what the normal bundle looks like. To this end, note that every real line bundle
over Z can be written as a fiber product R×Z2

Z̃, where c : Z̃ −→ Z is a double
cover of Z. More precisely, a double cover Z̃ of Z is acted on by an involution
σ, and we define an action of Z2 = {±1} on R× Z̃ as

− 1 · (x, z) := (−x, σ(z)) (3.6)

and define
R×Z2 Z̃ := (R× Z̃)/Z2 (3.7)

Given a real line bundle over Z, one recovers the manifold Z̃ as the set of
vectors of length 1 with respect to some fiber metric, and the involution σ is
the multiplication by −1.
For a cosymplectic Z, Z̃ inherits a cosymplectic structure (via pullback along
c) which is invariant under σ. Hence the log-symplectic structure ω := dx

x ∧
c∗α+ c∗β on R× Z̃ is invariant under the action (3.6). Thus ω descends to the
quotient. The resulting log-symplectic structure on R×Z2

Z̃ has the form

dx

x
∧ α+ β (3.8)

and is symplectomorphic to the normal form (3.5). This implies:
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Corollary 3.2.17. Let (X, Z, ω) be compact log-symplectic. There exists a
double cover c : Z̃ −→ Z such that a neighbourhood of the singular locus can be
written (up to symplectomorphism) as

((−ε, ε)×Z2
Z̃,

dx

x
∧ c∗α+ c∗β)

where the fiber product is taken using the deck transformation.

Notation 3.2.18. We will most of the time omit the pullback sign from the
formula for the symplectic form.

Note that if Z̃ is the trivial double cover, then the action of Z2 just exchanges
corresponding connected components, and the resulting quotient is the trivial
bundle over Z. Since this happens if and only if Z is coorientable, and NZ ∼=∧top

TX|Z (see Remark 3.2.5), we obtain the following obvious specialization.

Corollary 3.2.19. If X is orientable, a neighbourhood of the singular locus can
be written (up to symplectomorphism) as

((−ε, ε)× Z, dx
x
∧ α+ β)

Simple codimension–1 foliations.

The cosymplectic structure on the singular locus induces a codimension–1 sym-
plectic foliation. Assume now that Z is compact and connected. There is a
map

p : Z −→ R/α(H1(Z, Z)) (3.9)

defined as p(z) :=
∫ z
z0
α. Whenever α is a multiple of a rational form, then

R/α(H1(Z, Z)) = R/cZ for some positive number c. In this case, one can prove
that the map is a fibration, such that the connected components of the fibers
are leaves. Moreover, one can this map to realize the leaves of the foliation kerα
as the fibers of a fibration.

Proposition 3.2.20 ([37]). Let (Z, α, β) be a cosymplectic manifold such that
α is a real multiple of a rational form. Then Z is a symplectic mapping
torus. More precisely, there exists a closed symplectic manifold (F, βF ), a sym-
plectomorphism φ : (F, βF ) −→ (F, βF ), and a constant c, such that (R ×
F/Z, dt, βF ) ∼= (Z, α, β), where the Z action is generated by 1 · (t, z) = (t +
c, φ(z)).

If Z is disconnected, each of its components Zi inherits a fibration over
R/ciZ. The number ci is a Poisson geometric invariant, called the period of the
modular vector field ([33], [16]). Log-symplectic manifolds whose singular locus
is a fibration are called proper ([4]). It is simple to observe that for a given
log-symplectic form ω there exists a nearby log-symplectic form ω′ such that
the resulting log-symplectic manifold is proper (Theorem 3.6 in [4]).
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3.3 Holomorphic curves in log-symplectic man-
ifolds

In this section we study some general aspects of holomorphic curves in log-
symplectic manifolds. We start by introducing the class of almost complex
structures that we will consider (namely the cylindrical ones). Then we will
introduce log-holomorphic curves, and we prove that log-holomorphic curves
coincide with the punctured curves in SFT. We will also express the notion of
energy that is used in standard Gromov-Witten theory and SFT in terms of
log-symplectic data. Finally, we prove a maximum principle which is going to
be crucial for our construction of the moduli spaces. The construction of the
moduli spaces is carried out in the later sections, separately for closed and open
curves.

3.3.1 Cylindrical complex structures on log-symplectic man-
ifolds

Let us recall the notation we introduced previously: U denotes a tubular neigh-
bourhood of Z, with a fixed isomorphisms to the unit disc bundle of the normal
bundle NZ of Z. Let λ denote the length of the fiber coordinate (with respect
to some fiberwise Riemannian metric). We know from Proposition 3.2.15 and
Proposition 3.2.16 that there exist closed forms α, β on Z, respectively a 1- and
a 2-form, such that the log-symplectic form is

ω = d log λ ∧ α+ β (3.10)

Viewing X \ Z as Ŵ := X̂ \ U , it is natural to consider ω-compatible almost
complex structures on T (X \Z) which are cylindrical, as in Definition 2.3.6. For
reasons that will become apparent, we actually use a slightly modified definition
of cylindrical complex structure. Recall that each connected component Zi of
Z has a well defined period ci ∈ (0, +∞).

Definition 3.3.1. Let (X, Z, ω) be log-symplectic. A complex structure J on
X \Z is cylindrical if it is ω̂-tame, and on each component Ui of the cylindrical
end U it satisfies

• J is s-invariant

• J∂s = ciR

• J(kerα) = kerα

• J is β-compatible on kerα

Notation 3.3.2. For simplicity, we will denote with cR the vector field on
Z defined as ciR on each component Zi. The above definition hence requires
J∂s = cR.
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We need also to impose a further compatibility condition with Z. Recall that
U is isomorphic to R×Z2 Z̃, where Z2 acts by multiplication by −1 on R, and by
an involution σ on Z̃ (Corollary 3.2.17). Hence a cylindrical complex structure
is an R invariant complex structure on (R × Z̃ \ {0} × Z̃)/Z2. In particular it
induces an almost complex structure on the each fiber F̃ of the codimension–1
foliation on Z̃.

Definition 3.3.3. A cylindrical complex structure is adapted to the log-symplectic
structure if its restriction to F̃ is σ-invariant.

Example 3.3.4. If X is orientable, then Z̃ is a union of two disjoint copies
of Z. The definition is asking for the complex structures on two corresponding
copies of F to be equal.

The definition is designed so that the complex structure extends over Z as
a complex structure on TX(−logZ).

Proposition 3.3.5. An adapted cylindrical almost complex structure induces a
smooth complex structure on TX(−logZ).

Moreover, an adapted complex structure J on TX(−logZ) induces a com-
plex structure on kerα ⊂ TZ, compatibly with the leafwise symplectic form β if
J is ω-compatible. Indeed, consider the canonical section ξ ∈ Γ(TX(−logZ)|Z).
Consider the logarithmic 1-form ρ∗α ∈ Γ(T ∗X(logZ)): ξ ∈ ker(ρ∗α), and
ρ : ker(ρ∗α)|Z −→ ker(α)|Z ⊂ TZ is well-defined and surjective. Moreover,
J(ξ) t ker(ρ∗α). Further, the symplectic orthogonal to the subspace generated
by ξ and J(ξ) is contained in ker(ρ∗α), and projects isomorphically to ker(α).
Finally, span(ξ, J(ξ))⊥ω is closed under J , hence ρ induces an almost complex
structure on ker(α). This complex structure is the same that is induced by the
quotient map Z̃ −→ Z̃/Z2 = Z (this follows from the normal form).
Moreover, since ρ(J(λ∂λ)) = cR̃ the Reeb vector field for all λ 6= 0 by definition,
then ρ(J(ξ)) = cR on Z.

Notation 3.3.6. We will normally use adapted compatible complex structures,
and leave the word “adapted” implicit. We will use the expression “compatible
complex structure” for both the almost complex structure on X \ Z and its
extension to TX(−logZ).

3.3.2 Riemann surfaces and log-holomorphic structures

In this section we will specialize the definition of cylindrical complex structure
from the previous section to 2-dimensional log-symplectic manifolds (Σ, ∂Σ),
for which the singular locus coincides with the boundary. We explain how these
“logarithmic Riemann surfaces” correspond to punctured Riemann surfaces, and
that their automorphisms correspond to automorphisms of punctured surfaces.

Logarithmic holomorphic structures

Let Σ be a compact surface, possibly with boundary. Consider the log-tangent
bundle of the pair (Σ, ∂Σ), denoted by TΣ(−log ∂Σ).
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Definition 3.3.7. A (logarithmic) holomorphic structure on (Σ, ∂Σ) is a com-
plex structure j on TΣ(−log ∂Σ), such that there exist a positive defining
function r for ∂Σ, and a global parametrization θ of the boundary, such that
j(r∂r) = ∂θ in a collar neighbourhood of ∂Σ

Remark 3.3.8. Normally a holomorphic structure on a surface with boundary
is defined as a conformal structure on its double, commuting with the canon-
ical involution. This notion is different fromDefinition 3.3.7, as a logarithmic
holomorphic structure does not extend to a holomorphic structure on the dou-
ble surface (rather, it extends to a degenerate one). Nonetheless, as we will
only deal with logarithmic holomorphic structures, we will often omit the word
“logarithmic”.

Remark 3.3.9. A logarithmic holomorphic structure on (Σ, ∂Σ) is cylindrical,
and adapted to a log-symplectic structure which is of the form dr

r ∧ dθ in a
neighbourhood of ∂Σ.

Punctured surfaces

Definition 3.3.7 implies that a collar neighbourhood of a connected component
of the boundary is biholomorphic to [0, ε)× S1, j(r∂r) = ∂θ. There is a map

π : [0, ε)× S1 −→ Dε (3.11)

where Dε is the disc of radius epsilon, defined as

π(r, θ) := reiθ

A simple computation shows that π is a biholomorphism when restricted to the
interior. Globally, using (3.11) one can construct a closed Riemann surface Σ̂,
with a map

π : Σ −→ Σ̂.

The closed surface Σ̂ comes with a finite set of distinguished points p1, . . . , pk,
namely π(∂Σ). The restriction π : Σ \ ∂Σ −→ Σ̂ \ {p1, . . . , pk} := Σ̇ is a
biholomorphism.
Conversely, given a closed Riemann surface Σ̂ with a finite set of punctures
p1, . . . , pk, one can view local charts centered at the punctures as a choice of
cylindrical ends for Σ̇ := Σ̂ \ {p1, . . . , pk}. One can compactify the punctured
surface Σ̇ adding circles at infinity – the resulting surface with boundary Σ has
a logarithmic holomorphic structure.

Maps of Riemann surfaces

Surfaces with a holomorphic structure are related by the following natural notion
of map.

Definition 3.3.10. A map of pairs (Σ, ∂Σ) −→ (Σ′, ∂Σ′) between surfaces
with logarithmic holomorphic structures is holomorphic if the induced map on
the log-tangent bundles is complex linear.
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Lemma 3.3.11. (1) given Σ, the corresponding closed surface Σ̂ is the unique
closed surface with the property that there is a map π : Σ −→ Σ̂ which is
an isomorphism when restricted: π : Σ \ ∂Σ −→ Σ̂ \ {p1, . . . , pk}. Unique
means that given two surfaces with these properties there exists a unique
isomorphism commuting with the projections.

(2) given a holomorphic map Σ −→ Σ′ there is a unique holomorphic map
Σ̂ −→ Σ̂′ making the following diagram commute

Σ Σ′

Σ̂ Σ̂′

π π (3.12)

(3) given a holomorphic map Σ̂ −→ Σ̂′ there is a unique holomorphic map
Σ −→ Σ′ making the following diagram commute

Σ Σ′

Σ̂ Σ̂′

π π (3.13)

Proof. (1) If there are two surfaces with a map π : Σ −→ Σ̂ and π′ : Σ −→ Σ̂′,
then there is an isomorphism in the complement of a finite number of points
(namely π′ ◦ π−1|Σ\{p1, ..., pk}). Bounded neighbourhoods of the punctures iso-
morphic to punctured discs are mapped to bounded neighbourhoods of the
punctures. These maps extend as holomorphic automorphisms of the disc, so
we obtain an isomorphism φ : Σ −→ Σ′ such that πφ = π′.

Proof. (2), (3) Similar to the above, using also the fact that the only automor-
phisms of the punctured disc are rotations.

3.3.3 Holomorphic curves

We are ready to introduce our notion of holomorphic curve in the log-setting.
Fix a log-symplectic manifold (X, Z, ω), a tubular neighbourhood U of the
singular locus Z in X, and pick a compatible cylindrical complex structure.
Let (Σ, ∂Σ) be a logarithmic Riemann surface; recall that a map of pairs u :
(Σ, ∂Σ) −→ (X, Z) induces by definition a diagram

TΣ(−log ∂Σ) TX(−logZ)

TΣ TX

du

du

Definition 3.3.12. A map of pairs u : (Σ, ∂Σ) −→ (X, Z) is log-holomorphic
(or simply holomorphic) if the lift of the differential du : TΣ(−log ∂Σ) −→
TX(−logZ) is complex linear.
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The choice of using cylindrical complex structures implies that the image of
the boundary of a holomorphic curve is constrained: it needs to coincide with
a Reeb orbit.

Proposition 3.3.13. Let u : (Σ, ∂Σ) −→ (X, Z) be holomorphic. Then the
boundary is mapped to a simple periodic orbit of the Reeb vector field.

Proof. This follows from Proposition 3.2.11, and the fact that ρ(J(−λ∂λ)) =
ρ(J(∂s)) = cR.

We can also easily compute the period of the Reeb orbit: write Z = t
i
Zi,

with Zi connected. Let ci > 0 such that α(H1(Zi)) = ciZ (the period of the
component Zi). Then the period of the Reeb orbit to which a component of
the boundary is mapped only depends on the connected components of Z that
contains it, and it coincides with ci. In particular the orbit has minimal period,
hence it is simply covered. Notice that a Reeb orbit γ appearing as boundary
condition of a holomorphic curve actually lifts to a closed loop γ̃ in Z̃. The
cosymplectic structure on Z̃ is the pull-back of the one on Z, (p∗α, p∗β). Hence
the period of γ̃ is also ci, and is also the minimal period.

Proposition 3.3.14. A log-holomorphic curve with non-empty boundary is sim-
ply covered.

Proof. Our remarks above imply that a log-holomorphic is simply covered in
a neighbourhood of the singular locus. It is a general fact that a holomorphic
curve is simply covered if and only if it is so in an open neighbourhood ([28])

Remark 3.3.15. Consider the punctured surface Σ̇ associated to Σ. A holomor-
phic map u : (Σ, ∂Σ) −→ (X, Z) induces (by restriction) a map u : Σ̇ −→ X \Z
which is holomorphic in the usual sense. The converse holds for simple maps if
we assume that the holomorphic curve has finite energy (see [2]).

3.3.4 Energy

We give a definition of energy of a holomorphic curve in a log-symplectic man-
ifold, and prove that it coincides with the SFT energy of the curve in the sym-
plectic locus. We keep the same notation as in the previous section.

Definition 3.3.16 ([22]). Consider a function µ : X −→ R, smooth on X \ Z,
that coincides with λ in a neighbourhood of Z, vanishing only at λ = 0, and
such that µ − 1 is compactly supported in U . Define the form βµ so that the
following equality holds:

ω = d logµ ∧ α+ βµ

Remark 3.3.17. The cohomology class of βµ is well defined and non-zero ([22]).

Definition 3.3.18 (Energy). Let u : Σ −→ X be a smooth map. Define the
energy of u as

E(u) :=

∫
Σ

u∗βµ +

∫
∂Σ

u∗α
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Proposition 3.3.19. E(u) is well defined.

Proof. Choose two functions µ, µ′ as in Definition 3.3.16. One sees immediately
that

βµ − βµ
′

= d(log(
µ

µ

′
)α)

By Stokes’ formula∫
Σ

u∗βµ −
∫

Σ

u∗βµ
′

=

∫
∂Σ

u∗ log(
µ

µ

′
)α = 0

where the last equality holds as µ = µ′ in a neighbourhood of Z.

Remark 3.3.20. Since βµ is closed, the energy of u depends only on u(∂Σ)
and on the homology class of u rel u(∂Σ).

The energy of a closed holomorphic curve Σ mapped to the symplectic man-
ifold (X \Z, ω|X\Z) coincides with the usual notion from symplectic geometry.

Proposition 3.3.21. If Σ is closed and u : Σ −→ X is holomorphic, with
image contained in X \ Z, then

E(u) =

∫
Σ

u∗ω

Proof. The image of u is contained in the complement of some open set V
containing Z. We can choose µ to be equal to 1 on X \ V .

We prove here that Definition 2.3.7 is equivalent to Definition 3.3.18. Notice
that for log-symplectic manifolds it is actually unnecessary to take the supre-
mum in Definition 2.3.7, since α is closed.

Proposition 3.3.22. ESFT (u) = εE(u). In particular, the two notions are
equivalent, and coincide if we choose ε = 1.

Proof. Note first that ω|X\U = ωϕ|X\U , hence we only need to check the equality
in the cylindrical end U . To this aim, we assume without loss of generality
that u−1(U) is a Riemann surface with smooth boundary. On U we can write
ω = d log λ ∧ α + β. Choosing a function µ as in Definition 3.3.16, one has
ω = d log(µ) ∧ α+ βµ = ω = dlogλ ∧ α+ β, hence

E(u) :=

∫
∂Σ

u∗α+

∫
u−1(U)

u∗βµ

=

∫
∂Σ

u∗α+

∫
u−1(U)

u∗d(log λ− logµ) ∧ u∗α+

∫
u−1(U)

u∗β

=

∫
∂Σ

u∗α+

∫
u−1(U)

u∗d(log(
λ

µ
)) ∧ u∗α+

∫
u−1(U)

u∗β
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Noting that ∂u−1(U) = −u−1(∂U) ∪ ∂Σ, Stokes’ theorem gives

E(u) =

∫
∂Σ

u∗α+

∫
u−1(U)

u∗β−
∫
u−1(∂U)

u∗ log(
λ

µ
)∧u∗α+

∫
∂Σ

u∗ log(
λ

µ
)∧u∗α

Now, λ ≡ µ near Z, which implies
∫
∂Σ
u∗ log(−λµ ) ∧ u∗α = 0. As µ ≡ 1 near

∂U , one has that
∫
u−1(∂U)

u∗ log(λµ ) ∧ u∗α =
∫
u−1(∂U)

u∗ log λ ∧ u∗α. Hence

E(u) =

∫
∂Σ

u∗α+

∫
u−1(U)

u∗β −
∫
u−1(∂U)

u∗ log λ ∧ u∗α (3.14)

Let us turn to the SFT energy. Writing out explicitly what the SFT energy
is, one gets

ESFT (u) =

∫
u−1(U)

u∗d(ϕ(− log(λ))) ∧ u∗α+ u∗β

Comparing with Equation (3.14), one sees that ESFT (u) = εE(u) if and only if

−
∫
u−1(∂U)

u∗ϕ(− log λ) ∧ u∗α+

∫
∂Σ

u∗ϕ(− log λ) ∧ u∗α

= ε
[ ∫

∂Σ

u∗α+

∫
u−1(∂U)

u∗ log λ ∧ u∗α
]

To conclude, we only need to observe that ϕ = identity near ∂U , and
ϕ(−logλ)→ ε as λ→ 0 (i.e. on ∂Σ).

3.3.5 The maximum and minimum principle

We prove in this section a maximum principle for holomorphic maps. This is
crucial in the proof of all compactness theorems for families of holomorphic
curves.
Realize X \ Z as Ŵ , as in Proposition 3.2.16. Assume X is endowed with a
cylindrical complex structure. Restrict to the cylindrical end [0, +∞) × ∂W ,
and consider the first projection p1 : [0, +∞) × ∂W −→ [0, +∞). Denote by
D2
r the open disc of radius r.

Proposition 3.3.23. Let u : D2
r −→ [0, +∞) × ∂W be holomorphic. Then

p1 ◦ u is harmonic.

Proof. ∆(p1 ◦u) = −ddc(p1 ◦u) = d(d(p1 ◦u)◦J) = d(dp1 ◦J ◦du) = d(α◦du) =
u∗dα = 0.

Corollary 3.3.24. Let Σ be a closed Riemann surface. Let u : Σ −→ X be
holomorphic and such that u(Σ) ∩ U 6= ∅. Then Σ is mapped to a symplectic
leaf in {λ} × ∂W , λ 6= 0.

