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Introduction

The study of deformations problems is a recurrent theme in mathematics in
general and in geometry in particular. This arguably goes back to Riemann, who
counted the number of moduli of complex curves [Rie57]. Deformation theory
as we think of it today really began when the theory of deformations of compact
complex manifolds of arbitrary dimension was developed about a century later
by Frölicher and Nijenhuis [FN57], Kodaira and Spencer [KS58a; KS58b] and
Kuranishi [Kur62; Kur65]. The study of deformations of algebras and related
structures was initiated by Gerstenhaber [Ger64; Ger66; Ger68] soon after
this. Research on deformations and moduli spaces has led to great progress in
differential and algebraic geometry, and provided a certain understanding of
common features that these problems possess.

One such underlying feature is the relationship between deformation problems
and differential graded Lie algebras. This connection came to the surface in
the 1960’s, when similarities were observed between deformations of complex
structures and deformations of associative algebras [NR66]. As far as we are
aware, however, the full expected relationship between deformations and alge-
braic objects was first spelled out by Deligne in a letter to Millson [Del86] in
1986:

“The philosophy, which I had not realized before reading your paper,
seems the following: in characteristic 0, a deformation problem is
controlled by a differential graded Lie algebra, with quasi-isomorphic
DG Lie algebras giving the same deformation theory. If the DG Lie
algebra controlling a problem is “formal”, i.e. quasi-isomorphic to
⊕

H i , then the versal (formal) deformation space is that of
⊕

H i , i.e.
the (completion at 0 of the) subscheme of H1 defined by the equations
[u, u] = 0.”
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Introduction

The differential graded Lie algebra associated to a particular deformation prob-
lem is not unique, even up to isomorphism. It was soon realised that morphisms
should be considered “up to homotopy”, and this led to the introduction of a
new algebraic object that generalises differential graded Lie algebras. These
were called “strongly homotopy Lie algebras”, and are now usually referred to
as L∞-algebras. The correct notion of equivalence between L∞-algebras that
determines whether they describe the same deformations is quasi-isomorphism.
Up to a a choice of grading and sign conventions, they are defined as follows.

Definition.
An L∞-algebra is a Z-graded vector space V =

⊕

k∈Z V k endowed with a se-
quence `= (`p)p∈N of graded symmetric multi-linear maps

`p : V × · · · × V
︸ ︷︷ ︸

p copies

−→ V

of degree 1 subject to the Jacobi identities
∑

p+q=r

∑

σ∈Sr

1
p! q! εσ `p+1(`q(vσ(1), . . . , vσ(q)), vσ(q+1), . . . , vσ(r)) = 0

for r ∈ N, where ε
σ

denotes the Koszul sign of the permutation σ ∈ Sr .

Every differential graded Lie algebra can be viewed as an L∞-algebras for which
only the unary and binary “brackets” `1 and `2 are non-trivial, and every L∞-alge-
bra is conversely quasi-isomorphic to a differential graded Lie algebra. There is
however a cost associated to replacing L∞-algebras by quasi-isomorphic differ-
ential graded Lie algebras: while the structure may be simpler, the underlying
space is potentially much larger and not as meaningful from a geometric point
of view.

Deligne’s insight lives on, and in a simplified form reads:

In characteristic 0, every deformation problem is controlled by a
differential graded algebra (or an L∞-algebra).

This statement was made rigorous and proven in a formal derived setting by
Lurie [Lur11] and Pridham [Pri10].

Leaving aside what it means for an algebraic object to “control” a deformation
problem, examples of deformations problems for which Deligne’s claim holds are
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plentiful: deformations of Lie algebras, Lie subalgebras, complex structures, flat
connections, holomorphic vector bundles, instantons and generalised complex
structures are all “controlled” by differential graded Lie algebras or L∞-algebras.
Finding a differential graded Lie algebra or L∞-algebra that controls a given
deformation problem is generally not an easy task, however, and it is often done
on a case-by-case basis [Gua04; OP05; FZ15a; FZ15b]. The main objective of
this thesis is to demonstrate the relation between deformations and L∞-algebras
for a large class of deformation problems.

Of course, to achieve our aim we need to introduce an abstract definition of de-
formation problem that should encompass all of the aforementioned examples,
and hopefully more. From our point of view, the bare minimum for a deform-
ation problem, in a rather basic (and intentionally vague) setting, consists of
three components:

• a space X of “almost structures”,

• two maps µ, o: X → Y to another space Y ,

• a groupoid G→→ X for which S = {x ∈ X | µ(x) = o(x)} ⊆ X is invariant.

The actual space of structures is the set S, and two elements of this space are
considered equivalent whenever they are in the same orbit for G →→ X . In an
imprecise sense, deformation theory is about describing a neighbourhood in
the space of orbits of the restriction G|S →→ S, which is generally a singular
quotient of a singular subset. One often has to settle for just a description of
an infinitesimal neighbourhood, which is the domain of formal deformation
theory.

Upon closer inspection, we see that for all of the examples mentioned above, the
deformation problem has additional structure. This will be our starting point:

Definition.
An equivariant deformation problem (M µ→E1 β→E2) α G consists of the follow-
ing objects:

• a manifold X ,

• a (local) Lie group G acting on X ,

• two equivariant vector bundles, E1→ X and E2→ X , over X ,

• an equivariant section µ: X → E1, and
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• an equivariant vector bundle morphism β : E1 → E2 covering idX such
that β ◦µ= 0.

A simplified and imprecise version of our main theorem now becomes:

Theorem 1.
For every equivariant deformation problem (M µ→E1 β→E2) α G and any solution
x0 ∈ X of the equation µ(x) = 0, there is an associated L∞-algebra (unique up
to isomorphism) whose homogeneous components are

V−1 = Lie(G), V 0 = Tx0
X , V 1 = E1

x0
, V 2 = E2

x0
,

and whose brackets are determined by the formal power series expansions of the
vertical components of the maps α, µ and β .

If µ is analytic, then a neighbourhood of x0 in the zero locus of µ is analytically
diffeomorphic to a neighbourhood of 0 in the set of solutions to the Maurer–
Cartan equation

∞
∑

p=0

1
p!`p(v, v, . . . , v) for v ∈ V 0.

Additionally, if G is regular and the infinitesimal action of Lie(G) is analytic,
then gauge equivalence of Maurer–Cartan elements within this neighbourhood
implies equivalence of the corresponding structures.

A more precise version of this assertion is provided by Theorem 5.2.4 in chapter 5,
but it should be clear that both the underlying space and the brackets of the
L∞-algebra produced by the theorem are very concrete and that the proof can
hence take the form of a simple, albeit long, computation. At the heart of this
computation lies the fact that the Jacobi identities follow from equivariance
and the power series expansion of the identity β ◦ µ = 0. On the one hand, a
computational proof may be satisfactory to some, particularly since it identifies
clearly which features of the equivariant deformation problem correspond to
the Jacobi identities and also explains to those who are not familiar with L∞-
algebras where the Jacobi identities come from. On the other hand, one may
feel that there should be a conceptual reason behind those computations which,
once well understood, should circumvent them.

This is indeed the case. The price to be paid, however, is an increased level
of abstraction. This is because the object that is most directly related to an
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equivariant deformation problem is not an L∞-algebra, but a certain type of
L∞-algebroid, which is essentially a Z-graded vector bundle whose space of
sections comes with a L∞-algebra structure that consists of multiderivations.
As we will see in section 5.2, it is in fact possible to repackage the data of an
equivariant deformation problem as an L∞-algebroid without losing any relevant
information or making further choices. Once this is established, Theorem 1
above follows from the more general relation between L∞-algebroids and L∞-
algebras described in Theorem 5.1.1.

Returning to Theorem 1, two features stand out. Firstly, we see that if µ is not
analytic, any one L∞-algebra falls short of fully describing the original deform-
ation problem and can only be said to control it formally. Secondly, since the
Maurer–Cartan equation is actually a (potentially infinite) series, it is important
that these L∞-algebras come with a topology that will allow us to talk about
convergence.

The type of deformation problems we have in mind concern differential geo-
metric structures on smooth manifolds. These are often sections of some fibre
bundle that solve a differential equation, and equivalence of such structures is
usually described by the action of a Lie groupoid-like object. For this reason,
we allow the space X , the bundles E1 → X and E2 → X and the Lie group G
to be Fréchet manifolds and impose a notion of smoothness that is appropriate
within this context. A significant portion of this thesis is therefore dedicated to
the analysis required to make sense of and prove results that would have been
simple if finite-dimensionality of the involved spaces had been assumed.

This document is organised as follows. We will first introduce the two objects
featured in Theorem 1: equivariant deformation problems are discussed in
chapter 1 and topological L∞-algebras are the subject of chapter 2. Smooth,
analytic and holonomic families of such L∞-algebras are treated in chapter 3,
and L∞-algebroids of Fréchet type are introduced in chapter 4. The relations
between all of the aforementioned objects will finally be stated and proven in
chapter 5.
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CHAPTER 1.

Equivariant deformation problems

Our objective is to show that equivariant deformation problems of Fréchet type
give rise to L∞-algebras that are also of Fréchet type. The first step we need to
take to achieve this goal is to make precise what the objects in this statement are.
This relatively short chapter is dedicated to the first class of objects: equivariant
deformation problems of Fréchet type. L∞-algebras of Fréchet type are discussed
in chapter 2 and the assertion itself can be found in chapter 5.

It is difficult to rigorously define what a deformation problem is in a general
context but the idea is generally the same: given a mathematical structure of
a specific type one would like to know how this structure can be deformed
parametrically to obtain different (inequivalent) structures of the same type.
Making this statement precise amounts to endowing (a neighbourhood in) the
set of equivalence classes of structures of the desired type with some kind of
geometric structure of its own. Since the types of structures we have in mind are
differential geometric in nature, we would like this structure to be differential
geometric as well, so that we can work with families of structures that vary
smoothly in some sense.

We shall describe the space of structures of the desired type as the space of
solutions to some equation on a larger space of “almost structures”, which we
assume does come with a differentiable structure. We moreover assume that the
relevant notion of equivalence for structures is described by a Lie group acting
on this larger space or, more generally, by a Lie groupoid over it. Equivariant
deformation problems are obtained by requiring that the set of structures is the
zero locus of an equivariant section of an equivariant vector bundle. All of these
spaces are allowed to be infinite-dimensional.
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Chapter 1. Equivariant deformation problems

Abstract and equivariant deformation problems are defined in section 1.1, and
these definitions are applied to some well-known examples of deformation prob-
lems in section 1.2. Infinitesimal deformations are considered in section 1.3,
and the importance of the deformation complex is discussed there as well.

1.1. The framework

The purpose of this section is to introduce the concept of an equivariant deform-
ation problem. We will first define what we have in mind when we speak of a
deformation problem in the abstract, and then modify this definition to include
equivariance. Abstracted versions of the Bianchi identity (as satisfied by the
curvature of a linear connection) and infinitesimal Hamiltonian automorphism
(as for Poisson manifolds) will be defined as well.

The spaces considered in this section are all assumed to be Fréchet manifolds,
which are smooth manifolds modelled on a Fréchet space. Finite-dimensional
manifolds and Banach manifolds are examples of Fréchet manifolds, so all claims
made below apply to those as well. The type of spaces we have in mind, however,
are the spaces of sections of smooth fibre bundles or surjective submersions with
a compact base. Some of the basics of differential calculus on Fréchet spaces
can be found in appendix B.1.1.

1.1.1. Abstract deformation problems

Since we are looking at the world through a differential geometric lens, we will
describe deformation problems in terms of smooth maps between manifolds.
A possible definition for an abstract deformation problem would then be the
following.

Definition 1.1.1.
An abstract deformation problem G σ,τ→→ X µ,o→→ E1 of Fréchet type consists of

• a Fréchet manifold X ,
• a fibre bundle π: E1→ X of Fréchet type,
• two sections µ, o: X → E1 of π, and
• a (local) Fréchet Lie groupoid G σ,τ→→ X

8



1.1. The framework

such that the equaliser Eq(µ, o) = {x ∈ X | µ(x) = o(x)} ⊆ X is G-invariant.

Given an abstract deformation problem G σ,τ→→ X µ,o→→ E1 in the above sense, ele-
ments of X will be referred to as almost structures, and elements of the equaliser
Eq(µ, o) are called (integrable) structures. We call two structures x , y ∈ Eq(µ, o)
gauge equivalent whenever they are in the same orbit for G σ,τ→→ X , i.e. whenever
there exists an element g ∈ G such that σ(g) = x and τ(g) = y . We shall refer
to µ as the Maurer–Cartan map for reasons that will become apparent later on.
Since Definition 1.1.1 does not include a reference point x0, the term “moduli
problem” might perhaps have been more appropriate.

We do not always need a Lie groupoid to describe equivalences, and a Lie group
will often do just as well. One should then replace the groupoid G in Defini-
tion 1.1.1 by a Lie group G that acts on X through a map α: X × G → X , and
G-invariance should then be replaced by G-invariance. This amounts to the spe-
cial case of Definition 1.1.1 where G is the action groupoid GnX →→ X associated
to this group action.

Given an abstract deformation problem G σ,τ→→ X µ,o→→ E1, the only thing we are really
interested in is the space of (gauge) equivalence classes of structures, i.e. the
orbit space for the restriction of G to Eq(µ, o). This is generally a singular
quotient of a singular subset. Even in a finite-dimensional context, the most we
can say about this space without further assumptions is essentially that it is the
leaf space of a singular foliation on a closed subset of a smooth manifold. If we
additionally require that µ and o are transverse at x0, then the closed subset
becomes a submanifold at this point, and if we require triviality of the isotropy
group Gx0

, the singular foliation becomes regular around the point x0.

The following definition is obtained by differentiating the Lie groupoid from
Definition 1.1.1.

Definition 1.1.2.
An abstract deformation problem with infinitesimal symmetries A ρ⇒ X µ,o→→ E1 of
Fréchet type consists of

• a Fréchet manifold X ,

• a fibre bundle π: E1→ X of Fréchet type,

• two sections µ, o: X → E1 of π, and

• a Lie algebroid A ρ⇒ X of Fréchet type

9



Chapter 1. Equivariant deformation problems

such that im(ρx) ⊆ ker(Txµ− Tx o) for every x ∈ Eq(µ, o).

At this point we run into a problem because Lie algebroid structures are usually
only defined on finite-dimensional vector bundles. Although it is clear that the
object produced from a Lie groupoid by differentiation should be a Lie algebroid,
it is not immediately apparent how such objects should be defined axiomatically.
An appropriate definition for such Lie algebroids is provided in Definition 4.2.20,
but the details of this definition are not important for most of this chapter.

Given an abstract deformation problem A ρ⇒ X µ,o→→ E1 with infinitesimal symmet-
ries, we consider two structures x0, x1 ∈ Eq(µ, o) gauge equivalent whenever
there exists an A-path that connects them. This is a smooth path Γ : [0,1]→ A
covering a curve γ: [0, 1]→ Eq(µ, o) such that γ(0) = x0 and γ(1) = x1, and

γ′(t) = ρ ◦ Γ (t)

for all t ∈ [0,1]. The requirement that γ(t) ∈ Eq(µ, o) for all t ∈ [0,1] is
redundant in the finite-dimensional case, but it is not in general.

A special case of Definition 1.1.2 occurs when a Lie algebra g can be used
to describe when two structures are equivalent. One should then include an
infinitesimal action of this Lie algebra on X , which is a smooth bundle map α: g×
X → TX that induces a morphism α̂: g→ X(X ) of Lie algebras to the lie algebra
of vector fields on X . Two structures x0, x1 ∈ Eq(µ, o) are then equivalent
whenever there exists a pair (γ,η) of paths γ: [0, 1]→ X and η: [0, 1]→ g such
that γ(0) = x0, γ(1) = x1 and γ′(t) = α̂(η(t)) for all t ∈ [0, 1].

We can add auxiliary data to a deformation problem in the form of a Bianchi
identity and Hamiltonian symmetries. These resemble the Bianchi identity sat-
isfied by the curvature of linear connections and the Hamiltonian vector fields
on a symplectic (or Poisson) manifold respectively.