Corollary 3.3.25. Let Σ be compact with non-empty connected boundary, u :
Σ −→ X holomorphic with u−1(Z) = ∂Σ. Then u(Σ) ∩ (X \ U) 6= ∅.
Proof. If X \ U ∩ u(Σ) = ∅, then p1 ◦ u has a minimum, in contradiction with
Proposition 3.3.23.
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3.4 Closed curves

In this section we study the moduli space of closed curves in a log-symplectic
manifold, and prove several results on the topology of log-symplectic manifolds,
including Theorem 3.1.1 and Theorem 3.1.2.

3.4.1 A simpler case: genus 0, aspherical Z

Let us begin with a discussion of a simpler setup: we look at holomorphic spheres
in manifolds where there can be no holomorphic spheres in a neighbourhood of
the singular locus Z.

Definition 3.4.1. We say (Z, α, β) is symplectically aspherical if A · β = 0 for
all homotopy classes A ∈ π2(Z, z0) for all z0 ∈ Z.

Manifolds for which π2(Zi) = 0 for all components Zi of Z are symplectically
aspherical. In the proper case, since π2(Z) ∼= π2(F ) for a symplectic fiber F ,
the definition coincides with the usual asphericity condition for the symplectic
manifold (F, β).
If (Z, α, β) is aspherical, then all double covers p : Z̃ −→ Z with the pulled-
back cosymplectic structure are. By the energy identity and Proposition 3.3.22,
there exists no holomorphic sphere u : S2 −→ Z̃. The maximum and minimum
principles (Proposition 3.3.23) imply the following:

Corollary 3.4.2. Let (X, Z, ω) be log-symplectic, with Z symplectically as-
pherical. Then all non-constant holomorphic spheres are mapped into X \ U .

This specializes, for instance, to:

Corollary 3.4.3. Assume X has dimension 4, and Z has no component dif-
feomorphic to S1 × S2. Then all non-constant holomorphic spheres are mapped
into X \ U .

When Z is aspherical, then, all holomorphic spheres live in a compact subset
of the symplectic locus of X. Moreover, they all intersect (and are, in fact, con-
tained in) the subset of the symplectic locus where the almost complex structure
is allowed to vary arbitrarily. Thus, the transversality for the moduli space can
be achieved for a generic choice of complex structure (Corollary 2.2.8). Fur-
ther, since all the curves take value in a compact subset, Gromov’s compactness
theorem also applies (Theorem 2.2.2).

Proposition 3.4.4. Let (X, Z, ω) be log-symplectic, with Z symplectically as-
pherical. Let A ∈ H2(X) be a spherical homology class. Then there exist a
comeager set of cylindrical complex structures Jreg such that for all J ∈ Jreg the
moduli space M∗0,m(J, A) is smooth of dimension 2n− 6 + 2c1(A) + 2m, and it
is compact modulo bubbling.

In particular, if bubbling can be prevented (for example by considering
classes A such that each non-trivial partition A = A1 + · · ·+Ak has Ai ·ω ≤ 0)
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then M∗0(A) is a compact smooth manifold of dimension vdimM(A). In gen-
eral, bubbling can be controlled if X \ Z is low-dimensional (dimX = 4, 6), or
is, more generally, a semipositive manifold ([28]).

Definition 3.4.5. A symplectic manifold (M, ω) is semipositive if for all A ∈
π2(M), 3− n ≤ c1(A) < 0 implies ω ·A ≤ 0.

This is automatically satisfied in dimension ≤ 6. The usefulness of this def-
inition lies in the fact that in semipositive manifolds, and for generic complex
structures, bubbling can only happen in codimension two. This means that fix-
ing a homology class A, the set of nodal curves representing A has codimension
at least 2 in the space of all curves representing A.
For convenience we will say that log-symplectic manifold (X, Z, ω) is semipos-
itive (X \ Z, ω|X\Z) is semipositive.

3.4.2 Obstructing certain log-symplectic manifolds

A standard argument by McDuff ([25]) can be used to obstuct the existence of
certain classes of log-symplectic manifolds, of which Theorem 3.1.1 mentioned
in the introduction to this chapter is a special case. Let us summarize McDuff’s
argument here. We keep on assuming that Z is aspherical, and that X \ Z is
semipositive.
Consider A ∈ H2(X \ Z) with c1(A) = 2, so that vdimM∗0,1(A, J) = 2n, and
pick a generic J . Consider the evaluation map ev :M∗0,1(A, J) −→ X \ Z. As-
suming for the moment that the evaluation ev is a proper map, we can compute
its degree. Since Z is aspherical there is no holomorphic sphere in a neighbour-
hood of Z, thus deg(ev) = 0.
However, in some explicit example one might be able to prove that there is a
point x ∈ X \ Z such that there exists a unique Fredholm regular holomorphic
sphere passing through that point, leading to a contradiction with the aspheric-
ity of Z.
For instance, one can prove that such holomorphic spheres exist in the following
situations (see [25] for details and a more general discussion):

• if there exist symplectic submanifolds with trivial normal bundle, sym-
plectomorphic to S2 × V , with V a Kähler manifold with π2(V ) · ω = 0.
Here extend the product complex structure on S2 × V to the whole man-
ifold, take A = [S2 × {p}] and apply [28], Chapter 3.3, to show that the
obvious holomorphic sphere if Fredholm regular.

• there is a boundary component of contact type, contactomorphic to S2n−1

with the standard contact structure. Here realize the sphere as the bound-
ary of a Darboux ball in S2 × · · · × S2, and take A = [S2 × {p}]

• if dimX ≤ 6, a codimension-2 symplectic submanifold S symplectomor-
phic to CPn−1, with c1(NS) ≥ 0. Blow-up a copy of CPn−2 until the
normal bundle to S becomes trivial, and take the proper transform of a
CP 1 ⊂ CP 2n−1 transverse to CPn−2.
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If ev is not proper, but X \ Z is semipositive, one can argue as follows. Pick
a point x in a neighbourhood of Z, and a point x′ ∈ X \ Z (in the same
component as x) such that there is an element in M∗0,1(A, J) passing through

x. Let N := ev(M0(A, J) \ ev(M∗0(A, J)) be the set of points in the image
of a nodal curve. This set has codimension at least 2 by semipositivity ([25],
Corollary 4.9), hence there is a path γ with values in (X \ Z) \ N joining x
and x′. There is a neighbourhood of γ which does not intersect N , and the
evaluation map is proper over this neighbourhood (no nodal curves are mapped
to this neighbourhood). Now we can argue as in the compact case above.
As examples of applications, we point out the following corollaries.

Corollary 3.4.6. Let (V, σV ) be a symplectic manifold such that π2(V )·σV = 0,
and such that Vk supports a σV -compatible integrable complex structure. Let
σS2 be any symplectic form on S2. Let (X, Z, ω) be a closed semipositive
log-symplectic manifold, such that a component of Z is symplectomorphic to
a mapping torus over (S2 × V, σS2 × σV ). Then none of the components of Z
are symplectically aspherical.

Given that any symplectic submanifold W with trivial normal bundle can
be used to produce a singular component diffeomorphic to S1 ×W ([4]), the
conclusion of the Corollary 3.4.6 holds if one assumes that X contains a sym-
plectic (S2 × V, σS2 × σV ) with trivial normal bundle.
A log-symplectic manifold with boundary is a manifold X with boundary ∂X
with a codimension–1 submanifold Z such that ∂X ∩ Z = ∅, together with a
symplectic form ω on TX(−logZ).

Corollary 3.4.7. Assume that (X, Z, ω) is compact, semipositive, and has
non-empty boundary of contact type, contactomorphic to the standard (2n− 1)-
dimensional sphere. Then Z cannot be symplectically aspherical.

The following is also an easy corollary of McDuff’s argument, applied to
log-symplectic manifolds with non-aspherical singular locus.

Corollary 3.4.8. Let (Vk, σVk
) be symplectic manifolds such that π2(Vk)·σVk

=
0, and such that Vk supports a σVk

-compatible integrable complex structure. Let
σS2 be any symplectic form on S2. Let Z be a union of symplectic mapping
tori over (S2 × Vk, σS2 × σVk

). Then there exists no log-symplectic manifold
(X, Z, ω) with non-empty boundary of contact type.

Proof. Let U be a neighbourhood of the singular locus, with smooth boundary.
The boundary of U is also a mapping torus over S2 × Ṽk, for some double
cover Ṽk. We can use the S2 factor to produce a holomorphic curve with Chern
number 2. By the properties of the moduli space of spheres there must then
be a holomorphic curve with values in a neighbourhood of the boundary, which
is a contradiction with the contact type hypothesis. More precisely, due to a
maximum principle analogous to Proposition 3.3.23 any sphere with a point
mapped close to the boundary must be entirely contained in a neighbourhood
of the boundary. Moreover, one can ensure that there exists a sphere mapped
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in a neighbourhood of the boundary where the symplectic form is exact. By the
energy identity this implies that the holomorphic sphere has 0 energy, and is
therefore constant, which contradicts the fact that it has Chern number 2.

Specializing the above discussion to the 4–dimensional case, one obtains the
following statements, which provide a strengthening of Theorem 3.1.1. Recall
that every 4–manifold is semipositive.

Corollary 3.4.9. If a log-symplectic 4–manifold contains a symplectic sphere
with 0 self-intersection, then the singular locus is a union of copies of S1 × S2.

Corollary 3.4.10. If one component of the singular locus of a closed 4–dimensional
log-symplectic manifold is diffeomorphic to S1×S2, then all components are dif-
feomorphic to S1 × S2.

Corollary 3.4.11. In a symplectic 4–manifold, symplectic spheres with non-
negative normal Chern number, and symplectic surfaces of positive genus with
trivial normal bundle, must intersect (in particular they cannot be homologous).

Proof. This is because around a symplectic surface Σ with trivial normal bun-
dle the symplectic structure can be modified into a log-symplectic form, with
singular locus S1 × Σ ([4], Theorem 5.1).

Corollary 3.4.12. Let (X, Z, ω) be compact log-symplectic 4–manifold with
non-empty boundary of contact type. Then Z is a union of S1 × S2.

Corollary 3.4.13. Let (X, Z, ω) be compact log-symplectic 4–manifold with
non-empty boundary of contact type. Then ∂X is not contactomorphic to the
standard contact 3-sphere.

3.4.3 Compactness of the moduli space

Let us now consider an arbitrary proper log-symplectic manifold. In order
to compactify the moduli space of curves one needs to take care not only of
bubbling, but also of the non-compactness caused by the presence of the singular
locus, as shown in the following simple example.

Example 3.4.14. Consider (X, Z) = (R×S1×Σ, {0}×S1×Σ), with coordi-
nates (x, t, z), and complex structure J(x∂x) = ∂t, J |TΣ = jΣ on TX(−logZ).
The inclusion u(x,t) of Σ in X as {(x, t)} × Σ is a log-holomorphic map for all
x 6= 0. Letting x → 0, one finds the map u(0,t), the inclusion of Σ in X as
{(0, t)} × Σ. This is not a map of pairs, as in Definition 3.2.9.

This example suggests that we might want to add the following set to the
moduli space:

Mg(A, J ;Z) :=
{

[(u, j)] :
u : Σg −→ Z has values in a symplectic leaf F

u is (j, J)-holomorphic as an F -valued map

}
/ ∼

(3.15)
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The notion of holomorphicity as an F -valued map is well-defined, thanks to
the discussion following Proposition 3.3.5 – a cylindrical complex structure on
TX(−logZ) induces a compatible leafwise complex structure on kerα ⊂ TZ.
In order to show that one can compactify the moduli space by adding (possi-
bly nodal) holomorphic curves in Z, and nodal curves in X \ Z, one applies a
very simple idea: one just observes that a sequence of holomorphic curves has a
subsequence contained in the compact symplectic manifold X \U , or has a sub-
sequence contained in a compact neighbourhood of Z. In both cases Gromov’s
theorem gives us a convergent subsequence. In the remainder of this section we
make this idea precise.

Lemma 3.4.15. Mg(A, J ; Z̃) is compact modulo nodal curves.

Proof. In the proper case, this is an immediate consequence of Theorem 2.2.2,
applied to a (compact) fiber F̃ with varying complex structure F̃t.

Remark 3.4.16. Of course one does not need to fix the homology class A: it
is enough to uniformly bound the energy.

Theorem 3.4.17. Let (X, Z, ω) be a closed log-symplectic manifold. Mg(A, J)t
Mg(A, J ;Z) is compact modulo nodal curves

Proof. Take a sequence uk of elements in Mg(A, J) tMg(A, J ;Z). If there is
a subsequence with values in Mg(A, J ;Z), the statement is a consequence of

Lemma 3.4.15, hence we can assume that uk ∈Mg(A, J). Let Ũ ∼= (−ε, ε)× Z̃.

Let U := Ũ/Z2. A sequence of holomorphic curves uk satisfies one of the
following two:

• it has a subsequence contained in X \ U

• it has a subsequence contained in U \ Z

In the first case, there is a subsequence converging to a nodal curve in X \ U ,
by the standard compactness result. In the second case, there are non-zero real
numbers λk, and holomorphic maps vk : Σ −→ Z̃, such that uk = (λk, vk).
Up to a subsequence, this converges in Ũ = (−ε, ε) × Z̃ to u∞ = (λ∞, v∞),
with λ∞ a possibly zero real number, and v∞ a nodal holomorphic curve in Z̃.
Denoting the projection to the quotient with q : Ũ −→ U , we find that q ◦ u∞
is the limit (in U ⊂ X) of uk = q ◦ uk (up to subsequence).

The proof shows that we do not need to add the whole of Mg(A, J ; Z) in
order to compactify Mg(A, J). It is enough to take the union of Mg(A, J) the
following set:

N (A, J ;U) := {q ◦ u : u : Σ −→ (−ε, ε)× Z̃}/ ∼ (3.16)

It is readily seen, using Corollary 3.3.24, that

N (A, J ;U) = (−ε, ε)×Z2
Mg(A, J ; Z̃) (3.17)

where the action of Z2 on Z̃ is by post-composition with the involution σ (recall
that we chose a σ-equivariant J).
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Definition 3.4.18. Denote with Ng(A, J) the compactification of the moduli
space of curves of genus g, obtained by adding to Mg(A, J) the maps of the

form q ◦ u : Σg −→ Z, with u ∈ Mg(A, J ; Z̃). The space N (A, J ;U) is the set
of all elements in Ng(A, J) with values in U .

Remark 3.4.19. Using the results from Chapter 5 (Theorem 5.5.2 and Corol-
lary 5.4.3) one can apply the argument above in the non-proper case. The
properness assumption simplifies the proof of compactness, allowing to reduce
it to a compactness result for sequences of complex structures on the same
manifold.

3.4.4 Transversality for closed holomorphic curves

We would like to prove that the moduli space is a smooth manifold. We consider
here the compactification Ng(A, J), as in Definition 3.4.18, and prove that it is
smooth, under some assumption. In particular, we prove smoothness for (the
compactification of) the moduli space of genus 0 maps in 4–dimensional log-
symplectic manifolds.
By the maximum principle (Corollary 3.3.24), one has

Ng(A, J) = Ng(A, J ;U) tMg(A, J ;X \ U) (3.18)

Since regularity can be expected for somewhere injective curves, let us introduce
a notation. We denote by

N ∗g (A, J) := N ∗g (A, J ;U) tM∗g(A, J ;X \ U)

whereM∗g(A, J ;X\U) is the subset of somewhere injective curves, andN ∗g (A, J ;U)
is the set of curves of the form q ◦ u with u somewhere injective.
We know from the general theory that the curves inM∗g(A, J ;X \U) are Fred-
holm regular for a generic choice of almost complex structure (Corollary 2.2.8).
The regularity of curves in a neighbourhood of the singular locus is more del-
icate: we observe in the following example that we cannot hope for Fredholm
regularity for positive-genus holomorphic curves.

Example 3.4.20. Consider R × S1 × Σg, and the simple map u : Σg −→
R×S1×Σg. This is holomorphic for appropriate choices of cylindrical complex
structures. The pull-back of the tangent bundle is C × TΣg. The ∂ operator
splits, because of integrability of the complex structure. This operator has
always a non-trivial cokernel by the Riemann-Roch formula, unless g = 0.

So let us content ourselves to consider the genus 0 case. The first step is
to show that in some cases one can deduce the Fredholm regularity from the
symplectic leaves. Assume we are in a neighbourhood U of the singular locus
Z, and u : S2 −→ U is of the form u = (λ0, [t0, v]) with v : S2 −→ F̃t0 , λ0 6= 0.
Then u∗TX = C⊕ v∗T F̃ .

Corollary 3.4.21. If the complex structure on F̃t0 is integrable, u is regular if
and only if v is regular.
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Proof. This follows immediately from Proposition 2.2.10.

This is enough to prove that all simple holomorphic spheres are generically
regular in dimension 4. Indeed, if Z has a component Z0 for which the symplectic
fibers are not spheres, then we know that there are no holomorphic spheres with
values in the correponding component U0 of U . Hence we can restrict to the
case where Z is a collection of S1 × S2’s. By the formula (3.17) we only need
to prove that

• M∗(A, J ; Z̃) is smooth

• the action of Z2 on (−ε, ε)×Mg(A, J ; Z̃) is free

The first item follows from generic transversality, and Corollary 3.4.21. Actually,
one could also show this explicitly. In fact, the only somewhere injective maps
of a sphere into a sphere are the biholomorphisms, which all represent the same
homology class A. For that homology class,M∗(A, J ; Z̃) = S1. Let us turn the
second item into a lemma.

Lemma 3.4.22. Z2 acts freely on (−ε, ε)×Mg(A, J ; Z̃).

Proof. Assume (−1) · (λ, v) = (λ, v). Then there exists a biholomorphism
ϕ : S2 −→ S2 such that

(λ, v) = (−λ, σ ◦ v ◦ ϕ)

or equivalently
σ ◦ v = v ◦ ϕ

It is enough to show that σ induces a fixed-point free map on the leaf space (S1)
of Z̃ = S1 × S2. That has to be the case because if there exists a t ∈ S1 such
that σ(t, z) = (t, τ(z)), for a symplectomorphism τ . The map τ is Hamiltonian,
hence has fixed points. Since σ needs to be free, that’s a contradiction.

Corollary 3.4.23. N ∗(A, J ;U) is smooth and diffeomorphic to (−ε, ε) ×Z2

Mg(A, J ; Z̃)

The proof actually shows that N ∗(A, J ;U) is a cylinder when X is orientable
and a Möbius band when X is not orientable.

Theorem 3.4.24. Let (X, Z, ω) be a log-symplectic manifold of dimension 4.
There is a comeager set of cylindrical complex structures Jreg such that for all
J in Jreg all simple holomorphic maps u : S2 −→ X are Fredholm-regular.
In particular the subset N ∗0 (A, J) ⊂ N0(A, J) consisting of simple curves is a
smooth manifold of dimension 2c1(A)− 2.

Proof. Consider a tubular neighbourhood U ∼= (−ε, ε)×Z2 Z. We already know
that for a generic choice of J all the spheres with values in X \U are Fredholm
regular, so we only need to look at U . Let F be the (2-dimensional) fiber. If F
has genus g > 0, then the theorem is just a consequence of Proposition 3.4.4.
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If F has genus g = 0, we need to study the regularity of simple curves with
values in U \Z. Since all complex structures on F are integrable, we can apply
the regularity theorem Corollary 3.4.21. The only simple holomorphic map
has Chern number 2, which is bigger than −1. Hence it is Fredholm regular.
To conclude, as a consequence of Lemma 3.4.22 we obtain that N ∗(A, J ;U) is
smooth also at points corresponding to Z-valued maps.

3.4.5 Ruled surfaces

We noted in Corollary 3.4.10 that for a log-symplectic 4–manifold the presence
of a singular component diffeomorphic to S1 × S2 forces all the singular locus
to be a union of S1 × S2. This condition turns out to be even more restrictive,
as it forces the entire manifold to be a blow-up of a ruled surface, i.e. a blow-up
a 4–manifold supporting a fibration X −→ B over a surface, with symplectic
fiber S2. This result is part of what we called Theorem 3.1.2 in the introduction,
and is analogous to what McDuff proves in [26]. There it is proved that in a
symplectic 4–manifold the existence of a symplectically embedded sphere with
trivial normal bundle is equivalent to the manifold being ruled (up to blow-up).
The key fact is the following refined compactness theorem from [40].

Theorem 3.4.25 ([40], Theorem 4.6 ). Let (M, ω) be a closed symplectic 4–
manifold. Let A be a homology class with A · A = 0. Let J be a generic
complex structure, and consider a sequence of embedded J-holomorphic spheres
representing the class A. Then a convergent subsequence converges to either an
embedded sphere (in the same class A), or to a nodal curve with two irreducible
components, in classes A1 and A2, with self-intersection −1, and intersecting
each other positively at exactly one point. Moreover the moduli space of such
nodal curves is compact and 0-dimensional.