Definition 1.1.3.
A Bianchi map for an abstract deformation problem G σ,τ→→ X µ,o→→ E1 or A ρ⇒ X µ,o→→ E1

is a fibre bundle morphism β : E1→ E2 that covers the identity on X and for
which the equation

β ◦µ= β ◦ o

holds. We refer to this equation as the Bianchi identity.

10



1.1. The framework

We will write G σ,τ→→ X µ,o→→ E1 β→ E2 to indicate that an abstract deformation problem
comes with a Bianchi identity.

Definition 1.1.4.
A Hamiltonian map for an abstract deformation problem A ρ⇒ X µ,o→→ E1 is a vector
bundle morphism η: E−2 → A such that ρx ◦ηx = 0 for all x ∈ Eq(µ, o). We
refer to the image η(E−2) ⊆ A as Hamiltonian symmetries.

We will write E−2 η→ A ρ⇒ X µ,o→→ E1 to indicate that an abstract deformation prob-
lem comes with Hamiltonian symmetries. If it comes with both a Bianchi iden-
tity and Hamiltonian symmetries, the notation E−2 η→ A ρ⇒ X µ,o→→ E1 β→ E2 will be
used.

The Bianchi map and the Hamiltonian map are both optional additions. It is
however always possible to add them to an abstract deformation problem by
using the trivial bundles E−2 = 0 and E2 = 0 whose fibres consist of a single
point and then setting β = 0 and η= 0.

A few concrete examples of abstract deformation problems will be provided in
section 1.2. These examples all carry additional structure that is not yet present
in Definitions 1.1.1, 1.1.3 and 1.1.4, which is why we will first introduce a more
restrictive version of this definition in the following section.

1.1.2. Equivariant deformation problems

We will be working with abstract deformation problems that carry some ad-
ditional structure. More specifically, we will require that both E1 → X and
E2→ X are vector bundles and that the action extends linearly to these bundles.
Moreover, o is assumed to be the zero section of E1 → X and β : X → E2 is be
assumed to be both linear and equivariant. This leads to the following defini-
tion.

Definition 1.1.5.
An equivariant deformation problem (X µ→ E1) α G of Fréchet type consist of

• a Fréchet manifold X ,

• a Fréchet Lie group G acting on X by α: X × G→ X ,

• an equivariant vector bundle E1→ X of Fréchet type, and

11



Chapter 1. Equivariant deformation problems

• an equivariant section µ: X → E1 of E1→ X .

The space of structures for an equivariant deformation problem (X µ→ E1) α G is
the zero locus µ−1(0) = Eq(µ, 0), and two structures x , y ∈ µ−1 are equivalent
whenever there exists a group element g ∈ G such that y = x · g.

We can also add a Bianchi identity and Hamiltonian symmetries to an equivariant
deformation problem, which will be required to be equivariant as well.

Definition 1.1.6.
An equivariant deformation problem with Bianchi identity is an equivariant
deformation problem (X µ→ E1) α G that comes with another equivariant vector
bundle E2→ X and an equivariant base-preserving vector bundle morphism
β : E1→ E2 such that β ◦µ= 0.

We will write (X µ→ E1 β→ E2) α G to indicate that an equivariant deformation
problem comes with an equivariant Bianchi identity.

Definition 1.1.7.
An equivariant deformation problem with Hamiltonian symmetries is an equi-
variant deformation problem (X µ→ E1) α G that comes with an equivariant
vector bundle E−2 → X and an equivariant map η: E−2 → Lie(G) which is
linear in the fibres of E−2 and is such that the image η(E−2

x ) is contained in
the isotropy Lie subalgebra Lie(G)x for any x ∈ µ−1(0).

It is worth noting that the Hamiltonian symmetries for any given structure
x ∈ µ−1(0) form a Lie subalgebra ηx(E

−2
x ) ≤ Lie(G)x of the corresponding

isotropy Lie algebra Lie(G)x . Equivariance of η can in fact be used to show that
it is an ideal. One could additionally ask for the existence of an (equivariant)
vector bundle morphism γ: E1⊗ E−2→ TX such that α∗(ηx(h), x) = γx(µ(x), h)
for all x ∈ X and every h ∈ E−2

x . This provides an explicit expression for the
failure of ηx(h) ∈ Lie(G) to preserve an almost structure x ∈ X for which
µ(x) 6= 0.

As before, the inclusion of a Bianchi identity or Hamiltonian symmetries is
optional, since one can always simply use the trivial vector bundles E2 = 0 and
E−2 = 0.

12
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Remark 1.1.8.
The Lie groupoid from Definition 1.1.1 has been replaced by a Lie group
partially for the sake of simplicity; Definition 1.1.5 works just as well if a
Lie groupoid had been used instead. Definition 1.1.7, however, does not
because it is not clear what the right notion of equivariance for η would be.
Definition 1.1.5 and Definition 1.1.6 of course have analogues for which the
group actions are replaced by the infinitesimal actions of a Lie algebra, or by
that of a Lie algebroid. 4

It should be clear that a lot of generality is lost by switching from abstract
deformation problems to equivariant deformation problems. Of the extra condi-
tions that are imposed, equivariance appears to be the most harmless since one
would expect symmetries of the space of structures to also be symmetries of the
deformation problem as a whole. This is not always the case, however, since it
may be necessary to make choices that break this symmetry in order to obtain a
good description for either µ or β .

Remark 1.1.9.
Linearity of β can always be enforced without meaningfully modifying the de-
formation problem. Suppose for instance that (X µ→ E1 β→ E2) α G satisfies all
of the axioms described in Definition 1.1.5, except that an additional equivar-
iant section o of E1→ X has been provided and β : E1→ E2 is an equivariant
fibre bundle morphism, rather than a vector bundle morphism, with the prop-
erty that β ◦ µ = β ◦ o. To get rid of this section o one can simply replace
the section µ by µ̃= µ− o and consider its zero locus instead of the equaliser
Eq(µ, o).
It is similarly possible to replace β by a vector bundle morphism β̃ : E1→ E2

which is still equivariant and satisfies β̃ ◦ µ̃ = 0 using a simple trick. We can
define this vector bundle morphism by setting

β̃x =

∫ 1

0

Dβx(o(x) + t µ̃(x))dt ∈ L(E1
x , E2

x)

for every x ∈ X . Because β , o and µ are all equivariant, the resulting vec-
tor bundle morphism is as well. It moreover follows from the fundamental
theorem of calculus that

β̃x(µ̃(x)) =

∫ 1

0

Dβx(o(x) + t µ̃(x))(µ̃(x))dt = βx(µ(x))− βx(o(x)) = 0

13



Chapter 1. Equivariant deformation problems

for all x ∈ X . The deformation complex of a structure x ∈ Eq(µ, o) = µ̃−1(0),
which is described in Definition 1.3.1, is unaffected by these replacements
because Tv

x µ̃= Txµ− Tx o and β̃x is equal to To(x)βx whenever µ̃(x) = 0. 4

Equivariant deformation problems will be related to curved L∞-algebroids and
families of curved L∞-algebras in section 5.2. It this context it will be important
to know whether the deformation problem is analytic in the following sense.

Definition 1.1.10.
An equivariant deformation problem (X µ→ E1 β→ E2) α G with Bianchi identity
of Fréchet type is analytic if X , E1 and E2 are analytic manifolds, µ and β are
analytic maps, and the infinitesimal action α∗ : Lie(G)× X → TX is analytic as
well.

It should be noted that a Fréchet Lie group does not generally admit an analytic
structure and that the fact that this was not assumed in Definition 1.1.10 is
intentional. It was for instance shown in Corollary 9.2 of [Mil84] that the
diffeomorphism group of any (non-discrete) compact manifold does not admit
a compatible analytic structure. It is nevertheless perfectly reasonable to ask
whether the infinitesimal action of its Lie algebra, which would be the Lie algebra
of vector fields in this case, is analytic. Many deformation problems that arise
in differential geometry are analytic, even if the underlying manifold is not.

1.1.3. Geometric deformation problems

As we have stated before, the types of deformation problems we have in mind
describe the deformations of differential geometric structures on compact man-
ifolds. This means that we expect the space of almost structures, X , as well as
the Lie group G and the bundles En→ X to be spaces of smooth maps between
finite-dimensional manifolds. The purpose of this section is to illustrate how
such deformation problems might arise in general.

Suppose we are interested in the deformations of a type of structure on a com-
pact manifold M that can be described as sections of some finite-dimensional
fibre bundle π̌0 : Ě0 → M that solve a particular differential equation. We will
moreover assume that equivalence of such structures is described by the action
of the group of bisections of a finite-dimensional Lie groupoid Ǧ s,t→→ M whose

14
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action can be described using differential operators. More concretely, we might
expect the deformation problem to be of the form described below.

• Almost structures.

Since the structures we are interested in are all sections of π̌0 : Ě0 → M ,
so we could declare all sections of this bundle to be almost structures by
setting X = Γ (M ; Ě0). This is a smooth Fréchet manifold.

• The Maurer–Cartan map.

Since structures are elements of X = Γ (M ; E0) that solve a differential
equation we might want to postulate the existence of a finite-dimensional
vector bundle vector bundle π̌1 : Ě1→ Ě0 over Ě0 and a differential oper-
ator µ on Ě0→ M with values in this bundle such that an almost structure
e0 ∈ X is a structure precisely when µ(e0) = 0. We will describe what this
means and how it would fit the framework below.

We first of all note that the projection map π̌0 ◦ π̌1 : Ě1 → M would de-
scribe a fibre bundle over M and that its space of sections, Γ (M ; Ě1), is a
smooth Fréchet manifold. We shall set E1 = Γ (M ; Ě1) and observe that it
is the total space of a vector bundle π1 : Γ (M ; Ě1)→ Γ (M ; Ě0) with pro-
jection map π1 : e1 7→ π̌1 ◦ e1 whose fibre at e0 ∈ Γ (M ; Ě0) is canonically
isomorphic to the space Γ (M ; e∗0 Ě1) of sections of the pullback of Ě1→ Ě0

by e0 : M → Ě0.

The aforementioned differential operator is a smooth map µ̌: Jr
M Ě0→ Ě1

which is such that µ̌( jrx e0) ∈ Ě1
e0(x)

for any local section e0 of Ě0→ M and
can therefore also be described as a section of the pullback of Ě1→ Ě0 by
the canonical projection map Jr Ě0→ Ě0. It induces a smooth map

µ: Γ (M ; Ě0) −→ Γ (M ; Ě1), e0 7→ µ̌ ◦ jr e0

which is a section for π1 : Γ (M ; Ě1)→ Γ (M ; Ě0). We can thus use it as the
Maurer–Cartan map in Definition 1.1.5.

• Gauge equivalence.

To describe when two structures are isomorphic we might use a finite-
dimensional Lie groupoid Ǧ s,t→→ M . Its space of bisections, G = Bis(Ǧ), is
a regular Fréchet Lie group and composition on this group is given by
(g · h) = g ◦ h for g, h ∈ G. We will assume that this groupoid acts on the

15
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bundles Ě0 through the q-th jet groupoid Jr Ǧ, i.e. we assume that there
exist a smooth map

α̌0 : Ě0
π2
×t Jr Ǧ −→ Ě0

such that α̌0(e0, jrs(g)g) ∈ Ěn
s(g) and α̌0(α̌0(e0, jry g), jrxh) = α̌n(en, jrx(g · h))

whenever these equations make sense. This induces a Lie group action

α0 : Γ (M ; E0)× Bis(Ǧ) −→ Γ (M ; E0), α0(e, g)(x) = α̌0(et(gx )
, jrx g),

which we would require to be such that µ(e) = 0 for a given e ∈ X if and
only if µ(α0(e, g)) = 0 for all g ∈ G.

We obtain an equivariant deformation problem if JrG also acts on the
bundle Ě1→ Ě0 in a way that is compatible with the linear structure on
its fibres and such that µ is equivariant for the corresponding group action.

By combining these elements we obtain an equivariant deformation problem

Γ (M ; Ě0) µ−→ Γ (M ; Ě1) α
Bis(Ǧ).

For structures that are somehow related to the tangent bundle of M , one would
expect Ě0→ M and Ě1→ M to be natural bundles and Bis(Ǧ) to be the diffeo-
morphism group of M with its natural action on these bundles. This is the group
of bisections of the pair groupoid. For structures that are related to some prin-
cipal bundle it seems reasonable to expect Ě0 and Ě1 to be associated bundles
and one might expect Bis(Ǧ) to be the group of automorphisms of this bundle.
Depending on whether one requires these automorphism to be base-preserving,
this can either be the group of bisections of the corresponding Atiyah groupoid
or the space of sections of the bundle of automorphism of the fibres.

We can augment deformation problems of this type by adding a Bianchi identity
or Hamiltonian symmetries.

• Bianchi identity.

The differential operator µ̌: Ě0→ Ě1 might itself map sections of Ě0→ M
to solutions of another differential equation on Ě1 → M . This can be
expressed using another finite-dimensional vector bundle Ě2→ Ě0 and a
linear differential operator

β̌ : Jr Ě1 −→ Ě2

16



1.2. Concrete examples

that covers the identity on Ě0. This induces a vector bundle morphism

β : Γ (M ; Ě1) −→ Γ (M ; Ě2), e1 7→ β̌ ◦ jr e1

from E1→ X to E2→ X if we set E2 = Γ (M ; Ě2). We should additionally
require that the action of Jr Ǧ extends to a linear action on Ě2 → Ě0 for
which β is equivariant.

• Hamiltonian symmetries.

Hamiltonian symmetries can be described using a finite-dimensional vec-
tor bundle Ě−2→ Ě0 and another linear differential operator

η̌: Jr Ě−2 −→ Lie(Ǧ)

from Ě−2 → Ě0 to the Lie algebroid of Ǧ that covers the projection map
π̌0 : Ě0→ M . It induces a smooth fibrewise linear map

η: Γ (M ; Ě−2) −→ Lie(Bis(Ǧ)) = Γ (M ; Lie(Ǧ)), e−2 7→ η̌ ◦ e−2

from the vector bundle E−2 = Γ (M ; Ě−2)→ X to the Lie algebra of G. This
map should be such that the image η(E−2

e0
) is contained in the stabiliser

subalgebra Lie(G)e0 whenever µ(e0) = 0. For an equivariant deformation
problem we should moreover demand the existence of a linear action of
Jr Ǧ on Ě−2→ Ě0 for which η is equivariant.

There are many ways to weaken the assumptions presented in this section and
still produce an equivariant deformation problem.

1.2. Concrete examples

To illustrate the definitions in section 1.1.1, a few concrete examples are provided
in this section. In each case we will identify the space of almost structures, the
Maurer–Cartan map and the appropriate notion of gauge equivalence, as well
as the Bianchi identity and Hamiltonian symmetries where appropriate.

The deformation problems considered in this section are all well known and
well understood. Apart from Einstein metrics, these are to some extent algebraic
in nature and can be described cleanly and concisely using differential graded

17
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Lie algebras; casting them into the form of Definition 1.1.5 does not really
provide any additional insight. The point of these examples is thus not to argue
that deformations of these structures should be described using equivariant
deformation problems, but rather that they can be.

1.2.1. Deformations of Lie algebras

Lie algebra structures on a fixed vector space g can be described very cleanly
using a graded Lie algebra. This graded Lie algebra, (V , { � , �}), consists of the
Z-graded vector space V =

⊕

n∈Z V n with homogeneous components

V n = L(∧n+1(g),g),

and a graded Lie bracket { � , �} of degree 0 given by

{ϕ,ψ}= ϕ �ψ− (−1)|ψ||ϕ|ψ �ϕ

for homogeneous ϕ,ψ ∈ V . Here ϕ �ψ ∈ V is given by

(ϕ �ψ)(a1, . . . , ar) =
∑

σ∈Sr

sgn(σ) 1
q!(r−q)! ϕ

�

ψ(aσ(1),...,σ(q)), aσ(q+1),...,σ(r)

�

if p = |ϕ|+1, q = |ψ|+1 and r = |ϕ|+|ψ|+1, andψ �ϕ is defined analogously.

The spaces and maps from the deformation problem are readily identifiable.
They form an analytic equivariant deformation problem of finite-dimensional
type.

• Almost structures.

We define an “almost Lie bracket” on g as a skew-symmetric bilinear map
θ : ∧2(g)→ g from g to itself, i.e. as an element of V 1. We therefore set
X = L(∧2(g),g).

• Vector bundles.