The proof of this result is based on an analysis of the virtual dimension,
combined with the adjunction formula (in particular the fact that the index
determines whether the curve is embedded). The genericity of J is needed in
order to prevent negative-index holomorphic curves to appear. The exact same
proof applies to sequences of holomorphic curves in X \Z converging to a nodal
curve in X \Z. Hence, we can prove a log-symplectic version of Theorem 3.4.25
as soon as we can prevent bubbling in a neighbourhood of Z.
Let us give a name to the 4–manifolds with singular locus containing S1 × S2.

Definition 3.4.26. A log-symplectic 4–manifold (X, Z, ω) is called genus–0
log-symplectic if one component of the singular locus is diffeomorphic to S1×S2.

We already know (Corollary 3.4.10) that if (X, Z, ω) is genus–0 then all of
the components of Z are S1 × S2. Moreover if (X, Z, ω) contains a symplectic
sphere with trivial normal bundle then X is genus–0 (Corollary 3.4.9), and
conversely if X is genus 0 then the S2-factor in the singular locus is an embedded
symplectic sphere with trivial normal bundle. We first show the spheres in the
singular locus are in fact all homologous (modulo double covers). In particular
they all appear in the same moduli space.
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Proposition 3.4.27. Let (X, Z, ω) be a closed log-symplectic 4–manifold. As-
sume there exists an embedded symplectic sphere representing a homology class
A with zero self-intersection. Then all components of the singular locus are dif-
feomorphic to S1 × S2. The double cover Z̃ is also diffeomorphic to S1 × S2,
and for each component [{p} × S2 ⊂ Z̃] = A of Z̃.

Proof. The proof goes as in Section 3.4.2. We already noted that all the compo-
nents of the singular locus are S1×S2’s, and the same is true for the components
of Z̃. Take neighbourhood of Z such that U ∼= (−ε, ε)×Z2

(S1 × S2); the com-
plement of {0}×Z2

(S1×S2) is just (−ε, 0)×S1×S2. Pick a cylindrical complex
structure that makes the embedded sphere S into a J-holomorphic sphere, and
such that {(λ, t)} × S2 ⊂ (−ε, 0) × S1 × S2 is holomorphic. By automatic
transversality we can assume that J is generic. The moduli space of simple
spheres in the class A, together with the spheres in the singular locus, is then
a smooth manifold (Theorem 3.4.24). It has dimension 2 by the adjunction
formula. Let N be the set of points belonging to a reducible nodal curve in the
class A. The evaluation map

ev :M0,1(A, J) ∩ ev−1((X \ Z) \N) −→ (X \ Z) \N

is a proper map. By positivity of intersection and the fact that A ·A = 0, there
is at most one A curve through each point. Thus the degree of the evaluation
is 1, hence the evalutation is a bijection (it is in fact a diffeomorphism). In
particular there exists an A-curve through each point of U \Z. By the maximum
principle it has to be contained in {(λ, t)} × S2 ⊂ Z̃, and hence coincide with
{(λ, t)} × S2.

Theorem 3.4.28. Let (X, Z, ω) be a closed log-symplectic 4–manifold. Let A
be a homology class with A · A = 0. Let J be a generic complex structure, and
consider a sequence of embedded J-holomorphic spheres representing the class A.
Then a convergent subsequence converges to either an embedded sphere (in the
same class A), or to a nodal curve with two irreducible components, in classes
A1 and A2, with self-intersection −1, and intersecting each other positively at
exactly one point. Moreover the moduli space of such nodal curves is compact
and 0-dimensional, and the nodal curves only appear in the symplectic locus.

Proof. We know from the above Proposition 3.4.27 that the singular locus con-
sists of S1×S2’s in the same class. Hence, by Corollary 3.4.23, the moduli space
of curves with values in U looks like (−ε, ε)×Z2M0(A, J ; Z̃) ∼= (−ε, ε)×Z2 S

1.
Hence no bubbling can occur in U . The statement now follows from Theo-
rem 3.4.25

This result, together with the fact that the nodal singularities can be seen
as Lefschetz singularities ([40]) implies the following characterization.

Theorem 3.4.29. Let (X, Z, ω) be a closed genus–0 log-symplectic 4–manifold.
Then X supports a Lefschetz fibration X −→ B with fibers of genus 0, so that
Z is a union of regular fibers. Moreover, the singular fibers have exactly one



3.4. CLOSED CURVES 55

singular point, and their irreducible components are (−1)-curves. In particular
if X \ Z is minimal, then X −→ B has no critical points.

Proof. (see also [40]) The statement follows from the evaluation map

ev : N 0,1(A, J) −→ X

being a diffeomorphism. The base of the Lefschetz fibration is N 0(A, J).

Corollary 3.4.30. A genus–0 log-symplectic 4–manifold X is diffeomorphic to
a blow-up of one of the manifolds in the following list:

• S2 × Σg

• S2 × (#kRP 2)

• S2×̂Σg

• S2×̂(#kRP 2)

where by S2×̂B we mean the unique (up to diffeomorphism) non-trivial oriented
sphere bundle over B.

3.4.6 Uniqueness of Lie algebroid symplectic structures

The goal of this section is to show that the classification form Corollary 3.4.30
holds up to deformation equivalence, thus concluding the proof of Theorem 3.1.2
(see Corollary 3.4.38). More precisely, this means that any two log-symplectic
structures on one of the manifolds in Corollary 3.4.30 can be joined by a path
of log-symplectic forms. The method used to prove Corollary 3.4.38 actually
hold for general symplectic structures on Lie algebroids ([20]), hence we state
the results at that level of generality. In this section we introduce the relevant
terminology, and prove the deformation equivalence of Lie algebroid symplectic
structures supported by a Lie algebroid Lefschetz fibration. This applies in par-
ticular to symplectic, log-symplectic, and stable generalized complex structures
([6], [7]).

Let us recall what is the statement in the case of symplectic forms. Recall
that a symplectic form ω on M is said to be supported by a Lefschetz fibration
if there is a Lefschetz fibration f : M −→ B such that

• ω restricts symplectically on the smooth part of the fibers

• in complex coordinates (z1, z2) around the critical points, such that f(z1, z2) =
z2

1 + z2
2 , the complex structure i is tamed by ω.

Theorem 3.4.31 ([40], Theorem 3.33). Let M be an oriented 4–manifold, and
let f : M −→ B be a Lefschetz fibration. Let ω0, ω1 be symplectic structures
supported by f . Then there is a family ωs, s ∈ [0, 1], of symplectic structures
supported by f , joining ω0 and ω1.
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Let us now introduce the language of symplectic structures and Lefschetz fibra-
tions on Lie algebroids.

Definition 3.4.32. Let A −→M be a Lie algebroid of rank 2k. A Lie algebroid
symplectic structure on A is a closed algebroid 2-form ω ∈ Ω2

A such that ω∧k 6= 0.

Obviously, symplectic and log-symplectic structures are examples of Lie al-
gebroid symplectic structures, A = TM, TM(− logZ) respectively.

Definition 3.4.33. Let AM −→ M , AB −→ B be Lie algebroid, with anchor
maps ρM and ρB respectively. A Lie algebroid morphism is a vector bundle
map

AM AB

M B

F

f

(3.19)

such that

AM AB

TM TB

F

ρM ρB

df

(3.20)

commutes, and dF ∗ = F ∗d, where d denotes the suitable Lie algebroid differen-
tial.

Given a Lie algebroid AM −→ M , let M iso ⊂ M be the maximal open set
such that ρM |M iso is an isomorphism.

Definition 3.4.34. A Lie algebroid Lefschetz fibration is a Lie algebroid mor-
phism

AM AB

M B

F

f

(3.21)

between oriented Lie algebroids, with a (possibly empty) set of critical points
M crit ⊂M iso such that

• f(M crit) ⊂ Biso

• in a neighbourhood of M crit, f is a Lefschetz fibration with critical points
M crit

• F is fiberwise surjective on each fiber over M \M crit

Definition 3.4.35. Let F : A4
M −→ A2

B be a Lie algebroid Lefschetz fibration.
A fiberwise symplectic form is a closed Lie algebroid 2-form η on AM such that

• η is symplectic on the fibers of F |M\Mcrit



3.4. CLOSED CURVES 57

• for any almost complex structure J in a neighbourhood of M crit, that
restricts to a positive complex structure on the fibers, η tames J at M crit

A Lie algebroid symplectic form which is fiberwise symplectic is said to be
supported by the fibration.

As was already mentioned, Lie algebroid Lefschetz fibrations provide a frame-
work to study Lie algebroid symplectic forms, and in particular to construct
examples.

Proposition 3.4.36 ([6],[7]). Let F : A4
M −→ A2

B be a Lie algebroid Lefschetz
fibration, with M and B compact, and A2

B orientable. Assume there is a fiber-
wise symplectic form η. Then AM admits a symplectic structure, of the form

ω = η +KF ∗σ (3.22)

for K >> 0, σ a volume form on AB.

The resulting symplectic form is apparently supported by the fibration.

We can now prove the Lie algebroid version of Theorem 3.4.31. The proof
is almost word by word the one explained in [40] – the proof being essentially
linear algebra, it works for any map of symplectic vector bundles. We provide
a proof for completeness.

Proposition 3.4.37. Let F : A4
M −→ A2

B be a Lie algebroid Lefschetz fibration,
and ω0, ω1 be symplectic forms supported by the fibration and inducing the same
orientation on AM . Then there is a path ωs of symplectic forms joining ω0 and
ω1.

Proof. Consider ω′s := (1 − s)ω0 + sω1. This is a fiberwise symplectic form,
and non-degenerate for s ∈ [0, ε) ∪ (1 − ε, 1], and at p ∈ M crit, ∀s. Let
V := kerF , Hs = {a ∈ AM : ω′s|V (a, ·) = 0}. One has AM = V ⊕ Hs,
and since ω′s(V, Hs) = 0, ω′s is non-degenerate if and only if ω′s|Hs

is.

Since ω0 and ω1 induce the same orientation, there exists a volume form
σ on AB such that F ∗σ|Hs and ω′s|Hs induce the same orientation, for all
s ∈ [0, ε) ∪ (1 − ε, 1]. Thus, for all positive numbers K, ω′s + KF ∗σ is non-
degenerate for all s ∈ [0, ε)∪ (1−ε, 1]. Moreover, for K big enough, ω′s+KF ∗σ
is symplectic for all s, by compactness of B.

Take a function ρ which is equal to 0 in a neighbourhood of 0 and 1, and
equal to 1 on [ε, 1− ε]. By what we said above, the forms

ωs := ω′s +Kρ(s)F ∗σ (3.23)

are all symplectic, and join ω0 to ω1.

Corollary 3.4.38. A 4–dimensional genus–0 log-symplectic manifold (X, Z, ω)
is diffeomorphic to a blow-up of one of the list in Corollary 3.4.30, and any two
diffeomorphic ones have deformation equivalent log-symplectic structures.
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3.5 Curves with boundary

The aim of this section is to study logarithmic holomorphic curves with bound-
ary on the singular locus, as well as closed logarithmic holomorphic curves with
non-empty singular locus. We will construct moduli spaces of the latter in a
particular case, and apply our construction to the study of ruled surfaces.

3.5.1 Moduli spaces of curves with boundary

We consider here (moduli spaces of) holomorphic maps of compact logarithmic
Riemann surfaces with boundary. We know from Proposition 3.3.13 and Re-
mark 3.3.15 that such curves correspond to finite energy punctured holomorphic
curves, as studied in SFT, and their boundary components are mapped to sim-
ple closed Reeb orbits.
We construct the moduli spaces using this correspondence. To be more pre-
cise, fix a tubular neighbourhood of Z so that the resulting stable Hamiltonian
structure is Morse-Bott, and pick a cylindrical complex structure. As in Sec-
tion 2.3.4, one can fix a set c of asymptotic constraints, and consider the space
Mg(A, J)c. Let τ be a trivialization of TZ on the Reeb orbits to which the
punctures are asymptotic. Applying Theorem 2.3.20 one obtains immediately
the following generic transversality theorem:

Theorem 3.5.1. Let (X, Z, ω) be log-symplectic. Fix a tubular neighbourhood
U of Z such that the induced stable Hamiltonian structure is Morse-Bott, and
pick a cylindrical complex structure Jfix on U . Consider the set Jfix of compatible
complex structures that coincide with Jfix on U . Let c be a set of asymptotic
constraints. Then for a generic choice of J ∈ Jfix all curves in Mg(A, J)c are
Fredholm regular, so that the moduli space is a smooth manifold of dimension
(n− 3)(2− 2g −#π0(∂Σ)) + 2cτ1(A) + µτ (c).

Proof. All curves are embedded near the boundary, hence they are somewhere
injective (or, equivalently, simply covered). Hence Theorem 2.3.20 applies, yield-
ing the result.

In the same way the SFT compactness theorem applies.

Theorem 3.5.2. With the same notation as above, the moduli spaceMg(A, J)c

is compactified by the space Mg(A, J)c of stable holomorphic buildings.

In the special case when no two boundary components are mapped to the
same component of the singular locus, the geometric setup allows to rule out
certain buildings.

Proposition 3.5.3. Let uk be a sequence of holomorphic curves with asymp-
totic constraint c so that no two boundary components are mapped to the same
component of the singular locus. Let u∞ be a limiting holomorphic building.
Then all the levels other than the main one consist of disjoint unions of nodal
curves with exactly two punctures (one for each component of the singular lo-
cus), asymptotic to simple Reeb orbits. The main level must be a nodal curve
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with as many punctures as the uk’s, with at most one puncture asymptotic to
each component of Z.

Proof. For each component of the singular locus, the top level is a nodal curve
with a single positive puncture asymptotic to a single simple curve. The sum
of the negative punctures must be homotopic (in Z) to a simple curve. In
particular, their projection to S1 need to be homotopic. By holomorphicity,
all the negative punctures are multiples of the positive generator of π1(S1),
which implies there must be a single simple negative puncture. Iterating the
argument one sees that it has to hold for all lower levels (main exluded), and
that the punctures of the main level are in one to one correspondence with the
punctures of uk.

3.5.2 Punctured spheres with 0 self-intersection

In this section we investigate the consequences of the existence of an embedded
holomorphic punctured sphere with 0 self-intersection in certain log-symplectic
4–manifolds. Let (X, Z, ω) be an oriented log-symplectic 4–manifold. Let X0

be a component of X \Z. We know (Proposition 3.2.16) that we can realize X0

(non-uniquely) as a completion Ŵ of a manifold (W, ∂W ) with stable Hamilto-
nian boundary, such that the 1-form α is closed, and all components of ∂W are
positive. We will study punctured spheres with 0 self-intersection in the case
when the stable Hamiltonian structure induces the trivial fibration S1×Σgi on
each component of ∂W . The goal is again to apply the results to the study of
ruled surfaces (Section 3.5.3).

The precise statement is the following.

Theorem 3.5.4. Let (W, ∂W, ω) be a symplectic 4–manifold with an induced
positive stable Hamiltonian structure on ∂W , of the form (α, β), with dα = 0.
Assume that (α, β) induces a trivial symplectic fibration, so that ∂W = tiS1 ×
Σgi .
Let J be a “generic” cylindrical complex structure, and let u : S2\{p1, . . . , pk} −→
Ŵ be a k-punctured J-holomorphic sphere such that

• different punctures are asymptotic to Reeb orbits in different components
of ∂W

• u?u = 0 as a punctured holomorphic curve with unconstrained asymptotics

LetM denote the component containing u of the moduli space of J-holomorphic
maps. Then M is a smooth 2-dimensional manifold, all elements of which
are embedded curves. Moreover M can be compactified to a smooth closed 2-
dimensional manifold M, by adding nodal curves consisting exactly of 2 compo-
nents: an embedded k-punctured sphere of self-intersection −1, and an embed-
ded sphere of self-intersection −1. The two components intersect exactly at one
point.
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The proof will consist of an index computation, and an application of the
adjunction formula. We will start with an arbitrary holomorphic building, and
compare the index of each level with the index of u. The genericity of J will be
used to rule out all such buildings containing levels with negative index. Using
the adjunction formula, we can relate the indices of the remaining buildings with
their self-intersection, and their embeddedness. As a result, we will prove that
the only holomorphic buildings that can appear as limits of curves homotopic
to u are those mentioned in the statement.

A useful tool in the proof is the following lemma, which allows to tell whether
a cylinder is trivial.

Lemma 3.5.5. Let Z be a symplectic mapping torus, isomorphic to (S1 ×
Σg, cdt, volΣg

), and let J be a compatible almost complex structure on R × Z.
Let u : C∗ −→ R×Z be a finite energy holomorphic cylinder. Then, if g > 0, u
is a trivial cylinder. If g = 0, then the relative Chern class c1(u), defined with
respect to the isomorphism Z ∼= S1 × S2, is a non-negative even number, and
c1(u) = 0⇔ u is a trivial cylinder.

Proof. Fix an isomorphism Z = S1 ×Σg as symplectic mapping tori, and write
u = (u1, u2). The map u2 : C∗ −→ Σg is holomorphic and has finite energy,
thus extends to u2 : S2 −→ Σg. If g > 0, this means that u2 is a constant.

If g = 0, one has u2 : S2 −→ S2, and c1(u2) = 2deg(u2) ≥ 0 because u2 is
orientation preserving. In particular u2 is constant if and only if deg(u2) = 0
(by holomorphicity). The fact that c1(u) = c1(u2) implies the statement.

Proof of Theorem 3.5.4. First of all, using the adjunction formula one computes
that ind(u) = 2 (Corollary 3.6.2), and that all elements in M are embedded.
Since J is a generic complex structure, there are no J-holomorphic curves of
negative index.
Let us assume now that u : S2 \ {p1, . . . , pk} −→ Ŵ is J-holomorphic; let γi be
the orbit to which pi is asymptotic. Consider the moduli spaceM :=M0(A, J)c

of J-holomorphic punctured spheres, with punctures p1, . . . , pk asymptotic to
simple orbits in the same components as γ1, . . . , γk, respectively. The transver-
sality theorem 3.5.1 can be applied to each element ofM, because by the max-
imum principle each curve has a point mapped to X \ U , and such point is
injective because u is an embedding. Thus M is a smooth 2–dimensional man-
ifold.

By Proposition 3.5.3, we can compactifyM by adding holomorphic buildings

u∞ = (u0,u
(a)
1 , . . . ,u

(a)
L ), where u0 is a nodal punctured sphere in Ŵ , and u

(a)
i ,

a = 1, . . . , ai is a nodal cylinder in R×∂W . In particular we can write each u
(a)
i

as a collection of curves: u
(a)
i = (u

(a)
i,0 , u

(a)
i,1 , . . . , u

(a)
i,mi

), where u
(a)
i,j are spheres

for j > 0, and u
(a)
i,0 is either a k-punctured sphere (when i = 0) or a cylinder

(when i > 0). We need to show that:
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• mi = 0 for all i > 0

• u(a)
i,0 is the trivial cylinder for all i > 0, and all a

• m0 = 1

• u0 = (u0, v1), is such that u0 ? u0 = −1 = v1 · v1, and u0 · v1 = 1

We will do this by index counting, assuming that there are no holomorphic
curves of negative index (which is true due to our assumption that J is generic).

Denote by N
(a)
i,j the number of nodes of the curve u

(a)
i,j , and let S

(a)
i,j be its

domain. Let S
(a)
i be the (topological) connected sum of the S

(a)
i,j ’s at the nodes.

Then

χ(S
(a)
i ) =

∑
j≥0

(χ(S
(a)
i,j )−N (a)

i,j ) (3.24)

and

2− k = χ(S2 \ {p1, . . . , pk}) =
∑
i,j,a

χ(S
(a)
i ) = χ(S0) (3.25)

(the last equality follows from S
(a)
i being a cylinder for i > 0). Denote by A

(a)
i

the relative homology class of u
(a)
i,0 , and B

(a)
i,j the homology class of u

(a)
i,j .

Define the following numbers:

• ind(u∞) := (n − 3)χ(Σ̇) + 2cτ1(A) + µτ (c) = −
∑
i,j(χ(Si,j) − Ni,j) +∑

i 2cτ1(Ai) +
∑
i,j 2c1(Bi,j) + µτ (c)

• ind(u0) := −
∑
j(χ(S0,j)−N0,j) + 2cτ1(A0) +

∑
j 2c1(B0,j) + µτ (c′)

• ind(u
(a)
i ) := −

∑
j(χ(S

(a)
i,j )−N (a)

i,j )+2cτ1(A
(a)
i )+

∑
j 2c1(B

(a)
i,j )+µτ (c′), for i >

0

One has

2 = ind(u∞) = ind(u0) +
∑
i≥1, a

(ind(u
(a)
i )− µτ (c′))

= ind(u0) +
∑
i≥1, a

(ind(u
(a)
i )− 2) (3.26)

We would like to prove that ind(u0) and ind(u
(a)
i )− 2 are all non-negative.

It is immediate to check that

ind(u0) = ind(u0) +N0,0 +
∑

(ind(u0,j) +N0,j) (3.27)
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and all the summands are non-negative. Similarly, for i > 0,

ind(u
(a)
i ) = (ind(u

(a)
i,0 ) +N

(a)
i,0 − 2) +

∑
j≥1

(ind(u
(a)
i,j +N

(a)
i,j ))

≥
∑
j≥0

(N
(a)
i,j )− 2 (3.28)

We claim that ind(u
(a)
i )− 2 ≥ 0.

First of all, Lemma 3.5.5 ensures that c1(A
(a)
i ) ≥ 0 and is even whenever i > 0.

Moreover, also c1(B
(a)
i,j ) ≥ 0, because by the maximum principle u

(a)
i,j : S2 −→

{?} × S2. Finally, c1(A
(a)
i ) = 0 if and only if A

(a)
i represents a trivial cylinder

(in which case N
(a)
i,0 > 0, by stability), while c1(B

(a)
i,j ) = 0 if and only if B

(a)
i,j

represents a constant bubble (in which case N
(a)
i,j > 2, again by stability).

Now,

ind(u
(a)
i )− 2 = 2cτ1(A

(a)
i ) +

∑
j

2c1(B
(a)
i,j )−

∑
j

(χ(S
(a)
i,j )−N (a)

i,j )

≥ 0 + ind(u
(a)
i,j ) +

∑
j

N
(a)
i,j ≥ 0 (3.29)

which proves the claim.

In fact, we can prove that ind(u
(a)
i )− 2 ≥ 3, which contradicts the estimate

2 ≥ ind(u
(a)
i )− 2. Indeed,

ind(u
(a)
i )− 2 = 2cτ1(A

(a)
i )− (0−N (a)

i,0 ) +
∑
j

2c1(B
(a)
i,j )− (2−N (a)

i,j ) (3.30)

It was already observed that the stability condition implies 2cτ1(A
(a)
i )+N

(a)
i,0 ≥ 1.

If there are no bubbles, then 2cτ1(A
(a)
i ) ≥ 4. If there is a non-constant bubble,

then 2c1(B
(a)
i,j )− (2−N (a)

i,j ) ≥ 4− 2 + 1 = 3 (a bubble has at least one node). If
all bubbles are constant, then there must be at least 6 nodes (by stability, and

the fact that nodes come in pairs), hence ind(u
(a)
i ) − 2 ≥ 6 − 2 = 4. All cases

contradict 2 ≥ ind(u
(a)
i ) − 2, implying that there cannot be any levels other

than the main one.

We are left to prove that the main level is either an embedded curve with 0
self-intersection, or it consists of two components, one of which is a punctured
sphere and the other a sphere, intersecting each other in a point, and with self-
intersection −1. We know that 2 = ind(u∞) = ind(u0,0) = ind(u0) + N0,0 +∑
j ind(u0,j) +N0,j .

Since the orbits to which u0 is asymptotic are simple and of minimal period, u0
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is a simply covered curve, hence the adjunction formula applies. Moreover, the
index of u0 is an even number. We can distinguish two cases:

• ind(u0) = 2. Then there are no nodes, and no bubbles. Since u0 is a simple
curve, limit of curves with 0 self-intersection, it has 0 self-intersection. The
adjunction formula then implies that it is embedded.

• ind(u0) = 0. Then the only possibility is that there is a single bubble, say
v = u0,1, such that ind(v) = 0, and N0,0 = N0,1 = 1. Moreover, we claim
that v is simply covered. Indeed, assume it is a k-fold cover of a simple
curve v′, then v′ has to be a sphere. Further, 0 = ind(v) = 2c1(kB′)−2 =
ind(v′) + 2(k − 1)c1(B′), where [v] = B, and [v′] = B′. Since ind(v′) ≥ 0,
c1(B′) ≥ 1, so that one needs to have k = 1.

Now, we would like to prove that v ·v = u0 ?u0 = −1, v ·u0 = 1. We know (The-
orem 2.4.4) that u ? u = u •τ u+ iτ∞(u), where the first term is topological, and
consists of the number of intersections of u with a slight perturbation of u along
the direction of the trivialization τ , and iτ∞(u) (the number of “hidden intersec-
tions at infinity”), only depends on the asymptotic trivialization and on the Reeb
orbits. We know that the pair (u0, v) is a limit of curves with 0 self-intersection,
and that v is closed. Hence, if u is a curve in the moduli space, one has u ? u =
0 = (u0+v)•τ (u0+v)+iτ∞(u) = u0•τ u0+iτ∞(u0)+v·v+2u0 ·v = u0?u0+v·v+2.
Denote by sing(w) the contribution of the singularity of a curve w to the self
intersection number. By the adjunction formula, w?w = sing(w)+ 1

2 ind(w)−1.
Moreover u0 ·v ≥ 1. Thus u0?u0 +v ·v+2 ≥ sing(u0)+sing(v) ≥ 0. This implies
that both curves are embedded, and their self intersection is −1. As a conse-
quence, u0 ·v = 1 (the single point of intersection is the node, and is transverse).

This automatically implies that the moduli space is a smooth closed surface
if the manifold is not a blow-up. If the manifold is a blow-up, the compactified
moduli space in the Gromov topology is a topological surface, with a smooth
structure coming from the blow-down map.

This concludes the proof of the theorem.

A version of Theorem 3.5.4 for holomorphic curves with a marked point can
be stated as follows.

Theorem 3.5.6. Same hypotheses and notation as in Theorem 3.5.4. Let M1

be the component containing u of the moduli space of J-holomorphic curves with
one marked point. Then M1 is a smooth 4–dimensional manifold, fibering over
M. Moreover M1 can be compactified to a manifold with boundary M1, by
adding:

• punctured nodal curves, with two irreducible components of self-intersection
−1, intersecting in one point

• holomorphic buildings of height 2, where the main level is a curve of M,
and the second level is a trivial cylinder with a marked point
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The boundary ofM1 consists of the latter elements. The evaluation map extends
continuously to M1, with values in the compactification of Ŵ in X.

Proof. The proof follows from Theorem 3.5.4 and the SFT compactness the-
orem. Indeed, we can compactify M1 using the space of stable holomorphic
buildings with one marked point. The buildings of M together with a marked
point are examples of elements of the SFT compactification. They are not all, as
there might be building with levels consisting entirely of trivial cylinders, as long
as they have enough marked points to be stable. In the case of the present theo-
rem, it is possible for a level to contain exactly one trivial cylinder, if the marked
point belongs to it. From this consideration the first part of the statement is
proved. It is easily computed that the dimension of the set of height 2 buildings
is 3, i.e. it has codimension 1. The evaluation map extends continuously, by
the very definition of the topology on the space of buildings.

As an application, we mention the following consequence of the analysis
above.

Proposition 3.5.7. Let W be symplectic with stable Hamiltonian boundary
isomorphic to a union of S1 × Σgi . Let J be a cylindrical complex structure,
and assume there is an embedded punctured J-holomorphic sphere S, with at
most one puncture for each boundary component, and 0 self-intersection (with
unconstrained asymptotics). Then:

(i) the number of punctures is equal to the number of components of ∂W

(ii) there is a diffeomorphism between the moduli space of curves homotopic
to S, and Σgi . In particular gi = gj for all i, j

Proof. Part (i). Assume first that W be minimal. View the domain of S as a
compact surface with boundary (Σ, ∂Σ), with a logarithmic holomorphic struc-
ture. Consider the space M1 of holomorphic curves homotopic to S, with one
marked point in Σ. By Theorem 3.5.6 and the minimality assumption this is
a compact smooth manifold with boundary. One can naturally compactify Ŵ
to a log-symplectic manifold Y with boundary, such that ∂Y is the singular
locus. Since π0(∂M1) = π0(∂S), by assumption ev∗ : π0(∂M1) −→ π0(∂Y ) is
injective. Hence, if it is surjective the first part of the statement is true.

Consider the moduli space M1 of punctured J-holomorphic spheres homo-
topic to S, and its compactification M1. By Theorem 3.5.6, M1 is a compact
manifold with boundary, and the evaluation map ev :M1 −→ Y is continuous,
sends the boundary to the boundary, and is smooth in the interior. If ev is
surjective, then the number of boundary components of S needs to be equal to
the number of boundary components of Y .

Consider the doubles of M1 and Y , and extend the evaluation map in the
obvious way. Its degree is well defined, and needs to be non-zero: for each point
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in the image of the evaluation, there is a unique curve in M mapping to it.

In the nonminimal case one can run a similar argument noting that the
limiting buildings form a codimension-2 space. Thus one can proceed as in Sec-
tion 3.4.2.

Part (ii). For each component of the boundary, one can define a map
ri : M −→ Ri, from the moduli space of curves homotopic to S to the set
Ri ∼= Σgi of simple unparametrized Reeb orbits in the i-th component of ∂X.
The map assigns to each curve the Reeb orbit to which its i-th puncture is
asymptotic. We will show that for all i the map ri is a homeomorphism.

The map ri is injective. Indeed, assume that there are two curves in M
with a puncture asymptotic to the same Reeb orbit γ. Then their intersection,
as curves with constrained asymptotic orbit γ and the other punctures uncon-
strained, is equal to −1 (this follows from Lemma 3.6.4). Hence the curves must
coincide, by positivity of intersection (Theorem 2.4.1).

The map ri is a local diffeomorphism. The tangent space toM at embedded
curves consists of holomorphic sections of the normal bundle; the image of the
differential is the restriction of the sections to the boundary. A non-zero section
that vanishes at the boundary produces a new holomorphic curve with the same
asymptotic orbit, which contradicts the injectivity. If the manifold is minimal,
this is enough to conclude that ri is a diffeomorphism. Since Ri ∼= Σgi , and all
boundary components are reached by holomorphic curves, we get gi = gj for all
i, j.
In the non-minimal case, it suffices to recall that the blow-down map induces a
diffeomorphism at the level of compactified moduli spaces, as in Theorem 3.5.4.

3.5.3 Logarithmic ruled surfaces

We use the results from the previous section to show that in certain log-symplectic
4–manifolds, the presence of a holomorphic sphere with 0 self-intersection im-
plies that the manifold is (topologically) ruled, up to blow-up, proving The-
orem 3.1.3 (Corollary 3.5.18). The main ingredient is the construction of a
smooth moduli space of log-holomorphic spheres.

Let us start with some observations on the combinatorics of the singular
locus of a log-symplectic sphere. First of all, to any pair (X, Z) consisting of a
manifold and a codimension–1 submanifold (in particular to the pair determined
by a log-symplectic structure), one can attach a finite unoriented planar graph
Γ(X, Z). The vertices are the components of X \ Z. Each component of Z
determines an edge, joining the vertices corresponding to the components of
X \ Z that it bounds.
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Figure 3.1: Manifolds with hypersurface, and corresponding graph

Figure 3.2: Different manifolds may give rise to the same graph

Clearly π0(Γ(X, Z)) = π0(X), in particular the graph is connected if and
only if X is. Let us introduce some terminology that is going to be useful.

Definition 3.5.8. Let Γ be a finite connected graph. We call a circle an edge
with both endpoints on the same vertex. A loop is a connected subgraph, with
no circles, such that each vertex is connected to exactly two edges. We say that
a vertex is an extreme if all the edges connected to it, except at most one, are
circles. We say that a graph is 1-connected if it contains no loops, and orientable
if it contains no circles.

Lemma 3.5.9. Let (X, Z, ω) be log-symplectic. Then X is orientable if and
only if Γ(X, Z) is orientable.

Proof. If X is orientable, then Z = {f = 0} for some globally defined function
vanishing linearly. X \ Z splits as {f > 0} ∪ {f < 0}, and each component of
Z, being coorientable, bounds both a component of {f > 0} and a component
of {f < 0}, which are necessarily different.
If X is not orientable, then at least one component Zi of Z is not coorientable.
Then there exists a neighbourhood Ui of Zi such that ui \ Zi is connected.
Hence the edge of Γ(X, Z) corresponding to Zi has both extremes on the same
vertex.

Lemma 3.5.10. A 1-connected graph with at least 2 vertices has at least 2
extremes.

Proof. The statement and proof are insensitive of circles, we might assume there
are none. Pick any vertex v0. Construct a sequence vk simply by selecting at
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Figure 3.3: A circle with a single vertex, representing RP 2 with the nontrivial
loop as singular locus.

Figure 3.4: A loop in the graph producing an infinite order element in π1

each step a vertex (different from vk) which is connected to vk−1 by an edge.
There are two possibilities. Case one, the process must stop, as we get to a
vertex connected by only one edge. In this case such vertex is an extreme. Case
two, the process can continue indefinitely. But then since the graph is finite,
there must be a loop, so the graph is not 1-connected.
In order to find the second extreme, one can repeat the process above, taking
as v0 the extreme found with the procedure above. The process must end to a
different extreme than v0.

For surfaces, we can reconstruct (Σ, σ) given Γ(Σ, σ) and the genus of the
component associated to each vertex. In particular we have the following lemma.

Lemma 3.5.11. Let (Σ, σ) be a surface with a codimension–1 submanifold. If
Σ is a sphere, then Γ(Σ, σ) is orientable and 1-connected. If Σ is RP 2, then
Γ(Σ, σ) has exactly one circle, and is 1-connected.

Proof. If Σ is a sphere then every component of Σ\σ is a punctured sphere, while
if Σ ∼= RP 2, then Σ \ σ consists of punctured spheres and punctured Möbius
bands. Either way, a loop in Γ(Σ, σ) would determine a(t least one) element of
infinite order in π1(Σ) (see Figure 3.4), which cannot happen. Finally, adding a
circle to the graph corresponds with taking connected sum with RP 2, and this
can be done exactly once by the classification of surfaces.

Definition 3.5.12. Let (X, Z, ω) be a log-symplectic 4–manifold. A closed
embedded surface S ⊂ X is nice if
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• S t Z

• the map π0(S ∩ Z) −→ π0(Z) induced from the inclusion is injective

• the graph Γ(S, S ∩ Z) is 1-connected, and has at least one edge

Lemma 3.5.13. Embedded spheres and embedded real projective planes, inter-
secting Z transversely, and intersecting each component of Z in a connected set,
are nice.

Proof. This is a direct consequence of Lemma 3.5.11.

Theorem 3.5.14. Let (X, Z, ω) be a log-symplectic 4–manifold. Assume that
there is a neighbourhood of Z realizing Z as a union of S1×Σgi , with the trivial
stable Hamiltonian structure. Let J be a cylindrical complex structure with
respect to such trivialization. Then the compactified moduli space M of nice
J-holomorphic spheres with 0 self-intersection is a smooth closed 2-dimensional
manifold.

Proof. A log J-holomorphic curve u : (Σ, σ) −→ (X, Z) determines several
punctured holomorphic curves ui : Σ̇i −→ Xi, i = 1, . . . , N , where Σ̇i and Xi

are components respectively of Σ \ σ and X \ Z. In the case at hand, each Σ̇i
is a punctured sphere. By automatic transversality (Theorem 2.3.21), we may
assume that J is regular (Lemma 2.2.9). Then, each ui satisfies the hypotheses
of Proposition 3.5.7. Thus there are moduli spacesMi, one for each component,
and they are all diffeomorphic to each other.

More precisely, recall that for each component Xi of X \ Z, and each com-
ponent Zi,j bounding Xi, one can define a map ri,j :Mi −→ Ri,j , where Ri,j is
the set of simple unparametrized Reeb orbits in Zi,j . The map is defined so that
ri,j(v) is the Reeb orbit to which the j-th puncture of v in Xi is asymptotic; we
showed in Proposition 3.5.7 that ri,j is a diffeomorphism.

In order to glue the moduli spaces Mi, we exploit our understanding of the
graph Γ(Σ, σ). First of all we know that to each vertex there corresponds a
punctured holomorphic sphere, and a corresponding moduli space. DenoteMx

the moduli space corresponding to the vertex x. Since there are no loops, each
pair of vertices determines at most one edge. To the edge xy between vertices x
and y one can associate the manifold Rxy of Reeb orbits on the corresponding
component of Z. Moreover, to each edge one can associate two diffeomorphisms
rxy :Mx −→ Rxy and ryx :My −→ Rxy.

By Lemma 3.5.10 we know that there exists one extreme. We can fix one
of the extremes, say x0, and partition the set of vertices by their distance from
x0, i.e. the number of edges that it takes to reach x0. This is well defined as
there are no loops. In particular, for each vertex there is exactly one set of edges
connecting it to x0.
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For each x, let x0x1, x1x2, . . . , xix be the sequence of edges joining x with
x0. Define the map rx = r−1

x0x1
◦ rx1x0 ◦ r−1

x1x2
◦ rx2x1 ◦ · · · ◦ rxxi :Mx −→Mx0

(rx0
= id). It is a diffeomorphisms for each vertex x.

Finally, denoting with V (Σ, σ) the set of vertices of Γ(Σ, σ), we can define
the moduli space as M = {(vx)x∈V (Σ, σ) : vx ∈ Mx, rx(vx) = vx0

}. The map
(vx)x 7→ vx induces a diffeomorphism M∼=Mx for all x ∈ V (Σ, σ).

In fact, in the proof we only used the properties of the graph Γ(Σ, σ), and
the fact that Σ \ σ is a collection of punctured spheres. This suggests that if
Σ ∼= RP 2, a similar statement holds.

Let (RP 2, σ) be a real projective plane admitting a log-symplectic structure
with singular locus σ. Let j be a complex structure on TRP 2(− log(σ)), and
let u : (RP 2, σ, j) −→ (X, Z, J) be holomorphic.

Definition 3.5.15. We say that a holomorphic map u : (RP 2, σ, j) −→ (X, Z, J)
has 0 self intersection if each component of u|RP 2\σ has 0 self intersection as a
punctured holomorphic curve.

Theorem 3.5.16. Let (X, Z, ω) be a log-symplectic 4–manifold. Assume that
there is a neighbourhood of Z realizing Z as a union of S1 ×Σgi , with the triv-
ial stable Hamiltonian structure. Let J be a cylindrical complex structure with
respect to such trivialization. Then the moduli space M of nice J-holomorphic
projective planes with 0 self-intersection is a smooth closed 2-dimensional man-
ifold.

Proof. The proof is almost exactly the same as Theorem 3.5.14. We can split a
holomorphic projective plane as a union of punctured holomorphic spheres, and
apply automatic transversality to make sure J is generic. One then constructs a
moduli space for each components, and glues along the singular locus. The only
difference with the above is that the graph Γ(Σ, σ) contains a circle. However,
the circle does not prescribe any gluing condition between moduli spaces (moduli
spaces are associated to vertices, and two vertices are glued using the edges
joining them).

One can construct a moduli space of curves with one marked point using
a similar gluing construction. A delicate point is that the compactification
of the spaces of curves with a marked point in an open symplectic manifold
is a manifold with boundary, and we can only construct a C0 structure at the
boundary points. As a result, the moduli space of maps with values in X inherits
only a C0 structure. We don’t know in general how to control the infinite jet
of the punctured spheres along their asymptotic orbits; hence we can only glue
their images as topologically embedded surfaces.

Theorem 3.5.17. Same assumptions as Theorem 3.5.14 or Theorem 3.5.16.
There exist moduli spaces M1 of log-holomorphic spheres and projective planes
with one marked point, which is a closed topological 4–dimensional manifold. It
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comes with a canonical smooth structure on the complement of a codimension–1
submanifold MZ . Moreover there is a well defined evaluation map ev :M1 −→
X, such that ev−1(Z) =MZ , which is continuous, and smooth on M1 \MZ .

Proof. For each x ∈ V (Σ, σ), define M1 x as the compactification of the space
of holomorphic curves (in the corresponding component of X \ Z) with one
marked point. This is a manifold whose boundary can be identified with a
union of copies of Mx × S1, one for each edge having x as a vertex. Using
r−1
yx ◦ rxy to identify Mx × S1 with My × S1, define M1 as the space obtained

by gluing the manifolds M1 x along their boundaries, using the identifications
just explained, as dictated by the graph Γ(Σ, σ), in the same fashion as in the
proof of Theorem 3.5.14. The resulting space is a topological manifold, with the
properties claimed in the statement.

The following corollary is what was described in the Introduction as Theo-
rem 3.1.3.