We shall consider the trivial vector bundles

En = L(∧n+2(g),g)× X −→ X

18
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for n ∈ Z with n ≥ −2 and note that we can define a vector bundle
morphism

ad: En −→ En+1, ϕ ∈ En
θ 7→ adθ (ϕ) = {θ ,ϕ} ∈ En+1

θ

for every such n.

• The Maurer–Cartan map.

The commutator {θ ,θ} of an almost Lie bracket θ ∈ X with itself is given
by

{θ ,θ}(a, b, c) = θ (a,θ (b, c)) + θ (b,θ (c, a)) + θ (c,θ (a, b))

for a, b, c ∈ g, which is twice the Jacobiator of θ . If the Maurer–Cartan
map is thus defined as the section

µ: X −→ E1, θ 7→ 1
2{θ ,θ}= Jacθ ∈ E1

θ ,

its zero locus will be precisely the space of Lie algebra structures on g.

• The Bianchi identity.

A good candidate for the Bianchi map is the vector bundle morphism

β : E1 −→ E2, ϕ = ad ∈ E1
θ 7→ {θ ,ϕ} ∈ E2

θ .

It satisfies β ◦µ= 0 because

βθ (µ(θ )) = {θ , 1
2{θ ,θ}}= 0 ∈ E2

θ

for any θ ∈ X = L(∧2(g),g) since { � , �} itself satisfies the Jacobi identity.

• Gauge equivalence.

The gauge group G = GL(g) acts on the space X through the map

α: X × G −→ X , α(θ , g) = g∗θ : (a, b) 7→ g−1
�

θ (g(a), g(b))
�

.

This action can be extended to any trivial vector bundle of the form En =
L(∧n+2(g),g)× X → X by sending a form ϕ ∈ En

θ to

g∗ϕ ∈ En
g∗θ : (a1, . . . , an+2) 7→ g−1

�

θ (g(a1), . . . , g(an+2))
�

.
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The Lie algebra of G is End(g) = L(∧1(g),g). By differentiating α we
obtain an infinitesimal action α∗ : Lie(G)→ C∞(X , TX ) given by

α∗(A)(θ ) = {θ , A}: (a, b) 7→ θ (A(a), b) + θ (a, A(b))− A(θ (a, b))

for A ∈ Lie(G) and θ ∈ X . The infinitesimal isotropy of a Lie bracket
θ ∈ µ−1(0) is the Lie subalgebra Der(θ) ≤ Lie(G) which consists of all
derivations for that bracket.

• Hamiltonian symmetries.

We can use inner derivations as infinitesimal Hamiltonian symmetries by
defining the vector bundle morphism

η= ad: E−2 −→ End(g), a ∈ E−2
θ 7→ {θ , a} ∈ End(g).

The failure of ηθ (a) to be a derivation if θ is not a Lie bracket is described
by µ and the (multilinear) vector bundle morphism

γ: E1 ⊗ E−2 −→ TX , ϕ ⊗ψ ∈ E1
θ ⊗ E−2

θ 7→ {ϕ,ψ} ∈ TθX ,

which is such that α∗(ηθ (a))(θ) = {θ , {θ , a}} is equal to γ(µ(θ), a) =
1
2{{θ ,θ}, a} for all θ ∈ X and all a ∈ E−2

θ = g.

One can readily verify that µ, β , η and γ are all equivariant.

1.2.2. Deformations of symplectic structures

Deformations of symplectic structures on a compact manifold M are relatively
simple to describe in terms of the De Rham complex,

Ω0(M)
d
−−→ Ω1(M)

d
−−→ Ω2(M)

d
−−→ Ω3(M)

d
−−→ Ω4(M).

They are described by an analytic equivariant deformation problem.
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• Almost structures.

An almost symplectic structure on M is simply a non-degenerate 2-form
on M , so we define the space of almost symplectic structures on M as

X =
�

ω ∈ Ω2(M)
�

� iVω 6= 0 for every V ∈ TM \ {0}
	

.

This is an open subset of the space of all smooth 2-forms on M .

• Vector bundles.

For any n ∈ Z with n≥ −2 we can consider the trivial vector bundle

En = Ωn+2(M)× X −→ X

and the vector bundle morphism d: En → En+1 that maps ϕ ∈ En
ω to

dϕ ∈ En+1
ω .

• The Maurer–Cartan map.

We define the Maurer–Cartan map as the section

µ: X −→ E1, ω 7→ dω ∈ E1
ω.

Its zero locus consists is precisely the set of symplectic structures on M .

• The Bianchi identity.

The Bianchi map for this deformation problem is the vector bundle morph-
ism

β : E1 −→ E2, ϕ ∈ E1
ω 7→ dϕ ∈ E2

ω.

The Bianchi identity β ◦µ = 0 now reads d ◦ dω = 0 and thus expresses
the fact that the exterior derivative squares to zero.

• Gauge equivalence.

The gauge group for the deformations of symplectic structures is the dif-
feomorphism group G = Diff(M). A diffeomorphism g : M → M acts on a
symplectic structure by pull-back, sending ω ∈ X to the form

g∗ω: ∧2(TM) −→ R, V ∧W ∈ ∧2(Tx M) 7→ω f (x)

�

Tx f (V ), Tx f (W )
�

The group acts similarly on the bundles En → X , and one can readily
verify that d: En→ En+1 is equivariant for this action.

21



Chapter 1. Equivariant deformation problems

The infinitesimal action of Lie(G) = X(M) on X is described by the map

α∗ : Lie(G)× X −→ TX , (V,ω) 7→ LVω.

• Hamiltonian symmetries.

Hamiltonian symmetries can be described using the maps

η: E−2 −→ Lie(G), (h,ω) ∈ E−2
ω 7→ω

−1(d f ).

and
η: E1 ⊗ E−2 −→ TX , (ϕ, h) ∈ E1

ω ⊗ E−2
ω 7→ iω−1(dh)ϕ.

Since Lω−1(dh)ω= d2h+ iω−1(dh)dω and d2 = 0, these morphisms satisfy

α∗(ηω(h),ω) = γ(µ(ω),ηω(h))

for any ω ∈ X and any h ∈ E−2
ω = C∞(M ,R). One can readily verify that

also η and γ are equivariant.

1.2.3. Deformations of complex structures

Deformations of complex structures on a compact manifold M also fit within the
framework. They are described by an analytic equivariant deformation problem
without Hamiltonian symmetries.

Almost complex structures on a compact manifold M can be described in many
different ways, but the most commonly encountered description is probably as
an endomorphism J : TM → TM of its tangent bundle such that J2 = −idTM .
Any almost complex structure J on M gives rise to a decomposition TCM =
T1,0

J M ⊕ T0,1
J M of its complexified tangent bundle into ±i-eigenspaces. It is

integrable if the subbundle T0,1
J M ≤ TCM is involutive, i.e. if the commutator

[V, W ] of any two vector fields V, W ∈ Γ (M ; T0,1
J M) of type (0, 1) is itself a section

of T0,1
J M . The almost complex structure can be integrated to a (unique) complex

structure whenever this is the case.

The complexified cotangent bundle can be similarly decomposed as a direct sum
T∗C = T∗1,0

J M ⊕ T∗0,1
J M , which allows us to consider the complex vector bundle
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∧q(T∗0,1
J M)⊗(T1,0

J M)→ M for any q ∈ N0. We shall denote the space of smooth
sections of this bundle by Ω0,q

J (T
1,0
J M) and note that one can define a differential

operator ∂̄J : Ω0,q
J (T

1,0
J M)→ Ω0,q+1

J (T1,0
J M) which by setting

(∂̄Jϕ)(V0, . . . , Vq) =
∑

i

(−1)i
�

Vi ,ϕ(
⊗

j 6=i Vi)
�1,0

J

+
∑

i< j

(−1)i+ jϕ
�

[Vi , Vj]⊗
⊗

k 6=i, j Vk

�

for all V0, V1, . . . , Vq ∈ Γ (M ; T0,1
J M). Here we have written V 1,0

J denotes the (1, 0)-
component of a complex vector field V ∈ Γ (M ; TCM) = T1,0

J M ⊕ T0,1
J M . These

form a sequence

Ω0,0
J (T

1,0
J M)

=

E−1
J

∂̄J−→ Ω0,1
J (T

1,0
J M)

=

E0
J

∂̄J−→ Ω0,2
J (T

1,0
J M)

=

E1
J

∂̄J−→ Ω0,3
J (T

1,0
J M)

=

E2
J

∂̄J−→ · · ·

which is not generally a differential complex because ∂̄J ◦ ∂̄J is not guaranteed
to vanish. The differential ∂̄J does square to zero whenever J is integrable,
however, and this sequence then coincides with the usual Dolbeault complex.

• Almost structures.

Let Jx = {J ∈ End(Tx M) | J2 = −idTx M} denote the space of linear com-
plex structures on Tx M for any x ∈ M . These together form a subbundle
J → M of the bundle End(TM) → M of endomorphisms of TM whose
space of sections,

X = Γ (M ;J ) ⊆ Γ (M ; End(TM)),

parametrises all almost complex structures on M .

• Vector bundles.

By varying the almost complex structure J ∈ X and considering the match-
ing spaces Ω0,q

J (T
1,0
J M) we obtain a sequence of vector bundles

En =
∐

J∈X
Ω0,n+1

J (T1,0
J M) −→ X , ϕ ∈ Ω0,n

J (T
1,0
J M) 7→ J

connected by vector bundle morphisms ∂̄J : En → En+1 that cover the
identity on X .
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• The Maurer–Cartan map.

A complex structure on M is an almost complex structure that is integrable,
i.e. one for which the subbundle T0,1M ≤ TCM is involutive. This happens
precisely when its Nijenhuis tensor NJ ∈ Ω

0,2
J (T

1,0
J M) vanishes. This tensor

is given by

NJ (V, W ) = [V, W ]1,0
J

for V, W ∈ Γ (M ; T0,1M), where V 1,0
J again denotes the (1,0)-component

of a complex vector field V . We thus define the Maurer–Cartan map as
the section

µ: X −→ E1, J 7→ NJ ∈ Ω
0,2
J (T

1,0
J M)

so that µ−1(0) ⊆ X becomes the space of complex structures.

• The Bianchi identity.

The Nijenhuis tensor NJ of an almost complex structure J satisfies the
identity ∂̄J NJ = 0, since one can work out that

(∂̄J NJ )(V1, V2, V3) =
∑

σ∈S3

[Vσ(1)[Vσ(2), Vσ(3)]]
1,0 = 0

for any three vector fields V1, V2, V3 ∈ Γ (M ; T0,1
J M) of type (0,1) because

the commutator bracket on vector fields is a Lie bracket and hence satisfies
the Jacobi identity. The vector bundle morphism

β : E1 −→ E2, ϕ ∈ Ω0,2
J (T

1,0
J M) 7→ ∂̄Jϕ ∈ Ω

0,3
J (T

1,0
J M)

is consequently such that β ◦µ= 0.

• Gauge equivalence.

Gauge equivalence in this setting is described by the diffeomorphism group
G = Diff(M), which acts on X by pull-backs: a diffeomorphism g : M → M
sends an almost complex structure J to the endomorphism T f −1 ◦ J ◦ T f .
It acts similarly on the bundles En→ X , and one can readily verify that µ
and ∂̄ are both equivariant for this action.
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1.2.4. Deformations of Einstein metrics

An Einstein metric on a compact manifold M is a Riemannian metric g whose
Ricci curvature is given by rg = λ g for some number λ ∈ R, which is called the
Einstein constant. These are metrics that are critical points of the functional

S : Γ (M ;
⊙2(T∗M)) −→ R, g 7→

∫

M

sg µg ,

where sg = trg(rg) denotes the scalar curvature of g and µg is the density (or
measure) associated to g. We only consider Einstein metrics whose total volume
volg(M) =

∫

M µg is equal to 1 since any positive scalar multiple of an Einstein
metric is Einstein as well.

The deformation theory for Einstein metrics on compact manifolds was originally
developed by Koiso [Koi78; Koi79; Koi80], and an overview of it can be found
in chapter 12 of [Bes87]. This deformation problem is analytic and does not
have Hamiltonian symmetries.

• Almost structures.

An almost Einstein structure with volume 1 on a compact manifold M is
just a Riemannian metric for which the total volume

∫

M µg of M is equal
to 1. The space of almost structures thus becomes

X =
�

g ∈ Γ
�

M ;
⊙2(T∗M)

� �

� g > 0 and volg(M) = 1
	

,

where volg(M) =
∫

M µg is the total volume of g. This is a smooth codi-
mension 1 submanifold of the space Γ (M ;

⊙2(T∗M)) of symmetric bilinear
forms on TM . Its tangent space at g ∈ X is the space

Tg X =
�

h ∈ Γ (M ;
⊙2(T∗M))

�

�

∫

M trg(h)µg

	

of all symmetric 2-tensors on M whose total trace relative to g is zero.

• The Maurer–Cartan map.

By taking total traces on both sides of the equation rg = λ g, one can work
out that if g is an Einstein with total volume 1, the corresponding Einstein
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constant is given by λ= 1
n

∫

M sg µg . This means that g is Einstein if and
only if rg −

1
n

�∫

M sg ug

�

g ∈ Tg X vanishes.

One can moreover work out that the total trace of the 2-tensor rg −
1
n

�∫

M sg ug

�

g ∈ Tg X vanishes for any metric g whose total volume is
equal to one 1. This allows us to consider the Maurer–Cartan map

µ: X −→ TX , g 7→ rg −
1
n

�∫

M sg ug

�

g ∈ Tg X ,

and view it as section of the tangent bundle E1 = TX → X .

• The Bianchi identity.

By taking appropriate traces of the Bianchi identity d∇
g

Rg = 0 for the
Levi-Civita connection∇g for g an identity for the Ricci tensor is obtained.
This identity reads

δg rg +
1
2 dsg = 0,

where δg : Γ (M ;
⊙2(T∗M)) → Ω1(M) denotes the divergence operator.

This operator maps a symmetric 2-tensor h to the trace of the 3-tensor
−∇h with respect to the first two arguments and relative to g. It is also
the formal adjoint of the operator δ∗g : ξ 7→ ∇ξ ◦ s that maps a 1-form to
the symmetrisation of its covariant derivative.

The Bianchi identity for the Ricci curvature can now be expressed using
the Bianchi operator

β : E1 −→ Ω1(M), r ∈ E1
g 7→ δg r + 1

2 d ◦ trg(r),

which we view as a vector bundle morphism from E1 = TX to the trivial
bundle E2 = Ω1(M)× X → X . It satisfies the Bianchi identity β ◦ µ = 0
because βg(rg) = βg(g) = 0.

• Gauge equivalence.

Gauge equivalence for Einstein metrics is described by the diffeomorphism
group G = Diff(M), which acts on the space X and the bundles E1 → X
and E2 → X as on might expect: a diffeomorphism f : M → M sends
a tensor T ∈ Γ (M ;

⊗k(T∗M)) to the pullback f ∗T . Both µ and β are
equivariant for this action.
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1.3. Infinitesimal deformations

1.3. Infinitesimal deformations

The first step one should take when trying to understand an abstract deformation
problem, as defined in section 1.1.1, is to consider its linearisation around a
particular structure. This produces a linearised problem which is easier to solve
and which may give a first glimpse of the nature of the original deformation
problem. Of course, explicitly relating equivalence classes of solutions of the
linearised problem to solutions of the original problem is something that can
only be done under special circumstances.

Linearisation of an abstract deformation problem amounts to replacing all of the
maps of which it consists by their derivatives at the structure one is interested
in.

Definition 1.3.1 (Deformation complex).
Let E−2 η→ A ρ⇒ X µ,o→→ E1 β→ E2 be an abstract deformation problem with an in-
finitesimal action, an (optional) Bianchi identity and (optional) Hamiltonian
symmetries. The deformation complex for a structure x0 ∈ Eq(µ, o) is the
differential complex

E−2
x0

=

V−2
x0

ηx0−−−−−→ Ax0

=

V−1
x0

ρx0−−−−−→ Tx0
X

=

V 0
x0

Tx0
µ−Tx0

o
−−−−−−→ Ty0

E1
x0

=

V 1
x0

Ty0
βx0−−−−−→ Tz0

E2
x0

=
V 2

x0

,

where y0 = o(x0) ∈ E1
x0

and z0 = β(y0) ∈ E2
x0

. We denote all four differentials
in this complex by dx0

when there is no risk of ambiguity, and will write
(Vx0

, dx0
) to refer to the complex as a whole.