Corollary 3.5.18. Let (X, Z, ω) be a log-symplectic 4–manifold satisfying the
assumptions from Theorem 3.5.14. Assume further that X is minimal, and that
there exists a cylindrical complex structure J (with respect to the trivialization
in the assumption) and a J holomorphic sphere with 0 self-intersection, or a J-
holomorphic projective plane with 0 self intersection. Then there is a continuous
map f : X −→ B, with B a smooth closed orientable surface, such that

• f |X\Z is a smooth submersion;

• Z is a union of copies of S1 ×B, and f |Z is the projection to B;

• the fibers of f are spheres if X is orientable, projective planes if X is not
orientable;

• the fibers are symplectic on X\Z, and the closures in X of the components
of f−1(p) ∩X \ Z are log-symplectic surfaces with boundary, of which the
boundary is the singular locus.

Proof. There is an obvious map g :M1 −→M, which can be described as fol-
lows. Let (u, z) ∈M1 \MZ , and let x ∈ V (Σ, σ) correspond to the component
that contains the point z. Let ux be the restriction of u to that component. This
defines a unique element (ux)x ∈M (via the canonical isomorphismMx

∼=M).
This map extends continuously to MZ , by the way we chose the gluing maps.

In order to prove the theorem, now, it suffices to show that the evaluation
ev : M1 −→ X is a homeomorphism, which is a diffeomorphism on M1 \ Z.
This follows from the same arguments as the proof of Proposition 3.4.27.

Remark 3.5.19. In Theorem 3.4.29 we were able to produce a moduli space
of holomorphic curves starting from a symplectic submanifold. In the setting
of Corollary 3.5.18 instead we need to start from a holomorphic curve. This is
because we know how to construct good moduli spaces of J-holomorphic curves
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only when J is a cylindrical complex structure of a specific type. If one starts
from, say, a log-symplectic submanifold, it is guaranteed that one will find a
log-complex structure J making it holomorphic, but J won’t be cylindrical in
general.

3.6 Computation of intersection numbers

In this section we compute the intersection numbers used in the proof of The-
orem 3.5.4. Until the end of the section, we will be considering a symplec-
tic manifold W with boundary ∂W , inheriting a stable Hamiltonian structure
(α, β) such that (∂W, α, β) ∼= (S1 × Σg, cdt, volΣg

). In particular, the Reeb

vector field is 1
c
∂
∂t , and the simple Reeb orbits are γ(t) = (t, x0). The pullback

bundle γ∗ξ := γ∗ kerα ∼= S1× Tx0
Σg, hence a trivialization τ can be given by a

Hermitian isomorphism Tx0
Σg ∼= C. We will always assume that this choice of

trivialization is fixed, unless otherwise stated.
Finally, we will denote the completion of W (Section 2.3.1) with Ŵ .

Let us compute the asymptotic operator and its spectrum, in order to com-
pute intersection numbers using Theorem 2.4.4. One sees immediately from
Equation (2.9) that Aγ = −J0

d
dt . As expected, the kernel is 2-dimensional

(i.e. equal to the dimension of the space of Reeb orbits), consisting of all con-
stant complex functions. All eigenvalues are 2πk, k ∈ Z with eigenfunctions
C exp(2πkJ0t), C ∈ C.

Taking ε small (ε < 2π), consider Aγ ± ε. This operator is nondegener-
ate with eigenvalues λ±k = 2πk ± ε, and eigenfunctions f = C exp(2πktJ0) =
C exp((λ±k ∓ ε)tJ0). The corresponding extremal winding numbers are

α+(A+ ε) = min{wind(λ+
k ) : λk > 0} = min{wind(exp(2πktJ0)) = k : k ≥ 0} = 0

α−(A+ ε) = max{wind(λ+
k ) : λk < 0} = max{wind(exp(2πktJ0)) = k : k < 0} = −1

α+(A− ε) = min{wind(λ−k ) : λ−k > 0} = min{wind(exp(2πktJ0)) = k : k ≥ 1} = 1

α−(A− ε) = max{wind(λ−k ) : λ−k < 0} = max{wind(exp(2πktJ0)) = k : k ≤ 0} = 0
(3.31)

In particular this implies

Lemma 3.6.1. All punctured holomorphic curves u : Σ̇ = Σ \ Γ −→ W with
simple asymptotics have only odd punctures.

Proof. For notational simplicity, we prove this for z ∈ Γ+ a positive puncture
(the computation is identical for negative punctures). Recall that the parity of
a Morse-Bott puncture asymptotic to an orbit γ is defined as p(Az) = α+(Az ±
ε) − α−(Az ± ε), where the sign depends on whether we see the puncture as
constrained or unconstrained. Either way, Equation (3.31) gives p(Az) = 1.
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Corollary 3.6.2. Let u : Σ̇ −→ Ŵ be an embedded punctured holomorphic
sphere. Then

ind(u) = 2 + 2(u ? u) (3.32)

Proof. The equation follows immediately from the adjunction formula Theo-
rem 2.4.5 and Lemma 3.6.1.

It is also easy to compute the Conley-Zehnder indices. Indeed, from the
axiomatic definition 2.3.12 one sees immediately that

µCZ(−J0
d

dt
± εI) =

1

2
(sign(∓εI)) = ∓1 (3.33)

This can also be seen using formula 2.3.15 and (3.31). As a result we can
compute the total Conley-Zehnder index of a punctured holomorphic curve.

Lemma 3.6.3. Let (W, ∂W, ω) be symplectic with stable Hamiltonian boundary
(t
i
S1×Σgi , cidt, volΣgi

). Let c be a set of constraints, consisting of simple orbits.

Let Γ be a set of punctures, split Γ = Γ±C ∪ Γ±U . Then

µ(c) = #ΓU −#ΓC (3.34)

Proof. Recall that

µ(c) :=
∑
z∈Γ+

µCZ(γz + δz)−
∑
z∈Γ−

µCZ(γz − δz) (3.35)

(see Equation (2.10)), where

δz =

{
ε if z ∈ Γ±C

−ε if z ∈ Γ±U
(3.36)

Hence

µ(c) =
∑
z∈Γ+

U

µCZ(γz−ε)+
∑
z∈Γ+

C

µCZ(γz+ε)−
∑
z∈Γ−U

µCZ(γz+ε)−
∑
z∈Γ−C

µCZ(γz−ε) =

∑
z∈Γ+

U

1 +
∑
z∈Γ+

C

(−1)−
∑
z∈Γ−U

(−1)−
∑
z∈Γ−C

1 = #ΓU −#ΓC

Finally, we conclude by computing the difference between self intersection
numbers in the constrained and unconstrained case. Denote by u ?U u the self
intersection number of a curve u where all the asymptotic orbits are considered
unconstrained. Analogously, u ?C u is the intersection number where all the
orbits are considered constrained.
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Lemma 3.6.4.
u ?U u = u ?C u+ #Γ (3.37)

Proof. We use Theorem 2.4.4. Then

u?Uu−u?Cu = −
∑
z∈Γ±

∓α∓(γz∓ε)+
∑
z∈Γ±

∓α∓(γz±ε) = −
∑
z∈Γ±

0+
∑
z∈Γ±

1 = #Γ
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Chapter 4

Scattering-symplectic
manifolds

4.1 Introduction

A scattering symplectic structure on a manifold X is a Poisson bivector π which
is almost everywhere symplectic, and vanishes on a codimension–1 submanifold
Z, in a prescribed way. The prescription can be described in terms of the
scattering Lie algebroid, which is a vector bundle scTX such that Γ(scTX) =
〈x2∂x, x∂y1 , . . . , x∂yk〉, where y1, . . . , yk is a coordinate system on Z, and locally
Z = {x = 0}. The bundle scTX comes with a map ρ : scTX −→ TX, induced
from the inclusion on sections, which is an isomorphism on X \Z. We say that
π is scattering symplectic if there exists a symplectic form ω : scTX −→ scT ∗X
such that the diagram

scT ∗X scTX

T ∗X TX

ω−1

ρ ρ

π

(4.1)

commutes. Scattering symplectic structures were introduced in [20], the idea
being to view ω (or rather its inverse ω−1) as a desingularization of π, and that
much of the Poisson geometry of π is actually encoded in the symplectic geome-
try of ω. Notably, one is able to prove normal form theorems using Moser-trick
type of arguments, and to compute Poisson cohomology. Scattering symplectic
structures are examples of Poisson structures that can be “desingularized by
a Lie algebroid”, i.e. for which there exists a Lie algebroid with a symplectic
structure that can be fit in a diagram like (4.1) (see also [19]). Log-symplectic
structures ([16]) and elliptic symplectic structures ([5]) are other examples of
this.
A scattering symplectic structure on (X, Z) induces a canonical cooriented con-
tact structure on Z. As in the log-symplectic case, then, X is orientable if and
only if Z is coorientable in X. Moreover, there is a normal form theorem around

75
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the singularity: every scattering symplectic structure looks like

ω =
dλ

λ3
∧ (−α+ x2β1) +

1

2x2
dα+ β2 (4.2)

Here λ is a distance function from the zero section of the normal bundle NZ, α
is a contact form on Z, and β1 and β2 are closed differential forms on Z. The
cohomology classes of the forms βi are invariants of the Poisson structure.
When β1 = β2 = 0, and X is oriented, this is the normal form of a strong
symplectic filling of (Z, kerα); conversely given a filling W of (Z, kerα) one can
glue two copies of W with opposite orientations and get a scattering symplectic
manifold with singularity on Z, and β1 = β2 = 0. This can be phrased as
follows:

Fact ([20]). (Z, ξ = kerα) is the singular locus of an oriented scattering sym-
plectic manifold with β1 = β2 = 0 if and only if it is strongly fillable.

Motivated by the above result, we give the following definition:

Definition 4.1.1. A cooriented contact manifold (Z, ξ) has an (orientable)
scattering-filling if it is the singular locus of a closed (orientable) scattering
symplectic manifold.

The question that we want to address here is:

Question. How does scattering-fillability compare to the other notions of fill-
ability existing in the contact topology literature?

The main result of this paper is the following.

Theorem 4.1.2. The cooriented contact manifold (Z, kerα) has an orientable
scattering-filling if and only if it is weakly fillable, in the sense of [23].

Also non-orientable scattering manifolds can be described in terms of sym-
plectic fillings.

Theorem 4.1.3. Assume that (Z, kerα) is the singular locus of a non-orientable
scattering manifold. Then there exists a connected double cover p : Z̃ −→ Z such
that (Z̃, p∗α) is weakly fillable, in the sense of [23].

4.2 Scattering symplectic manifolds

4.2.1 The scattering tangent bundle

Let (X, Z) be a pair consisting of a manifold X with a codimension–1 closed
submanifold Z. Let scXZ be the sheaf of vector fields vanishing on Z, quadrat-
ically in the transverse direction, linearly in the tangent direction. Explicitely,
for each point p ∈ Z choose a coordinate neighbourhood U , with coordinates
(x, y1, . . . , yN ), such that Z ∩ U = {x = 0}, and (y1, . . . , yN ) is a coordinate
system for Z on Z ∩ U . We define scXZ(U) := 〈x2∂x, x∂y1 , . . . , x∂yN 〉. This
defines a locally free sheaf scXZ of rank dimX.
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Definition 4.2.1. The scattering tangent bundle scTX = scTXZ is the unique
vector bundle such that Γ(scTX) = scXZ . Its dual is denoted with scT ∗X and
called the scattering cotangent bundle

Since scXZ is closed under the Lie bracket, scTX is a Lie algebroid, with
anchor map induced by the inclusion scX ↪→ X. Moreover, the anchor induces
an isomorphism between scTXZ |X\Z and TX|X\Z .

4.2.2 Scattering symplectic structures

We collect here the definition and some known results on scattering symplectic
manifolds. All the results mentioned here are due to [20].

Definition 4.2.2. A scattering symplectic structure is a symplectic structure
on scTX. That is, it is a closed non-degenerate section of Λ2(scT ∗X). Here
“closed” means closed in the Lie algebroid sense, or equivalently as an ordinary
differential form on X \ Z.

We will denote a scattering symplectic manifold with a triple (X, Z, ω).
A scattering symplectic structure induces an ordinary symplectic structure on
X \ Z. In particular dimX = 2n, and X \ Z is oriented.

Remark 4.2.3. In [20], the attention is restricted to pairs of oriented manifolds
(X, Z). However, none of the results that we will mention depends on the
orientability of X.

The following propositions are proven in [20], in the orientable case. The
same proofs given in [20] hold in the non-orientable case.

Proposition 4.2.4. A scattering symplectic structure ω on (X, Z) induces a
canonical cooriented contact structure ξ on Z. In particular, Z is oriented.

A contact form can be recovered as follows: pick a fiber metric on the normal
bundle, and denote with λ the distance from Z function. Write

ω = αλ ∧
dλ

λ3
+
βλ
λ2

It follows from closure and nondegeneracy of ω that α = αλ|TZ is a contact
form. The form α does not depend on the choice of the metric up to a posi-
tive factor. Hence there is a well-defined induced cooriented contact structure.
Moreover, a scattering symplectomorphism preserves the contact form up to a
positive scaling factor, hence scattering symplectomorphisms preserve the coori-
ented contact structure on the singular locus (i.e. induce orientation preserving
contactomorphisms on the singular locus).

4.2.3 A normal form theorem around the singular locus

In order to state the normal form theorem around the singular locus, we need
to spend a word on tubular neighbourhoods of hypersurfaces (compare with
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Corollary 3.2.17 and the related discussion). Identify a neighbourhood of Z
with an open neighbourhood of the zero section in the normal bundle NZ. Let
λ be a distance function from Z, induced by a fiber metric on NZ. Define Z̃ :=
{λ = 1}. Fiberwise multiplication by −1 induces a diffeomorphism σ : Z̃ −→ Z̃.
This induces a free Z2 action, and Z̃/Z2 = Z. Moreover, one has NZ ∼= R×Z2

Z̃,
where R×Z2

Z̃ := (R× Z̃)/Z2, with action (−1) · (t, x) = (−t, σ(x)).
When NZ is trivial, then Z̃ = ZtZ, and one gets back NZ ∼= R×Z. Moreover,
one can always assume that a tubular neighbourhood with smooth boundary is
of the form (−ε, ε)×Z2

Z̃.

Theorem 4.2.5. Let (X, Z, ω) be scattering symplectic. Take a fiber metric
on the normal bundle of Z, denote the distance function from 0 with λ. Let
Z̃ = {λ = 1}, and denote the projection with p : Z̃ −→ Z. There exist

• a contact form α on Z

• a closed 1-form β1 on Z

• a closed 2-form β2 on Z

such that, in a tubular neighbourhood of the form (−ε, ε)×Z2
Z̃,

ω ∼=
dλ

λ3
∧ (−p∗α+ λ2p∗β1) +

1

2λ2
dp∗α+ p∗β2 (4.3)

Here the expression ω ∼= η means: there exists a diffeomorphism φ such that
φ|Z = id, and such that φ∗ω = η on a tubular neighbourhood of Z.

4.3 Symplectic fillings of contact manifolds

In this section we recall several different notions of symplectic filling in contact
geometry. In general, a symplectic filling of a cooriented contact manifold (Z, ξ)
is a connected symplectic manifold (W, ω) with boundary ∂W = Z as oriented
manifolds (i.e., the boundary orientation matches the contact orientation) such
that the symplectic form is “compatible” with the contact distribution.
Different ways of making the word “compatible” precise give different flavours
of symplectic fillings. We will always consider notions of compatibility that only
involve a neighbourhood of the boundary. Let us start with the strongest notion
appearing in this paper.

Definition 4.3.1. (W, ω) is a strong symplectic filling of (Z, ξ) if there is a
collar neighbourhood U = (−ε, 0]×Z of ∂W , with ∂W = {0}×Z, and transverse
coordinate s, such that ω = d(sα) on U .

In particular ω pulls-back to ξ on Z as a symplectic form, belonging to the
canonical conformal symplectic structure of ξ.
Denote the conformal symplectic structure on ξ, viewed as a set of symplectic
forms, with CSξ.
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Definition 4.3.2 ([23]). (W, ω) is a weak symplectic filling of (Z, ξ) if ω|ξ is
symplectic, and for all representatives η of CSξ, the form ω|ξ + η is symplectic
on ξ.

Of course strong implies weak. In dimension 4 the contact distribution is
2-dimensional, and this definition of weak filling is equivalent to the requirement
that ω|ξ is a positive form, i.e. it induces the same orientation as the contact
orientation of ξ. This is equivalent, still in dimension 4, to ω|ξ belonging to
CSξ. In higher dimension, only requiring ω|ξ ∈ CSξ turns out to be equivalent
to the existence of a strong filling ([25]). Instead, in all dimensions (including
4) the notions of strong and weak fillability are different ([23]). The notion of
weak fillability can be understood in terms of almost complex structures.

Theorem 4.3.3 ([23], Theorem D). A symplectic manifold (W, ω) with bound-
ary ∂W = Z is a weak filling if and only if there exists an almost complex
structure J on W such that

• J tames ω

• ξ = TZ ∩ JTZ

• for any contact form α and v ∈ ξ, dα(v, Jv) > 0 (with respect to the
boundary orientation)

A possible intermediate notion, motivated by dynamics and the theory of
holomorphic curves is that of a stable filling, where the boundary is required
to inherit a stable Hamiltonian structure (Definition 2.3.1), in a strong sense
(meaning, in a way that induces a normal form in a collar neighbourhod of the
boundary, see Definition 2.3.5). As explained in Chapter 2, this is the setup in
which one is able to study moduli spaces of (punctured) holomorphic curves,
in the framework of symplectic field theory ([11]). A stable filling is what one
expects.

Definition 4.3.4. (W, ω) is a stable (Hamiltonian) filling if there exists an out-
ward pointing vector field X aroud the boundary such that (ιXω)|T∂W , ω|T∂W )
is a stable Hamiltonian structure.

4.4 Scattering fillings versus weak fillings

4.4.1 Statement of the result

Scattering symplectic geometry suggests yet another notion of filling of a contact
manifold.

Definition 4.4.1. A (orientable) scattering filling of a cooriented contact man-
ifold (Z, kerα) is a (orientable) scattering symplectic manifold (X, Z, ω), such
that Z with the induced contact structure is contactomorphic to (Z, kerα). A
scattering filling is strong if the forms β1, β2 are exact.
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In [20] it is shown that

strong orientable scattering fillability ⇔ strong fillability

In this section we prove the main results of the present paper.

Theorem 4.4.2. • (Z, kerα) has an orientable scattering filling⇔ (Z, kerα)
is weakly fillable.

• (Z, kerα) has a non-orientable scattering filling ⇔ there is a connected
double cover p : Z̃ −→ Z such that (Z̃, p∗ kerα) is weakly fillable.

4.4.2 Manifolds with scattering boundary

When X is a manifold with boundary, one can define the scattering tangent
bundle scTX exactly as in Definition 4.2.1, with Z = ∂X. A scattering sym-
plectic form on X is defined accordingly as a symplectic form on scTX. When
we mention symplectic manifolds with scattering boundary we will always mean
we are in the situation just described.
On a closed orientable scattering symplectic manifold (X, Z, ω), one can fix an
orientation, and compare it with the symplectic orientation induced by ω on
X \ Z. These orientations are going to coincide on some components of X \ Z,
and differ on other components. This induces a splitting X = X+ ∪X−, where
X± are compact submanifolds with boundary ∂X± = Z. Both X+ and X− are
symplectic manifolds with scattering boundary.
Conversely, any two symplectic manifolds with (connected) scattering bound-
ary, and matching normal form around the boundary, can be glued along the
boundary to form a (closed) scattering symplectic manifold. Moreover, given
a symplectic manifold with scattering boundary W , it’s easy to show that its
double inherits a scattering symplectic structure with singular locus ∂W .
Hence, as far as the contact manifold is concerned, being the boundary of a
symplectic manifold with scattering boundary or being the singular locus of
a scattering symplectic manifold are equivalent notions. Let us formulate the
result just explained in the following proposition.

Proposition 4.4.3. Let (Z, kerα) be a cooriented contact manifold. Then it is
oriented scattering fillable if and only if it can be realized as the boundary of a
symplectic manifold with scattering boundary.

4.4.3 Reduction to the orientable case

In this section we relate scattering fillability by a non-orientable manifold to
orientable fillability of a double cover. The result is the following.

Proposition 4.4.4. Let (Z, kerα) be the singular locus of a non-orientable scat-
tering symplectic manifold. Then there exists a double cover p : Z̃ −→ Z, and
symplectic manifold with scattering boundary that coincides with (Z̃, ker p∗α).
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Proof. This proposition is proven by constructing the real oriented blow-up
along the singular locus Z.