The deformation complex (Vx0
, dx0
) associated to an equivariant deformation

problem (X µ→ E1) α G with an equivariant Bianchi identity β : E1 → E2 and
equivariant Hamiltonian symmetries η: E−2→ Lie(G) is given by

E−2
x0

=

V−2
x0

ηx0−−−−−→ Lie(G)

=

V−1
x0

α∗x0−−−−−→ Tx0
X

=

V 0
x0

Tv
x0
µ

−−−−−→ E1
x0

=

V 1
x0

βx0−−−−−→ E2
x0

=

V 2
x0

,

where α∗ is the infinitesimal action of Lie(G) on X and Tv
x0
µ denotes the vertical

component of the derivative Tx0
µ: Tx0

X → T0E1
x0
' E1

x0
⊕Tx0

X . The Bianchi map
β no longer needs to be differentiated since it is linear by assumption.
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Chapter 1. Equivariant deformation problems

Given an abstract deformation problem E−2 η→ A ρ⇒ X µ,o→→ E1 β→ E2 with Bianchi
identity and Hamiltonian symmetries, the differential complex (Vx0

, dx0
) associ-

ated to a structure x0 ∈ µ
−1(0) provides three meaningful cohomology groups.

These are

Hn(Vx0
, dx0
) =

ker
�

dx0
: V n

x0
→ V n+1

x0

�

im
�

dx0
: V n−1

x0
→ V n

x0

�

for n= −1, 0, 1. If no Bianchi identity is included then H1(Vx0
, dx0
) is simply the

cokernel of Tx0
µ−Tx0

o, and H−1(Vx0
, dx0
) is the isotropy Lie algebra ker(ρx0

)≤
Ax0

if Hamiltonian symmetries are omitted.

The middle cohomology group, H0(Vx0
, dx0
), parametrises infinitesimal deform-

ations (up to infinitesimal gauge equivalence), which one may want to try to
extend to actual deformations. It is what we would ideally expect the tangent
space of Eq(µ, o) / G at [x0] to be if this space were somehow nicely behaved.
The upper cohomology group, H1(Vx0

, dx0
), functions as an obstruction space: if

one wants to extend an infinitesimal deformation to a formal family of deforma-
tions (i.e., the formal power series expansion of a curve in Eq(µ, o)) one order at
a time, one will encounter obstructions that live in this space. The cohomology
group H−1(Vx0

, dx0
) is not considered as often, but it is describes infinitesimal

automorphisms of the structure x0 that may not carry over to nearby structures,
which would cause the space Eq(µ, o) / G to pick up quotient singularities.

Example 1.3.2 (Lie algebras).
Deformations of Lie algebra structures are described in section 1.2.1. One
can readily work out that the deformation complex associated to a given Lie
bracket θ ∈ X = L(∧2(g),g) is given by

g
{θ , �}
−−→ L(g,g)

{θ , �}
−−→ L(∧2(g),g)

{θ , �}
−−→ L(∧3(g),g)

{θ , �}
−−→ L(∧4(g),g),

which is part of a larger algebraic object, namely the differential graded Lie
algebra

�

V , {θ , �}, { � , �}
�

with V =
⊕

n∈Z V n and V n = L(∧n+1(g),g).

It is interesting to observe that the deformation complex above is not generally
a differential graded Lie subalgebra and does not inherit a natural bracket
operation. It does if Hamiltonian symmetries are omitted since one can then
describe it as the quotient

⊕

n≥0 V n /
⊕

n≥5 V n of the differential subalgebra
⊕

n≥0 V n ≤ V by the differential ideal
⊕

n≥5 V n ≤
⊕

n≥0 V n. ◊
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1.3. Infinitesimal deformations

Example 1.3.3 (Complex structures).
Deformations of complex structures were described in section 1.2.3. The
relevant deformation complex consists of the first four terms of the Dolbeault
differential complex

0 −→ Ω0,0
J (T

1,0
J M)

∂̄
−→ Ω0,1

J (T
1,0
J M)

∂̄
−→ Ω0,2

J (T
1,0
J M)

∂̄
−→ Ω0,3

J (T
1,0
J M).

To obtain this complex we have had to identify Lie(G) = X(M) with the space
Ω0,0

J (T
1,0
J M) of vector fields of type (1, 0) using the projection map −π1,0 : X 7→

−X 1,0 of TCM = T1,0M ⊕ T0,1M onto T1,0M . We have similarly used that the
projection map

Γ (M ; End(TCM)) −→ Ω0,1
J (T

1,0
J M), A 7→ i

2π
1,0 ◦ A|T0,1 M ,

restricts to an isomorphism from TJ X to Ω0,1
J (T

1,0
J M) to identify these two

spaces. It should be noted that the first identification is not compatible with
the natural Lie algebra structures on X(M) and Ω0,0(T1,0M). ◊

Example 1.3.4 (Einstein metrics).
Deformations of volume 1 Einstein metrics on a compact manifold M were
described in section 1.2.4. If we choose a fixed Einstein metric g ∈ X and
differentiate the infinitesimal action and the Maurer–Cartan map at this metric,
we obtain the differential complex

0 −−−−→ Ω1(M)
−δ∗g
−−−−→ Tg X

µ′g
−−−−→ Tg X

δg+
1
2 dtrg

−−−−−→ Ω1(M).

Here, the metric g was used to identify the Lie algebra Lie(G) = X(M) with
the space Ω1(M) of 1-forms on M , and Tg X denotes the set of symmetric 2-
tensors for which the total trace

∫

M trg(h)µg is zero. The operator δ∗g maps
a 1-form ξ to the symmetrisation ∇ξ ◦ s of its covariant derivative, δg is
the divergence operator and µ′g denotes the restriction of the second-order
differential operator

µ′g : h 7→ 1
2 ∇

g∗∇gh−δ∗gδgh− 1
2 ∇dtrg(h)−�R

g(h)

to Tg X ⊆ Γ (M ;
⊙2(T∗M)). Here �Rg(h) is the symmetric 2-tensor which is

given by�Rg(h)(X , Y ) = trg(h(R
g(X , �)Y, �)) for X , Y ∈ Tx M and x ∈ M . More

detailed descriptions of these operators can be found in [Bes87].
It is shown in [Koi80] that the obstruction space H1(Vx0

, dx0
) is canonically

isomorphic to the space H0(Vx0
, dx0
) of infinitesimal deformations. This is
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Chapter 1. Equivariant deformation problems

unfortunate because it means that obstruction space can only vanish if the
structure itself is infinitesimally rigid. ◊

The importance of these cohomology groups is illustrated by the following pro-
position, which applies to abstract deformation problems of finite-dimensional
type.

Proposition 1.3.5.
Let E−2 η→ A ρ⇒ X µ,o→→ E1 β→ E2 be an abstract deformation problem with infinites-
imal symmetries, an (optional) Bianchi identity and (optional) Hamiltonian
symmetries and let (Vx0

, dx0
) denote the deformation complex associated to a

structure x0 ∈ µ
−1(0). Assume moreover that E−2, A, X , E1 and E2 are all

finite-dimensional and that we are given a decomposition V 0
x0
= B ⊕H ⊕ B′ with

B = im(d−1
x0
) and B ⊕H = ker(d0

x0
). There exists a smooth chart

ψ: U ⊆ X −→ V 0
x0
= B ⊕H ⊕ B′,

defined on a neighbourhood U ⊆ X of x0, for which the following hold.

0. The derivative Tψ(x0) of ψ at x0 is the identity map on V 0
x0

.

1. The equaliser of µ and o is given by

Eq(µ, o)∩ U =ψ−1
�

B × K × {0}
�

for some subset K ⊆ H ' H0(Vx0
, dx0
). This subset contains 0, and it is a

zero neighbourhood if H1(Vx0
, dx0
) = 0.

2. Each orbit of A|U which is contained in Eq(µ, o) is of the form

[x] =ψ−1
�

B × Ax × {0}
�

for some immersed submanifold Ax ⊆ H. Specifically, Ax0
= {0}, and if

H−1(Vx0
, dx0
) = 0 then the neighbourhood U can be chosen such that Ax

consists of a single point for every x ∈ Eq(µ, o)∩ U.