Lemma 4.4.5. Given a non-orientable scattering symplectic manifold (X, Z, ω),
there exists a symplectic manifold with scattering boundary (X̃, Z̃, ω̃), with a
map b : (X̃, Z̃) −→ (X, Z) which restricts to a symplectomorphism (X̃\Z̃, ω̃) ∼=
(X \Z, ω) on the regular part, and to a double cover on the singular part. This
manifold coincides with the real oriented blow-up of (X, Z) along Z.

Proof of the lemma. It is immediate to see that ((−ε, ε)×Z2
Z̃) \ ({0}×Z2

Z̃) =
((−ε, ε) ×Z2

Z̃) \ ({0} × Z) ∼= (−ε, 0) × Z̃. Moreover there is a smooth map
b : (−ε, 0]× Z̃ −→ (−ε, ε)×Z2 Z̃, which on {0} × Z̃ is the projection p : Z̃ −→
Z̃/Z2 = Z. The normal form Theorem 4.2.5 implies that the manifold with
boundary obtained by removing (−ε, ε) ×Z2

Z̃ and gluing (−ε, 0] × Z̃ back in
has a natural scattering symplectic structure.

Proposition 4.4.4 together with Proposition 4.4.3 imply that the first item in
Theorem 4.4.2 implies the second. We will prove the first item in Theorem 4.4.2
in the remaining subsections. In what follows we will always assume orientability
of X, unless otherwise specified.

4.4.4 An alternative normal form theorem

The following alternative normal form result is going to be useful in the proof
of the main theorem. It is stated for orientable scattering symplectic manifolds
for simplicity, as that is the only case that we will need. Nonetheless, it holds,
with the obvious modifications, for arbitrary scattering symplectic manifolds
(compare with Theorem 4.2.5).

Proposition 4.4.6. Let (X, Z, ω) be an orientable scattering symplectic mani-
fold. There exists ε > 0, and a symplectic manifold (Y, ω) with boundary ∂Y =

Z tZ, such that ω extends to a symplectic form ω̂ on Ŷ = Y t [ 1
2ε2 , +∞)×∂Y .

The restriction of ω̂ to [ 1
2ε2 , +∞)× ∂Y is

d(sα)− 1

2

ds

s
∧ β1 + β2 (4.4)

and (Ŷ , ω̂) is symplectomorphic to X \ Z.

Proof. This just follows from Theorem 4.2.5. Consider the change of coordinates
s = 1

2λ2 . Since log(s) = −2 log(x) + log(2), dx
x = d log(x) = − 1

2d log(s), then
the form ω becomes of the desired form

ω = d(sα)− 1

2
d log(s) ∧ β1 + β2 = d(sα)− 1

2

ds

s
∧ β1 + β2 (4.5)



82 CHAPTER 4. SCATTERING-SYMPLECTIC MANIFOLDS

In particular if β1 = β2 = 0 that is exactly the normal form at the boundary
of a strong filling of (Z, kerα). To be more precise:

Corollary 4.4.7. Write a connected component Ŷ of X \ Z as in Proposi-
tion 4.4.6; write a neighbourhood of infinity as [C, +∞) × Z . If β1 = β2 = 0,

for all C ′ > C, the manifold W := Ŷ ∩{s ≤ C ′} is a strong filling of (Z, kerα).

4.4.5 Scattering ⇒ weak

The first step to relate scattering to weak filling is to get closer to stable Hamil-
tonian fillings, by getting rid of the form β1.

Proposition 4.4.8. The symplectic form ω on [C, +∞)×Z in Equation (4.4)
can be modified to a symplectic form ω̃ such that

• ω = ω̃ on [C, C ′]× Z

• ω̃ = d(sα) + β2 on [C ′′, +∞)× Z

Proof. Pick a smooth function f = f(s) : [C, +∞)× Z −→ R such that

• f(s) = 1
s on [C, C ′]

• f(s) = 0 for s ≥ C ′′ > C ′

• f ′(s) ≤ 0

and define

ω̃ = d(sα)− 1

2
f(s)ds ∧ β1 + β2

ω̃ remains closed and nondegenerate, at least if one chooses C ′ big enough.

Note that (α, β2) is not a stable Hamiltonian structure, as we imposed no
condition on α ∧ βn−1.
Note the following consequence.

Corollary 4.4.9. If (Z, kerα) admits a scattering filling, then it admits a filling
such that the symplectic form in a collar neighbourhood is of the form d(sα)+β.

Proof. Just realize Z as {c} × Z, with c ≥ C ′′, in the normal form of Proposi-
tion 4.4.8. Since we are not changing the symplectic form in a neighbourhood
of {C} × Z, it extends to the rest of the filling.

One can reformulate the previous corollary as a statement about scattering
symplectic manifold.

Corollary 4.4.10. If a pair (X, Z) supports a scattering symplectic structure
with cohomology decomposition (a, [β1], [β2]), then it supports one with coho-
mology decomposition (a, 0, [β2]).

We now apply Proposition 4.4.8 to show that scattering fillability implies
weak fillability.
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Corollary 4.4.11. Let (X, Z, ω) be an orientable scattering filling of (Z, kerα),
with Z connected. Let U be a tubular neighbourhood of Z, and W be a compo-
nent of X \ U . Then there exists a symplectic form ω̃ so that (W, ω̃) is a weak
filling of (Z, kerα).

Proof. By Proposition 4.4.8, we can attach a cylindrical end to W and get a
manifold Ŵ with a symplectic form ω̃, such that ω̃ = d(sα) + β in a neigh-
bourhood V of infinity. Define an almost complex structure J on TV such
that

• J turns kerα into a complex vector bundle, and J∂s = Rα, the Reeb
vector field of α.

• dα tames J on kerα

In particular J tames d(sα) on V . If s is big enough, then J also tames ω̃. This
means that there exists a smaller neighbourhood V ′ ⊂ V (of the form (c, +∞)×
Z) on which J tames ω and satisfies the properties above. By contractibility
of the space of tame complex structures we can extend J |′V to a tame complex

structure on the whole Ŵ . Choosing c′ > c, and identifying Z with {c′}×Z, we

see that Theorem 4.3.3 implies Ŵ ∩ {s ≤ c′} is a weak filling of (Z, kerα).

4.4.6 Weak ⇒ scattering

This is the easier implication. It follows from the following well-known conse-
quence of Moser’s argument:

Proposition 4.4.12. Let (W, ω) be a symplectic manifold whose boundary Z
has a positive cooriented contact structure ξ = kerα. Assume that ω|ξ is sym-
plectic. Denoting ωZ := ω|TZ , there is a collar neighbourhood V ∼= (−ε, 0]× Z
such that ω ∼= d(sα) + ωZ .

In particular we can assume that the symplectic form on a collar neighbour-
hood of the boundary in a weak filling can be written as d(sα) + ωZ . As a
consequence one has

Proposition 4.4.13. If (W, ω) is a weak filling of (Z, kerα), then there is
a symplectic form ω̃ such that (W, ω̃) is a symplectic manifold with scattering
boundary (Z, kerα).

Proof. Assume that ω = d(sα)+ωZ in a neighbourhood of the boundary. Using
Proposition 4.4.12, attach a copy of (−ε, +∞)×Z along a collar neighbourhood
of ∂W , with symplectic form d(sα)+ωZ . Denote the resulting symplectic mani-

fold (Ŵ , ω̂). The inverse of the change of coordinates in Proposition 4.4.8 turns

(Ŵ , ω̂) into the open part of a symplectic manifold with scattering boundary,
with singular locus (Z, kerα), with β1 = 0, and β2 = ωZ .

The main theorem follows as a consequence of Proposition 4.4.13 and Propo-
sition 4.4.3.
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4.5 Implications for scattering symplectic man-
ifolds

Consider q : Z̃ −→ Z the double cover map. If Z is endowed with an overtwisted
contact structure (in the sense of [1]), then the pullback contact structure on
Z̃ is also overtwisted. More generally, if Z has a bordered Legendrian open book
(bLob) ([23]), also Z̃ does. Since a bLob is an obstruction to weak fillability, we
obtain the following result.

Theorem 4.5.1. A connected contact manifold containing a bLob cannot ap-
pear as the singular locus of a (not necessarily orientable) scattering symplectic
manifold. In particular, the singular locus of a scattering symplectic manifold,
if connected, is tight (i.e. not overtwisted).

Moreover, since every weak filling can be deformed to a stable Hamiltonian
filling ([23]), one obtains a well behaved theory of possibly punctured holo-
morphic curves with values in a scattering symplectic manifold, the punctures
being asymptotic to closed Reeb orbits in the singular locus (with respect to
the deformed structure).



Chapter 5

Symplectic foliations

The goal of this chapter is to construct moduli spaces of holomorphic curves
in symplectically foliated manifolds. The main results are the constructions of
moduli spaces of somewhere injective spheres with values in the leaves of any
foliation, and of somewhere injective positive genus surfaces subject to a holon-
omy restriction. The construction inclues a proof of a “generic transversality
theorem”, analogue to the one in [28] (see also Theorem 2.2.7), and a discussion
of the compactness. In particular we present a simple proof of the same result in
a particular case, which includes all cooriented codimension-1 foliations. As an
application, we obtain some results on the topology of the leaves of a foliation,
which we summarize below.

Theorem 5.0.1. Let (X5, F4, ω) be a 5–manifold with a symplectic codimension–
1 foliation. Assume that one leaf is ruled (i.e. it contains a symplectically
embedded sphere with trivial normal bundle). Then

• each leaf F contains a homologically non-trivial sphere, pairing positively
with ω|F

• if all leaves are compact, then they are all rational or blown-up ruled sur-
faces

The strategy to construct the moduli space is, as in the standard symplectic
case, to realize the leafwise Cauchy-Riemann operator as a Fredholm section
of a Banach bundle. The base of the bundle is not the space of all (suitably
differentiable) maps, but a subset of “leafwise maps”, which are those with im-
age contained in a leaf. The first and main step is to construct a meaningful
Banach manifold structure on such space of maps. The rest of the work is a
quite straightforward application, if not a repetition, of the standard theory, as
discussed in [28].

The proof of Theorem 5.0.1 uses the arguments from [25], also used in Chap-
ter 3, and a characterizazion of ruled symplectic 4–manifold in terms of im-
mersed symplectic spheres, originally appeared in [24] (see also [40]).

85
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Most of the work in this chapter arose from discussions with Klaus Niederkrüger.

5.1 Manifolds of maps

Let us recall the construction of a smooth Banach manifold S(M, X) of “S-
regular maps” between a compact smooth manifold M , and a smooth manifold
X, following Eliasson [12] (see also [32] for an alternative approach).
We will use the following notation. We denote with V(M) the category of
smooth vector bundles over M , and with B the category of Banach(able) spaces.
Given a vector bundle E −→M , we denote Ck(E), 0 ≤ k ≤ ∞, the topological
vector space of Ck-regular sections of E (viewed as a Banach space whenever
k 6=∞). Given two vector bundles E and F over M , we let Hom(E, F ) be the
vector bundle of smooth vector bundle maps E −→ F lifting the identity. There
is a natural continuous map −∗ : C∞(Hom(E, F )) −→ Hom(Cj(E), Cj(F )),
for all j ≤ ∞, defined by postcomposition.

In the notation of Eliasson [12], a section functor is a functor S : V(M) −→
B such that the map−∗ defines a continuous inclusion−∗ : C∞(Hom(E, F )) −→
Hom(S(E), S(F )). The following definition is also Eliasson’s.

Definition 5.1.1. A manifold model is a section functor S : V(M) −→ B such
that:

• there is a continuous inclusion S(E) ⊂ C0(E);

• the map −∗ induces a continuous inclusion −∗ : S(Hom(E, F )) −→
Hom(S(E), S(F ));

• let D ⊂ E be an open neighbourhood of the zero-section, let f : D −→ F
be a fiber-preserving C∞ map. Then the map f∗ : S(D) −→ S(F ) is
well-defined and continuous.

For example, the functors Ck of k-times differentiable sections (k 6=∞) sat-
isfy these hypothesis, as well as the functors W k,p of Sobolev sections, provided
kp > dim(M). In the latter case, the requirement kp > dim(M) is needed in
order to ensure all the three conditions in Definition 5.1.1. The first condition
follows from the Sobolev embedding theorem, while for the second and the third
we refer respectively to Theorem B.1.19 and B.1.20 in [28].

The main tool in the construction of a manifold of maps is the following
Lemma, due to Eliasson ([12]).

Lemma 5.1.2 ([12], Lemma 4.1). Let E, F be vector bundles over M , let
O ⊂ E be a neighbourhood of the zero section. If

f : O −→ F
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is a fiber-preserving smooth function, then

f∗ : S(O) −→ S(F )

is smooth, and Di(f∗) = S(Dif).

We define the space S(M, X) of S-regular maps as follows.

Definition 5.1.3 ([12]). Let ∇ be a symmetric connection on X. We say that
a continuous function f : M −→ X is an element of S(M, X) if there exists a
smooth map h : M −→ X, and a section F ∈ S(h∗TX), such that f = exp∇h (F )
(here exp∇h (F )(p) := exp∇h(p)(Fp), and exp∇ is the exponential map with respect

to the connection ∇).

Remark 5.1.4. The set S(M, X) does not depend on the choice of the con-
nection. Indeed, let ∇1, ∇2 be symmetric connections, and let h : M −→ X
be a smooth function. Let F1 ∈ S(h∗TX), and consider the function f =
exp∇1

f (F1). Since f is continuous, there exists a section F2 ∈ C0(h∗TX) such

that f = exp∇2

f (F2); in particular F2 = (exp∇2

f )−1(exp∇1

f )(F1) =: φ∗(F1).
Now, φ∗ is an operator coming from a fiber preserving smooth function φ =
(exp∇2

f )−1(exp∇1

f ) : D ⊂ h∗TX −→ h∗TX. By the definition of a manifold
model, φ∗(S(D)) ⊂ S(h∗TX). The smoothness of φ∗ follows from Lemma 5.1.2.

The following theorem is proven in [12], section 5.

Theorem 5.1.5. Given a symmetric connection ∇ on X, for each smooth func-
tion h : M −→ X the maps exp∇h : S(h∗TX) −→ S(M, X) form a system of
smoothly compatible parametrizations, defining a topology and a smooth Banach
manifold structure on S(M, X). The smooth structure does not depend on the
choice of ∇.

This manifold can be viewed (in certain cases) as a “completion” of the
manifold of differentiable maps. In fact, assuming that there is a continuous
inclusion

C∞(E) ↪→ S(E)

for all differentiable vector bundles E, and some k, then there is an immersion

C∞(M, X) ↪→ S(M, X)

This means that the inclusion is a continuous map, which induces an inclusion
at the level of tangent spaces. In fact, since the topology is given by definition
using the charts (Theorem 5.1.5), it is enough to show that for each smooth
h ∈ C∞(M, X), the inclusion C∞(h∗TX) ↪→ S(h∗TX) is continuous, which is
true by assumption.

Moreover, if we assume that C∞(E) ⊂ S(E) is dense for all vector bun-
dles E, then C∞(M, X) is dense in S(M, X). A special case which is most
important for us is when S = W k,p (p ≥ 1), the space of Sobolev maps.
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5.2 Manifolds of leafwise maps

Throughout this section we assume that (X, F) is a manifold with a smooth
codimension–q foliation. We keep on denoting by M a compact manifold, pos-
sibly with boundary. We want to construct a manifold S(M, F ) of “S-regular”
maps with image contained in the leaves of F . To simplify the discussion, let
us give a name to such maps.

Definition 5.2.1. A leafwise map h : M −→ X is a continuous map such that
there exists a leaf Fh of F such that im(h) ⊂ Fh.

We will define the space of S-regular leafwise maps by “completing” the set
of leafwise C∞ maps, in the spirit of the comments at the end of Section 5.1.

5.2.1 Maps with trivial holonomy

We will not be able to put a smooth structure on the space of all leafwise maps,
but we will restrict to a subset of maps with “trivial holonomy”. Morally, those
are maps around the image of which the foliation is trivial (i.e., given by the
factors of a product).

First of all, we recall what the holonomy group of a leaf is (for more de-
tails see, e.g., [29]). Pick a point x ∈ X, and let Fx be the leaf through x.
Given a transversal T through x, the holonomy map is a group homomorphism
HolTx : π1(Fx, x) −→ Diffx(T , x) to the group of germs of diffeomorphisms of
T fixing x. It is defined by covering the image of a path with suitable foliation
charts, and parallel transporting along the plaques of the chart.
Fixing an isomorphism Diffx(T , x) ∼= Diff0(Rq, 0) (coming from a diffeomor-
phism of a neighbourhood of x ∈ T with a neighbourhood of 0 ∈ Rq), one gets
a group homomorphism Holx : π1(Fx, x) −→ Diff0(Rq, 0), well defined and in-
dependent on the choice of T up to conjugation in the target. We denote with
Hx the image of Holx, and with Kx the kernel. The holonomy map, and all the
groups involved, do not depend on the choice of x up to isomorphism.

Definition 5.2.2. We say that a smooth map h : M −→ X, tangent to F , has
trivial holonomy if the induced map h∗ : π1(M, p) −→ π1(Fh(p), h(p)) factors

through Kh(p). Denote by Ck0 (M, F) the set of Ck maps with trivial holonomy.

5.2.2 Local classification of maps with trivial holonomy

Fix a splitting TX = TF ⊕ NF , where NF is the normal bundle to the fo-

liation, and fix a diagonal symmetric connection ∇ =

(
∇F

∇N
)

. Given a

leaf F , with normal bundle NF = NF|F , the exponential map in the normal

direction exp∇
F

: V ⊂ NF −→ UF ⊂ X defines a tubular neighbourhood of
F . This induces a foliation on V , in the total space of NF , such that the zero
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section is a leaf, and the leaves are transverse to the fibers of NF −→ F .

Given a smooth map h : M −→ X, with image contained in a leaf Fh, one
can consider the pullback vector bundle h∗NF . Since the foliation on the total
space of NF|Fh

is transverse to the fibers of NFh −→ Fh, one can pull it back to
a foliation h∗F on the total space of h∗NF . The foliation h∗F is still transverse
to the fibers of the bundle projection, and the zero section is a leaf.

The local Reeb stability theorem ([29], Theorem 2.9) readily implies that, if
h has trivial holonomy, then h∗F is the product foliation. More precisely, there
is an open neighbourhood D ⊂ h∗NF of the zero section, with D ∼= M × T ,
where T is a disc in a normal fiber, and h∗F coincides with M × {τ}. One can
choose such transversal to be the pullback of a small transversal to a leaf of F
in X, intersecting h(M) in exactly one point (this is possible as M is compact).
This construction allows us to classify all smooth leafwise maps near h in terms
of vector fields, locally homeomorphically in the Ck topology.

Proposition 5.2.3. There is a convex subset Cconst(h∗NF) ⊂ Ck(h∗NF),
such that Cconst(h∗NF) ∼= T ∼= Dq, and such that the map

E∇h : Cconst(h∗NF)× Ck(h∗TF) −→ Ck0 (M, F) (5.1)

defined as
E∇h (v, w) := exp∇exp∇h (v)(d(exp∇h )v(w)) (5.2)

maps a neighbourhood of 0 onto a neighbourhood of h, homeomorphically.

Proof. Take D ⊂ h∗NF as above, with a diffeomorphism D ∼= M × T , such
that the inuced foliation is the trivial one. Define Cconst(h∗NF) as the subset
of constant sections of M × T . By construction, exponentiating such sections
sends leaves to leaves. Moreover, parallel transport by a diagonal connection
preserves the splitting TX = TF ⊕ NF . Hence d(exp∇h )v(w) is still a vector
tangent to F . The exponential of such vector field preserves leaves, as the
connection is diagonal. The map is easily seen to be one-to-one near h.
It is a (local) homeomorphism between the space of Ck sections with the Ck

topology and the space of maps with the Ck topology. This is because the norms
of the derivatives of E∇h (v, w) can be estimated in terms of the derivatives of v
and w, and conversely, as the exponential map is smooth.

5.2.3 Manifold structure

Theorem 5.2.4. The maps E∇h form a smooth atlas for Ck0 (M, F), giving it
the structure of a smooth (Banach, if k <∞) manifold. The inclusion map

Ck0 (M, F) ↪→ Ck(M, X)

is an embedding. Moreover, for each leaf F ⊂ X the inclusion

Ck(M, F ) ↪→ Ck(M, F)

is an embedding.
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Proof. We saw in Proposition 5.2.3 that the maps E∇h form a topological atlas.
Consider the map

E
∇
h : h∗TX = h∗NF ⊕ TF −→M ×X

defined by the formula 5.2. It is a local diffeomorphism around the 0 section.

In particular, for any two maps E
∇
h1

, E
∇
h2

, the composition E
∇
h1
◦ E∇h2

−1
is

smooth where defined, hence restricts to a smooth map at the level of sections
(Lemma 5.1.2). Since Cconst(h∗NF)×Ck(h∗TF) is a submanifold of Ck(h∗TX),

it follows that E∇h1
◦ E∇h2

−1
is also smooth.

The fact that
Ck0 (M, F) ↪→ Ck(M, X)

is an embedding is a consequence of the fact that E
∇
h1

is smooth with respect
to the atlas on Ck(M, X) defined in Section 5.1. This follows again from
Lemma 5.1.2.
Finally, fix a leaf F , and consider the inclusion map

Ck(M, F ) ↪→ Ck0 (M, F)

Around each h ∈ Ck(M, F ), the map is given by the inclusion

Ck(h∗TF) ∼= {0} × Ck(h∗TF) ⊂ Cconst(h∗NF)× Ck(h∗TF)

hence it is an embedding.

5.2.4 Manifold of S-regular maps

Let us generalize the construction above to an arbitrary manifold model S. First
of all, let us define the set of leafwise S-regular maps with trivial holonomy. Let
∇F be a connection on TF .

Definition 5.2.5. The space of S-regular leafwise maps with trivial holonomy
is the topological subspace S0(M, F) ⊂ S(M, X) of continuous leafwise maps
h ∈ C0

0 (M, F) such that there exists h′ ∈ C∞(M, F) and v ∈ S(h∗TF) small

such that h = exp∇
F

h′ (v).

Remark 5.2.6. As in Remark 5.1.4, the definition does not depend on the
choice of a connection on TF .

Lemma 5.2.7. Given a smooth map h ∈ C∞0 (M, F), the set of S-regular
leafwise maps is locally parametrized around h by Cconst(h∗NF) × S(h∗TF),
via the map E∇h defined as in (5.2).

Proof. The only point to make is that smooth maps preserve S-regular sec-
tions, by definition of section functor. Then, if there is an S-regular leafwise
map h′ near h, it can be written as E∇h (v, w) for some (v, w) ∈ Cconst(h∗NF)×
C0(h∗TF). The proof that w ∈ S(h∗TF) is then the same argument as Re-
mark 5.1.4.
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Finally we can prove that the parametrizations above form a smooth atlas.

Theorem 5.2.8. The maps E∇h form a smooth atlas for S0(M, F), giving it
the structure of a smooth (Banach) manifold. The inclusion map

S0(M, F) ↪→ S(M, X)

is an embedding. Moreover, for each leaf F ⊂ X the inclusion

S(M, F ) ↪→ S(M, F)

is an embedding.

Proof. Once we note that the induced topology on S0(M, F) is the one making
the maps E∇h homeomorphisms, the proof is word by word the one given for
Theorem 5.2.4.

5.2.5 Manifold structure via the holonomy groupoid

Another approach to the construction of a smooth structure on the set of leafwise
maps is by relating them to maps with values in the fibers of a submersion.
This is done using the holonomy groupoid of a foliation. The submersion case
is easier, due to the fact that the corresponding foliation has no holonomy, and
it has transverse coordinates. In particular one can prove easily that the set of
maps with values in the fibers of a submersion is a submanifold of the set of all
maps, as indicated in the following lemma.

Lemma 5.2.9. Let s : Y m −→ Bd be a smooth surjective submersion (not nec-
essarily proper), let s−1 denote the foliation given by the connected components
of the fibers of s. Fix a splitting Ns−1⊕Ts−1. Given h ∈ C∞(M, s−1), there is
a convex subset Cconst(h∗Ns−1) ⊂ Ck(h∗Ns−1), such that Cconst(h∗Ns−1) ∼=
Dd ⊂ Ts(h)B, and such that C(M, s−1) is a smooth submanifold of Ck(M, Y ),

locally modeled on Cconst(h∗Ns−1)× Ck(h∗Ts−1).

Proof. Let h ∈ Ck(M, s−1). Let b be such that im(h) ⊂ s−1(b). Now let
K ⊂ s−1(b) be a compact neighbourhood of h(M) in s−1(b). We can assume
that there is a neighbourhood of h(M) diffeomorphic to Dd × K, where s is
equal to the first projection (by the proof of Ehresmann’s theorem). Now we
can take a split Riemannian metric on Dd × K, and extend it to M . Let
Cconst(h∗Ns−1) be the set of sections that are constant in the trivialization
Dd ×K. This forms a convex set, and the map s∗ : Cconst(h∗Ns−1) −→ Ts(h)B

is an isomorphism onto a neighbourhood Dd ⊂ Ts(h)B. The exponential map

restricted from Ck(h∗TX) to Cconst(h∗Ns−1) × Ck(h∗TF) is then a smooth
parametrization for Ck(M, s−1) around h.

Remark 5.2.10. The same proof would work for a general foliation, if we re-
strict our attention to leafwise maps h such that im(h) ⊂ T ×K, for a transversal
T and a compact neighbourhood K of im(h) in its leaf. For example, this is the
case for leafwise embeddings with trivial holonomy. However, that is in general
not a closed condition.
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Given a manifold X with a foliation F , one can “desingularize it to a sub-
mersion” by constructing the so-called holonomy groupoid Hol(F) of F . As a
set, it is defined as

Hol(F) := {γ : [0, 1] −→ X smooth : γ̇ ∈ TF}/ ∼ (5.3)

where γ ∼ γ′ if and only if γ(0) = γ′(0), γ(1) = γ′(1), and γ−1 ? γ′ has triv-
ial holonomy. Equivalently, given x = γ(0), one has the holonomy sequence
1 −→ Kx −→ π1(Fx, x) −→ Hx −→ 1; the equivalence relation is that the
homotopy class [γ−1 ? γ′] belongs to Kx.

Concatenation and inversion of paths give Hol(F) the structure of a groupoid
over X, with source and target maps being the evaluations s := ev0, t := ev1.
One can show that Hol(F) can be naturally given the structure of a smooth
dim(X) + rank(F)-dimensional manifold, for which s and t are submersions.
By the very definition of Hol(F), one sees immediately that for each x ∈ X,
t : s−1(x) −→ Fx is the covering space corresponding to the subgroup Kx. In
particular, the following lemma is now obvious.

Lemma 5.2.11. The leafwise maps h : M −→ Fx ⊂ X with trivial holonomy
are exactly those that admit a lift h : M −→ s−1(x), so that h = t ◦ h.

The correspondence is not one-to-one, in fact for each leaf F one can lift a
map h : M −→ F to each fiber s−1(x) with x ∈ F . Moreover, given a fixed
fiber s−1(x), the lift is also not unique. One can say that this lift is unique up
to the action of a groupoid on Ck0 (M, F ).

Definition 5.2.12. A groupoid action of a groupoid G X
s

t
on a space

Y is given by:

• a moment map µ : Y −→ X

• a multiplication map · : {(y, g) : µ(y) = s(g)} −→ Y

such that µ(g · y) = t(y)

Consider the map s : Ck(M, s−1) −→ X, which selects the s-fiber. Each
element γ in the holonomy groupoid is a (holonomy class of) path(s), which acts
by pointwise concatenation on Ck(M, Hol(F)), preserving Ck(M, s−1). It is an
exercise to prove the following proposition, which gives an equivalent definition
of the space of leafwise maps.

Proposition 5.2.13. Ck(M, F) ∼= Ck(M, s−1)/Hol(F).

We will construct a smooth structure on Ck(M, F ) by constructing local
sections of the projection π : Ck(M, s−1) −→ Ck(M, F). We start by showing
that the quotient topology coincides with the Ck topology.
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Proposition 5.2.14. Ck(M, F) with the quotient topology is topologically em-
bedded in Ck(M, X).

Proof. The proof is elementary and we only sketch it. The quotient map co-
incides with post-composition with the (smooth) target map t. Hence, given
a map h : M −→ Hol(F), one can consider an open neighbourhood U with
compact closure of h(M). The Ck norm of t is bounded on U . Let h = t ◦ h.
Given the set U of maps with ε-small Ck distance from h, a neighbourhood
of h given by δ-close maps (with δ depending on ε and the Ck norm of t on
U) is contained in q−1(U), thus q−1(U) is open and U is open in the quotient
topology. For the converse, if a subset U is such that q−1(U) is open, then
an ε-neighbourhood of a lift h of h (for each h ∈ U) is contained in q−1(U).
The image of such ε-neighbourhood coincides with a δ-neighbourhood in the
Ck distance, for suitable δ. Hence U is Ck open.

Take a smooth map h in S(M, F ), and let Fh be the leaf containing h(M).
Since h(M) is compact, there is a smooth transversal T ∼= D such that h(M) ∩
T = {x}.

Theorem 5.2.15. There is a convex subset Cconst(h∗NF) ⊂ C∞(h∗NF),
Cconst(h∗NF) ∼= T , such that the set of leafwise maps Ck(M, F), with the
quotient topology, can be given the structure of a smooth manifold, locally mod-
eled on Cconst(h∗NF) × Ck(h∗TF). With this smooth structure, the quotient
map is a submersion, and for each leaf F of F the manifold Ck(M, F ) is a
submanifold.

Proof. Consider s−1(T ) ⊂ Hol(F). Fixing a point p ∈ M , one can define a
canonical lift h : M −→ s−1(x) ⊂ s−1(T ) by requiring that h(p) = x, where x
is the constant path at x. For a nearby map h′, one there is a unique element

x′ ∈ T , and map h
′

: (M, p) −→ (s−1(x′)), x′) lifting h′. This defines a section
ST ,p : Ck(M, U ; F) −→ Ck(M, s−1|s−1(U)), which is continuous (and hence an
embedding) by the same arguments as in the proof of Proposition 5.2.14. The
image is an open subset of Ck(M, s−1|s−1(T )), hence it is a smooth subset, by
Lemma 5.2.9.
This defines a smooth chart for Ck(M, F) around h, locally given by Cconst(h

∗
Ns−1|s−1(T ))×

Ck(h
∗
Ts−1

s−1(T )) as seen in Lemma 5.2.9. The map t is a fiberwise covering map,

and a local diffeomorphism (upon restriction to s−1(T )), then Ts−1 = t∗TF ,

and t∗NF = Ns−1. Since t ◦ h = h, one gets Ck(h
∗
Ts−1) ∼= Ck(h∗TF), and

Ck(h
∗
Ns−1) = Ck(h∗NF).

This does not depend on the choice of the transversal and of the point. Pick
another transversal T ′ such that h(M) ∩ T ′ = {x′}. Given a path γ joining x
to x′, there is a holonomy diffeomorphism from T to T ′ (up to restricting both
T and T ′). Moreover, there is a continuous family of paths γτ parametrized
by T , realizing the diffeomorphism between T and T ′. Concatenation with
γτ defines a diffeomorphism s−1(T ) ∼= s−1(T ′), preserving s. This induces a
diffeomorphism on the corresponding sets of maps. Changing base point p to
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p′ so that h(p) = h(p′), with the same transversal, can be dealt with as follows.
Take a path η joining p to p′, this induces a leafwise path ηh′ for each leafwise
function h′, by composition (smoothly in h′). Then η ?ST , p = ST , p′ . With this
is it easy to conclude that any two charts are smoothly compatible.

Proposition 5.2.16. With the smooth structure defined in Theorem 5.2.15, the
inclusion map

Ck(M, F) ↪→ Ck(M, X)

is an embedding.

Proof. We already know that it is a topological embedding. Moreover, it is
a smooth embedding, because it is locally the composition of a section of the
quotient map with the target map (which coincides with the quotient map).

As a corollary, one one has the following.

Proposition 5.2.17. The smooth structures on Ck(M, F) defined in Theo-
rem 5.2.4 and Theorem 5.2.15 are diffeomorphic.

Proof. This is a consequence of the fact that a topological subspace of a manifold
carries at most one differentiable structure turning the inclusion into a smooth
embedding.

It is straightforward to extend the discussion above to define the space of
leafwise S-regular maps, as defined in Definition 5.2.5.

Theorem 5.2.18. There is a convex subset Cconst(h∗NF) ⊂ C∞(h∗NF),
Cconst(h∗NF) ∼= T , such that the set of leafwise maps S(M, F), with the quo-
tient topology, can be given the structure of a smooth submanifold of S(M, X),
locally modeled on Cconst(h∗NF) ×S(h∗TF). With this smooth structure, the
quotient map is a submersion, and for each leaf F of F the manifold S(M, F )
is a submanifold of S(M, F).

Proof. The proof is totally analogous to the one of Theorem 5.2.15 and Propo-
sition 5.2.16, exploiting the fact that the transition maps in Theorem 5.2.15 are
induced by smooth maps at the vector bundle level, hence induce smooth maps
at the level of S-regular sections Lemma 5.1.2. The only things that need to be
checked is that the topologies are the right ones, i.e., that the quotient topology
agrees with the subspace topology, and that the sections ST , p′ are topological
embeddings (the latter fact is a consequence of the first).
Equivalently, one can show that the projection t : S(M, s−1) −→ S(M, F),
with the topology defined in Section 5.2.4, is a quotient map. In order to do so,
we will show that it is continuous and open. This follows from the fact that in
local coordinates around h and a lift h, the map

t : Cconst(h
∗
Ns−1)×S(h

∗
Ts−1) −→ Cconst(h∗NF)×S(h∗TF)

is a submersion between finite dimensional spaces on the first components, and
an isomorphism on the second components, hence continuous and open.
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5.2.6 Boundary constraints

The above construction can be performed including a boundary constraint for
the domain. More precisely, one can consider a submanifold Y ⊂ X, such that
X t F , and consider the space of maps

S(M, F)Y := {h : M −→ X : h ∈ S(M, F), h(∂M) ⊂ Y } (5.4)

Such maps are locally parametrized, around a smooth map h, by

Cconst ×S(h∗TF ; h∗(TY ∩ TF)) (5.5)

where

S(h∗TF ; h∗(TY ∩ TF)) := {s ∈ S(h∗TF) : s|∂M ∈ C0(h|∗∂M (TY ∩ TF))}
(5.6)

This is a closed subspace of S(h∗TF), which implies that S(M, F)Y with the
subspace topology inherits the structure of a submanifold of S(M, F). This
would be useful when considering holomorphic curves with constrained bound-
ary, where the boundary is mapped to a transversal with Lagrangian (or totally
real) intersection with each leaf.

5.3 The Cauchy-Riemann operator

Let now (X, F , ω) be a symplectic foliation. We would like to consider spaces
of pseudo-holomorphic curves with values in the leaves of F . In order to do this,
consider a smooth ω–compatible complex structure J on the bundle TF −→ X,
turning the leaves of F into almost complex manifolds. In this context, it makes
sense to ask for a map u : Σ −→ X with values in a leaf to be J-holomorphic.
This amounts to the vanishing of the Cauchy-Riemann operator ∂J . One can
formulate this in the following global fashion.

Let u be a map as above, and let W k,p, kp > 2 be the manifold model
of Sobolev sections with k p–integrable derivatives. Consider the space Eu :=
W k−1,p(

∧0,1
(TΣ) ⊗ u∗TF). We know from the previous discussion that the

space W k,p
0 (Σ, F) of Sobolev maps with trivial holonomy is a smooth Banach

submanifold of the manifold W k,p(Σ, X) of all Sobolev maps. The bundle of

Banach spaces π : E :=
∐
u Eu −→W k,p

0 (Σ, F) is in fact a Banach space bundle,
as can be deduced from Theorem 6.1 in [12] (the key point in loc. cit. is that
the sections defining the charts for the base manifold are exactly those that
preserve TF).
The Cauchy-Riemann operator is a (smooth) section of this bundle (whenever
J is smooth). Letting u be a solution of the Cauchy-Riemann equation, we can
naturally define the vertical differential of ∂J at u. This can be seen as a map
Du := dVu (∂J) : Cconst(u∗NF)×W k,p(u∗TF ) −→W k−1,p(

∧0,1
(TΣ)⊗ u∗TF).
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5.3.1 The linearized operator

We compute here the linear operator Du := dVu (∂J) (the vertical derivative of
the section ∂J), for a given complex structure J , at a solution u. This means
that for u : Σ −→ X a leafwise holomorphic curve with trivial holonomy, and
η ∈ TuW

k,p(Σ, F) ∼= Cconst(u∗NF) × S(u∗TF), we want to take a path uλ
such that u0 = u, and d

dλ (uλ)
∣∣
λ=0

= η. The operator Du(∂J) applied to η is

Du(∂J)(η) = d
dλ (∂J(uλ))

∣∣
λ=0

.

Notation 5.3.1. Before giving the statement, we introduce the following no-
tation. Given a map u : Σ −→ X, we denote by Fu the leaf of F such that
im(u) ⊂ Fu. For a complex structure J on TF and a leaf F , we denote with JF
the restriction of J to F . In particular one has ∂J |Wk,p(Σ, F ) = ∂JF . We denote

with Du,Fu the linearization of the operator ∂JF .

Let T be a transversal through u(Σ), let ∇N = ∇Ns−1

be a connection on
the normal bundle to s−1 in s−1(T ) such that the elements of Cconst(u∗NF)
are flat with respect to the pull-back connection.

Proposition 5.3.2. The linearized Cauchy-Riemann operator Du at u is given
by

Du(η) = Du,Fuη
F +∇NηNJ(u)du ◦ j = (∇ηF )0,1 +∇ηJdu ◦ j (5.7)

Proof. Consider a lift u of u to s−1(T ) ⊂ Hol(F), for some suitable choice
of transversal T . Lift the complex structure J (along t)to J ; then u is J-
holomorphic. Since the smooth structure can be defined by lifting maps to
s−1(T ) (Section 5.2.5), the linearization of ∂J at u coincides with the lineariza-
tion of ∂J at u. A neighbourhood U of im(u) is isomorphic to a product Dq×K
(K is a compact set in a fiber), and s is the projection. Take a connection ∇
on s−1(T ) such that:

• ∇|U =

(
∇Ns−1

∇F

)
• η ∈ Cconst(u∗NF) implies ∇Nη = 0

• ∇F is the pull-back of a connection on TF

Let η ∈ T0C
const(u∗NF) × S(u∗TF), and let uλ be a 1-parameter family of

maps such that u0 = u, d
dλuλ|λ=0 = η. Assume first that η = 0 + ηF . Then

Duη = Duη
F = Du, Fuη

F = ∇FηF + J∇FηF ◦ j + (∇Fη Jdu ◦ j)

(j is the complex structure on Σ) ([41], Section 2.4).

Assume now that η = ηN + 0F . Then

d

dλ
∂J(uλ)(∂t) =

d

dλ
(duλ+J(uλ)duλj)(∂t) = ∇tη+∇ηJdu+J(u)∇sη = ∇Nη Jdu

(as ∇NηN = 0 by our choice of connection)
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Corollary 5.3.3. For each ηN ∈ Cconst(u∗NF), the operator DFu (ηF ) = Du(ηN+
ηF ) is a real-linear Cauchy-Riemann operator.

Proof. A real-linear Cauchy-Riemann operator is by definition (see [28], Def-
inition C.1.5) a complex-antilinear perturbation of a complex-linear Cauchy-
Riemann operator. The operator Du, Fu

is a real-linear Cauchy-Riemann oper-
ator (by the general theory) and the term ∇NηNJ(u)du ◦ j is complex antilinear,

because du is complex linear and ∇F (J2) = 0 implies that ∇Fη J is J-antilinear
for each η.

Let now Σ be a closed surface.

Corollary 5.3.4. The linearized Cauchy-Riemann operator is Fredholm, with
index ind(u) = (n− q)χ(Σ) + 2c1([u]) + q.

Proof. Since Du, Fu
: Γ(u∗TF) −→ Ω0,1(u∗TF) is Fredholm of index (n −

q)χ(Σ)+2c1([u]) given by the Riemann-Roch formula, the same operator viewed
as Du, Fu

: Cconst(u∗NF) × Γ(u∗TF) −→ Ω0,1(u∗TF) is Fredholm of index
(n − q)χ(Σ) + 2c1([u]) + q. Since Du(η) = Du, Fuη

F +∇Nη J(u)du ◦ j, and the
latter summand is of finite rank (hence compact), one has

ind(Du) = ind(Du, Fu) = (n− q)χ(Σ) + 2c1([u]) + q

Corollary 5.3.5. If a closed holomorphic curve u : Σ −→ X is Fredholm regular
as a holomorphic curve u : Σ −→ Fu, then it is Fredholm regular as a leafwise
holomorphic curve.

Proof. One only needs to notice that u∗TF = u∗TFu, and look at Proposi-
tion 5.3.2.

Let us also mention a formula for the linearization of the Cauchy-Riemann
operator with varying complex structure. Such operator is the map

∂ : (u, J) 7→ ∂Ju =
1

2
(du+ Jduj) (5.8)

which we can view as a section of the vector bundle

π : E −→ J (F)×W k,p
0 (Σ, F)

The space J (F) is embedded in the linear space of all endomorphisms End(TF)
of TF , and the map ∂Ju, extended to End(TF) is linear. Hence it can be
identified with its differential. This proves the following proposition.

Proposition 5.3.6. The linearized Cauchy-Riemann operator with varying J
is the operator

D(u, J) : TuW
k,p(Σ, F)× TJ(J k(F)) −→W k−1,p(

0,1∧
J

T ∗Σ⊗ u∗TF)) (5.9)
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given by

D(u, J)(η, Y ) = Duη +
1

2
Y duj = Du, Fu

ηF +∇NηNJ(u)du ◦ j +
1

2
Y duj (5.10)

Finally, since we want to construct a smooth structure on a space of holomor-
phic curves where the domain complex structure is allowed to vary, we should
consider the full linearization of the Cauchy-Riemann operator, taking into ac-
count also variations of j. This is not straightforward, as the space of equiva-
lence classes of complex structures on a Riemann surface is not a manifold, but
a (finite dimensional) orbifold. A solution to this is to consider certain orbifold
charts given by Teichmüller slices, and make computations on such charts (ex-
plained below). Eventually, we will construct a smooth structure on the space
of somewhere injective curves, and such curves have no automorphisms – this
will prevent the resulting moduli space from having singularities.

Since there is no difference in this respect between the foliated case and the
usual symplectic case, we will only briefly sketch a description of the setup,
and we refer to [41] for an account. The set of holomorphic structures on
a smooth oriented surface Σ is the quotient J (Σ)/Diff+(Σ) of all the complex
structures modulo the orientation preserving diffeomorphisms. It turns out that
the identity component Diff0(Σ) of Diff+(Σ) acts freely and properly whenever
g ≥ 2 (more generally, if one considered marked points, one would want that
the stability condition χ(Σ \ {p1, . . . , pm}) < 0 to be satisfied). The quotient
J (Σ)/Diff0(Σ) = Teich(Σ) is a finite dimensional smooth manifold.
A smooth structure on J (Σ)/Diff0 is given by constructing certain slices of the
quotient maps, called Teichmüller slices, which are smooth subsets of the space
of all complex structures on TΣ.

The smooth structure is invariant under different choices of slices. The space
of holomorphic structures, then, is locally a discrete quotient of Teich(Σ), which
in fact can be shown to be locally a finite quotient. In particular, the set of holo-
morphic structures on Σ is locally a finite quotient of the Teichmüller slices.
Note that in the case g < 2 (the unstable case) one can describe explicitly
the space of complex structures and the stabilizers of the action of Diff+(Σ) on
J (Σ). Thus the whole discussion goes through with minor modifications (which
include eventually quotienting out the moduli space of holomorphic curves by
the remaining automorphisms of the domain).

The same discussion that lead to the proof of Proposition 5.3.6 can be used
to prove the following.

Proposition 5.3.7. Let ST,j be a Teichmüller slice around a complex structure
j. Let TjST,j be its tangent space. The linearization of the Cauchy-Riemann
operator, with complex structure on Σ varying in ST,j, is an operator

D(u, j, J) : TuW
k,p(Σ, F)×TjST,j×TJ(J k(F)) −→W k−1,p(

∧0,1

j,J
T ∗Σ⊗u∗TF))

(5.11)
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of the form
D(u, j, J)(η, y, Y ) = D(u, J)(η, Y ) + Jdu ◦ y (5.12)

5.4 Generic transversality

In this section we show that the linearized operator is surjective at solutions
for generic choice of compatible complex structure J on TF . The proof is the
same as the one for holomorphic curves in symplectic manifolds, as described in
[28]. We provide a proof for completeness. Denote with J (F) the set of tame
or compatible almost complex structures on TF . We start by constructing a
universal moduli space (of simply covered curves), i.e. we want to construct a
manifold structure on

M∗(F) := {(u, j, J) : ∂j,Ju :=
1

2
(du+ Jdu ◦ j) = 0, u simply covered}

⊂ C∞0 (Σ, F)×Mg × J (F) (5.13)

For functional analytic reasons we will consider the set J k(F) of k-times differ-
entiable J-holomorphic curves, with respect to Ck complex structures:

M∗(F)(k) := {(u, j, J) : ∂j,Ju = 0, u simply covered}

⊂W k,p
0 (Σ, F)×Mg × J k(F) (5.14)

for k sufficiently big. That is a consequence of the following theorem.

Theorem 5.4.1. The linearized Cauchy-Riemann operator (5.10) is surjective
at solutions, for p > 2.

Proof. By Proposition 5.3.6, D(u, J)(η, Y ) = Duη + 1
2Y duj. Since Du is Fred-

holm, then D(u, J) has closed image.
In order to prove that it is surjective it is enough to show that the image is
dense in E(u, J) = W k−1,p(

∧0,1
(TΣ) ⊗ u∗TF). If k = 1, then we need to show

that there is no non-zero ρ ∈ Lp
′
(
∧0,1

(TΣ) ⊗ u∗TF) such that 〈ρ, Duη〉 =
〈ρ, Y (u)duj〉 = 0. Such ρ would be a zero of the adjoints of the real Cauchy-
Riemann operators defined in Corollary 5.3.3, and be of class W 1, p, and in
particular continuous ([28], Proposition 3.1.10).
Let z0 ∈ Σ be an injective point, i.e. such that duz0 6= 0 and u−1(u(z0)) = {z0}.
In a neighbourhood of z0 there is an endomorphism Y such that 〈ρ, Y (u(z0))duz0j〉 >
0 (see the formula in Lemma 3.2.2 in [28], which can be applied locally). One
can extend the endomorphism Y to the entire manifold using a bump function.
The function 〈ρ, Y (u(z0))duz0j〉 thus constructed is non-negative, and in par-
ticular has strictly positive integral. Thus ρ = 0 on the dense set of injective
points, which implies ρ ≡ 0 by continuity. The surjectivity for all k follows from
an elliptic bootstrapping argument.

Theorem 5.4.2. The components of M∗(F)(k) are smooth Banach manifolds.
Moreover, there exists a comeager subset J k(F)reg ⊂ J (F) of Ck complex
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structures such that for each J ∈ J k(F)reg, each simple J-holomorphic u :
Σ −→ X is Fredholm regular, for k sufficiently big.

Proof. The fact thatM∗(F)(k) is smooth follows from the inverse function the-

orem, and Theorem 5.4.1. Consider the projection map πJ : W k,p
0 (Σ, F) ×

Mg × J (F) −→ J (F) restricted to M∗(F)(k). Its differential is the projec-
tion (η, y, Y ) 7→ Y , hence the kernel of dπJ |M(F) on π−1

J (J) coincides with
kerD(u,j,J). In particular, it is finite dimensional. By Lemma A.3.6 in [28],
dπJ |M∗(F)(k) and D(u,J) have isomorphic cokernel. In particular the latter is
surjective exactly when the projection is surjective. By Sard-Smale theorem,
this is the case for a comeager set of values (for k sufficiently big. See Theorem
A.5.1 in [28]). This proves the theorem.

In particular one has the following corollary.

Corollary 5.4.3. Given a homology class A, there is a comeager set J reg of
(smooth) complex structures such that for all J ∈ J reg, the space M∗g(A, J)
of simply covered J-holomorphic curves representing the homology class A is a
smooth manifold of dimension 2(n− q − 3)(2− 2g) + 2c1(A) + q.

Proof. In order to prove this, one needs to extend Theorem 5.4.2 to the C∞

case. This is done using “Taubes’s trick”, as explained for example at the end
of the proof of Theorem 3.1.6 (II) in [28]. The dimension count follows from
the computation of the index of D(u,j,J). Such index is the number given in
Corollary 5.3.4 plus the dimension of Mg. Finally, in the unstable case one
should subtract the dimension of the automorphism group to the dimension
formula.

Remark 5.4.4. Note that one can use Theorem 5.4.1 and the proof of Lemma 2.2.9
to prove that leafwise holomorphic curves are stable under deformations of com-
plex structures on the bundle TF .

The discussion above also proves the uniqueness of the moduli space up to
cobordism.

Theorem 5.4.5. Let J0, J1 ∈ J l(TF)reg. Let Jλ(J0, J1; TF) be the set of
paths of complex structures on TF , joining J0 and J1. Given a homology class
A, there is a comeager set of regular homotopies J reg

λ (possibly depending on A),
such that for each path Jλ ∈ J reg

λ the set Mg(A, Jλ)∗ of simple Jλ-holomorphic
curves is a smooth manifold, with boundary Mg(A, J0)∗ tMg(A, J1)∗.

Proof. Consider the manifold with boundary [0, 1] × X, with the foliation F̃
given by {?} × F . Then Jλ(J0, J1; TF) is exactly the space of complex struc-
tures on T F̃ , that coincide with J0, J1 on the boundary. For suitable regularity
S, one has S(Σ, F̃ ) = [0, 1] × S(Σ, F), a manifold with boundary. One can
then apply the same argument as in Theorem 5.4.1, Theorem 5.4.2 and the
corollaries that follow.
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5.5 Compactness

In symplectic manifolds, the strength of holomorphic curve theory lies in the
compactness properties of the moduli space. A compactness result for closed
leafwise holomorphic curves analogous to the standard one, hold for symplecti-
cally foliated manifolds. The author is aware of such result from a talk by Klaus
Niederkrüger [30]. The theorem is the following.

Theorem 5.5.1. Let (X, F , J) be a manifold with an almost complex foliation,
and let h be an hermitian metric. Let uk be a sequence of leafwise J–holomorphic
maps, with uniformly bounded h-area. Then there exists a subsequence of uk
converging to a nodal J–holomorphic curve with values in a leaf of F .

Convergence needs to be interpreted in the sense of Gromov, see [28]. For
the definition of nodal holomorphic curve we refer back to Chapter 2. In order
to keep the exposition self-contained, we prove such result in a simplified case,
which will be sufficient for proving our main result (Theorem 5.0.1).

5.5.1 A simpler case: stably complex normal bundle

We prove here the compactness theorem in case the normal bundle to the folia-
tion is stably complex, i.e. there exists a number h such that NF ⊕Rh admits
an almost complex structure.

Theorem 5.5.2. Let (X, F , J) be a closed manifold with an almost complex
foliation. Assume that NF is stably complex. Let uk be a sequence of holomor-
phic curves with values in leaves of a foliation, with uniformly bounded energy
with respect to some Hermitian metric gX . Then there is a subsequence that
converges to a stable nodal curve.

Proof. The key observation is that if NF⊕Rh has an almost complex structure,
then the manifold X × (S1)h is a closed almost complex manifold. One can
identify X with X × {(1, . . . , 1)}. Then uk can be viewed as a sequence in
X ×{(1, . . . , 1)} ⊂ X × (S1)h with bounded energy (with respect to a choice of
split Hermitian metric extending gX), which converges to a nodal curve by the
standard Gromov compactness. The limit will again be a leafwise nodal curve
in X × {(1, . . . , 1)}, by closedness.

Let us point out some interesting examples to which Theorem 5.5.2 applies.

Corollary 5.5.3. Let (X, F , J) be a closed manifold with an almost complex
cooriented codimension–1 foliation. Then a sequence of leafwise holomorphic
curves with bounded energy converges to a leafwise nodal curve.

Corollary 5.5.4. Let X be an almost complex manifold, and (F , J) be an
almost complex foliation on X, such that TF is a complex subbundle of TX.
Then a sequence of leafwise holomorphic curves with bounded energy converges
to a leafwise nodal curve.
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A class of manifold with a symplectic foliation and almost complex normal
bundle is that of regular generalized complex manifolds ([15]).

Corollary 5.5.5. Let (X, F , ω) be a closed manifold with a symplectic foli-
ation induced by a generalized complex structure. Let J be an almost complex
structure on F compatible with the symplectic form. Then a sequence of leafwise
holomorphic curves with bounded energy converges to a leafwise nodal curve.

5.5.2 Homological energy bounds

In symplectic geometry, the energy identity implies that the energy of a holo-
morphic curve only depends on its homology class. Thus one can get a uniform
energy bound by considering holomorphic curves representing the same homol-
ogy class. This is the case also in Poisson geometry, if we assume the manifold
to be compact.

Proposition 5.5.6. Let (X, F , ω) be a manifold with a symplectic foliation,
with compact leaf space. Let A ∈ H2(X; Z) be a homology class. Then there is
a constant C(A) > 0 such that E(u) ≤ C(A) for each holomorphic u such that
[u] = A.

Proof. Consider the space of leafwise maps C∞(Σ, X, F ; A) representing the
homology class A (this is a smooth space, as it is a union of components of
C∞(Σ, X, F)). Extend ω to a smooth form on X, and define a continuous map
Iω as

Iω(u) =

∫
Σ

u∗ω

Since ω is leafwise closed, the value of Iω(u) depends only on the leaf that u is
mapped to. Hence there is a diagram

C∞(Σ, X, F ; A) R

X/F

Iω

Iω
(5.15)

where the map Iω is continuous, by definition of quotient topology. The as-
sumption that X/F is compact ensures that Iω is bounded above.

Remark 5.5.7. If ω could be extended to a closed form on X, then Iω would
be constant.

5.6 An application: foliations with a ruled leaf

We outline one application of the theory above, related to ruled surfaces. Essen-
tially we will try to apply the arguments from [25], which we used extensively
in Chapter 3, to the foliated case, using the compact(ifiable) moduli spaces just
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constructed.

We will consider a closed 5–manifold X, with a cooriented codimension–1
symplectic foliation (F , ω). Then the leaves are symplectic 4–manifolds, though
not necessarily compact. This situation is special for two reasons, the first
is that given that the leaves are 4–dimensional one can apply the automatic
transversality results from [17], and the adjunction formula. The second is that
in codimension 1 it is easy to find bounds for the index of a holomorphic curve.

Notation 5.6.1. Let (X, F , J) be an almost complex foliation of codimension
q on a n-dimensional manifold. It is going to be useful to introduce the following
terminology. Let u : Σ −→ F ⊂ X. The index of u in X, is the index of u as a
leafwise map, i.e. the number

indX(u) = ind(u) = (n− q − 3)χ(Σ) + 2c1([u]) + q (5.16)

while the leafwise index of u is the index of u as a holomorphic map in the
almost complex manifold F , i.e.

indF (u) = (n− q − 3)χ(Σ) + 2c1([u]) = ind(u)− q (5.17)

We say that a holomorphic curves is leafwise Fredholm regular if it is Fredholm
regular as a holomorphic curve u : Σ −→ Fu.

Proposition 5.6.2. Let (X, F , J) be a manifold with a codimension–1 almost
complex foliation. If J is Fredholm regular, then there are no simple holomorphic
curves with negative leafwise index.

Proof. By Fredholm regularity of J , for each simple u one has ind(u) ≥ 0, hence
indF (u) ≥ −1. But the index of a holomorphic curve in an almost complex
manifold is an even number, thus indF (u) ≥ 0.

This can be strengthened if the foliation has rank 4, using the Riemann-
Hurwitz formula, which states that, if ϕ : Σ̃ −→ Σ is a branched cover of degree
d, then

− χ(Σ̃) + dχ(Σ) = Z(dϕ) (5.18)

where Z(dϕ) is the number of zeros of dϕ, with multiplicity. The result is

Proposition 5.6.3. Let (X, F , J) be a manifold with a codimension–1 almost
complex foliation of rank 4. If J is Fredholm regular, then there are no holo-
morphic curves with negative leafwise index.

Proof. If ũ = u◦ϕ is a multiple cover of degree d of a simple holomorphic curve
u, one computes

indF (ũ) = dindF (u)− (2− 3)Z(dϕ) ≥ 0 (5.19)
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Further, applying the automatic transversality Theorem 2.2.12 from [17],
one gets

Corollary 5.6.4. Let (X, F , J) be a manifold with a codimension–1 almost
complex foliation of rank 4. If J is Fredholm regular, then all immersed holo-
morphic spheres are leafwise Fredholm regular.

Remark 5.6.5. One could also prove that the set of immersed spheres is dense,
adapting a transversality theorem from [39], Appendix A (see also [40]).

Proposition 5.6.6. Let (X, F , ω) be a 5–dimensional manifold with a codimension–
1 symplectic foliation. Let A be a homology class represented by an embedded
symplectic sphere. Then, for generic J , the moduli space M0(A, J)∗ of simple
J–holomorphic spheres homologous to A is a smooth 3–dimensional manifold,
and all its elements have leafwise index 2. The compactification M0(A, J) con-
sists of

• curves in M0(A, J)∗

• double covers of holomorphic spheres with leafwise index 0

• nodal curves with two irreducible components, both of leafwise index 0

Proof. Since A can be represented by a symplectic sphere, one can realize it (up
to deformation) as a J–holomorphic sphere u, with J Fredholm regular. By the
adjunction formula, ind(u) = 3. In particular the leafwise index of each curve
inM0(A, J) is 2. The index computations in [42], section 4.2, and in particular
Lemma 4.12, directly imply the result.

Theorem 5.6.7. Let (X, F , ω) be a 5–dimensional manifold with a codimension–
1 symplectic foliation. Assume that there exists a leaf F ⊂ X containing a
symplectically embedded sphere S with 0 self-intersection. Then

• for every point p ∈ X there exists a non-constant holomorphic sphere
passing through p

• for every leaf F there exists a leafwise Fredholm regular holomorphic sphere
u : S2 −→ F such that ind(u) ≥ 2

Proof. Let A ∈ H2(X) be the homology class representing the embedded sphere
S with 0 self-intersection. It is a standard fact that we can find a generic com-
plex structure J and an embedded holomorphic sphere u in the homology class
A. By Proposition 5.6.6, the moduli space M0,1(A, J)∗ is a (non-empty) 5–
dimensional manifold. We claim that each point in X belongs to the image of a
holomorphic curve inM0(A, J). In order to prove this, it is enough to show that
the set of points in X belonging to the image of a curve inM0(A, J)\M0(A, J)∗

has codimension 2. Indeed, let Y ⊂ X be the set of points that belong to the
image of a curve in M0(A, J) \M0(A, J)∗. If p ∈ Y , in particular it belongs
to the image of a holomorphic curve, and there is nothing to prove. If the codi-
mension of Y is 2, then each p ∈ X \ Y can be joined to a point in S via a path
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in X \ Y . Using the compactness of the moduli space over a neighbourhood
of such path, one can prove that the evaluation map is surjective onto such
neighbourhood (by a degree computation). This step is totally analogous to the
strategy of [25], which we explained in Chapter 3. The resulting holomorphic
curve through p would belong to M0(A, J)∗, thus it would have index 2. In
particular, leafwise Fredholm regular by Theorem 2.2.12.

In order to prove that the codimension of Y is at least 2, we use Proposi-
tion 5.6.6. Indeed, it follows from Proposition 5.6.6 that Y can be realized as
a union of images of the evaluation map with domain a 3–dimensiona moduli
space (if the leafwse index of a curve is 0, then the dimension of the 1–pointed
moduli space is 3). If we can prove that there is only a finite number of coho-
mology classes in H2(X) that could be J–holomorphic summands of A, then
we are done. This follows from the same argument as McDuff’s Lemma 4.6 in
[25]: a holomorphic summand of A has area ≤ E(A) = ω(A). If there were
infinitely many summands of A represented by a holomorphic curve, we would
find a sequence with energy bounded by E(A), which would admit a convergent
subsequence by Theorem 5.5.2, and in particular the corresponding sequence of
homology classes would converge. Since the set of homology classes is discrete,
this is impossible.

The following corollary is an immediate consequence of Theorem 5.6.7.

Corollary 5.6.8. Let (X, F , ω) be as above. Then for each leaf F one has
π2(F ) 6= 0, and [ω|F ] 6= 0 ∈ H2(F ).

In case the leaves of the foliation are compact, one can apply the classifica-
tion of rational and ruled closed symplectic 4–manifolds, and get the following
strengthening of Theorem 5.6.7.

Corollary 5.6.9. Let (X, F , ω) be as above. Assume further that all leaves are
compact. Then all leaves are rational or blown-up ruled surfaces.

Proof. Since each leaf contains an index–2 holomorphic sphere, one can apply
Theorem 7.3 in [40] (originally appeared in [24]) to conclude that each leaf is
rational or a blow-up of a ruled surface.
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