The proof of Proposition 1.3.5 is not complicated and is very similar to that of
Theorem 4.3.12 in chapter 4, as well as to that of Proposition 4.5 in [CSS14]. It
will not be provided here in full, but the argument can essentially be divided into
two steps. First, one will need to use the integrability of the singular distribution
ρ(A) ⊆ TX spanned by the Lie algebroid. This gives rise to a local decomposition
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1.3. Infinitesimal deformations

of the associated singular foliation as the product of a singular foliation on a
transversal to ρ(Ax0

) and a neighbourhood in the leaf through x0. This goes
back to [Her62] (for integrability) and [Ste74a] (for the local form), and proofs
of slightly stronger statement that specifically apply to Lie algebroids can be
found in e.g. [Duf01], [Fer02] or [BLM16]. Afterwards, a Lyapunov–Schmidt
reduction can be applied to show that the intersection of the zero locus of µwith
this transversal is a subset of a submanifold of dimension H0(Vx0

, dx0
), and that

this subset it itself the zero locus of a smooth map with values in H1(Vx0
, dx0
).

If the deformation problem is analytic then ψ can be chosen analytic as well.

The embedding ψ−1|K : K ⊆ H0(Vx0
, dx0
) ,→ X constructed in Proposition 1.3.5

is called a Kuranishi family for the deformations of the structure x0 ∈ Eq(µ, o).
The assertions of this proposition describe some properties of this family and of
the structure x0.

• Local completeness. For any sufficiently small neighbourhood U ⊆ X of
x0, ψ−1(K)∩ U intersects every orbit of A|U that is contained in µ−1(0).

• Unobstructedness. If H1(Vx0
, dx0
) = 0, then µ−1(0)∩ U is a smooth sub-

manifold of X for any sufficiently small neighbourhood U ⊆ X of x0.

• Rigidity. If H0(Vx0
, dx0
) = 0, then the elements of Eq(µ, o)∩U are mutually

gauge equivalent for any sufficiently small neighbourhood U ⊆ X of x0.

• Universality. If H−1(Vx0
, dx0
) = 0, then ψ−1(K)∩ U intersects every orbit

of A|U exactly once for any sufficiently small neighbourhood U ⊆ X of x0.

The above terms are generally defined in using families of structures rather than
using neighbourhoods in X .

Remark 1.3.6.
Proposition 1.3.5 still holds for abstract deformations of Banach type if the
differential complex (Vx0

, dx0
) is assumed to come with a continuous splitting,

It generally fails for deformation problems of Fréchet type, however, mainly
due to the failure of both the inverse function theorem and the existence and
uniqueness theorem for ordinary differential equations in that context.

A notable class of exceptions is formed by the deformations of certain geo-
metric structures on compact manifolds for which (part of) the deformation
complex is elliptic. The same or similar statements can often be proven for
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Chapter 1. Equivariant deformation problems

these using Banach space techniques and elliptic regularity. Examples of de-
formation problems for which parts of Proposition 1.3.5 are known to hold
(in some form) include:

• deformations of complex structures [Kur62; Kur65; Wav69; Kur69],
• deformations of symplectic structures [Mos65],
• deformations of Yang–Mills instantons [AHS78; DK90],
• deformations of Einstein metrics [Koi78; Koi79; Koi80; Bes87],
• deformations of metrics with G2 or Spin(7) as their holonomy group
[Joy96a; Joy96b; Joy96c; Joy00],

• deformations of generalised complex structures [Gua04; Gua11].
This list is not exhaustive. Compactness of the underlying manifold is required
in each case. 4
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CHAPTER 2.

L∞-algebras

L∞-algebras, or strongly homotopy Lie algebras, naturally and silently appeared
in the work of several researchers in the early 80’s in connections with deform-
ation theory [Sta78; SS85; SS], and in physics in connection with the BRST
formalism [Zwi93]. Their definition, in a form equivalent to what we use here,
was given by Lada and Stasheff in [LS93].

A common way to a define an L∞-algebra is as a Z-graded vector space V en-
dowed with collection (`p)p∈N of graded symmetric multilinear maps (called
brackets),

`p : V × · · · × V
︸ ︷︷ ︸

p copies

−→ V ,

that are homogeneous of degree 1 and satisfy a sequence of equations, which
are called Jacobi identities due to their similarity to the usual Jacobi identity for
binary brackets. A curved L∞-algebra also includes a zeroth bracket, `0 : {∗} →
V that is referred to as its curvature.

When L∞-algebras are used in the context of deformation theory, the Maurer–
Cartan equation,

∑

p∈N0

1
p! `p(u, . . . , u) = 0, (u ∈ V 0)

and its solutions, the Maurer–Cartan elements, play a central role. Since the
Maurer–Cartan equation is expressed as an infinite series, it is only well-defined
if all but finitely many terms vanish, in which case it is a polynomial equation.
In general, we require either a topology on V or some type of nilpotence to
make sense of this equation.
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Chapter 2. L∞-algebras

Therefore one of the tasks we need to perform in this chapter is to introduce
an appropriate notion of topological L∞-algebras. With that at hand we can
formalise in which context the Maurer–Cartan equation and gauge equivalence
of Maurer–Cartan elements makes sense.

In this chapter we will cover first the algebraic aspects of L∞-algebras and then
bring topology into the mix. The algebraic aspects are well settled in the lit-
erature, so that part of the material is standard. In section 2.1 we introduce
the symmetric algebra and in section 2.2 we introduce L∞-algebras, first as a
sequence of brackets, (`p)p∈N0

, satisfying a collection of Jacobi identities and
then as degree 1 coderivation on the symmetric coalgebra of V that squares
to zero. In section 2.3, we introduce topological L∞-algebras. We then pro-
ceed to introduce the Maurer–Cartan equation and the notion of equivalence of
Maurer–Cartan elements in section 2.4.

2.1. The graded symmetric setting

Before defining what a (curved) L∞-algebra is, we will take a moment to discuss
the graded symmetric algebra of a graded vector space and its relation to graded
symmetric multilinear maps. We will discuss the Koszul sign rule, which explains
the abundant signs that appear in most equations involving L∞-algebras, and
conclude this section by introducing the graded symmetric coalgebra.

2.1.1. The graded symmetric algebra

Let V =
⊕

k∈Z V k be a real Z-graded vector space. The tensor algebra of V is
the bigraded vector space

⊗

(V ) =
⊕

n∈Z

⊕

p∈N0

⊗p(V )n with
⊗p(V )n =

⊕

n1+···+np=n

⊗p
j=1 V n j ,

on which the tensor product⊗ naturally describes unital algebra structure that is
compatible with both gradings. From it, we can construct the graded symmetric
algebra of V as a quotient,

⊙

(V ) =
⊗

(V )
�

I ,
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2.1. The graded symmetric setting

where I ≤
⊗

(V ) denotes the (graded) ideal generated by elements of the form
u⊗ v − (−1)|u||v|v ⊗ u for homogeneous u, v ∈ V .

This quotient is again a unital algebra. We denote the induced (associative)
product on

⊙

(V ) by � and write

u1 � u2 � · · · � un := u1 ⊗ u2 ⊗ · · · ⊗ un +I ∈
⊙

(V )

for u1, u2, . . . , un ∈ V . Note that
⊙

(V ) is spanned by elements of this form
and that u� v = (−1)|u| |v|v � u by construction. Given homogeneous elements
u1, u2, . . .un and an (ordered) subset I ⊆ {1,2, . . . , n}, we let uI denote the
ordered product

uI =
⊙

i∈I ui = ui1
� ui2

� · · · � ui#I
,

where the indices i1, i2, . . . , i#I ∈ I are arranged such that i1 < i2 < · · ·< i#I and
#I denotes the cardinality of the finite set I . In particular, u{1,...,n} shall denote
the product u1 � u2 · · · � un and u∅ = 1 ∈

⊙0(V ) ' R is the multiplicative
identity element for

⊙

(V ).

Like the tensor algebra, the graded symmetric algebra
⊙

(V ) comes with two
natural gradings: an N0-grading by (tensor) rank and a Z-grading by (total)
degree. These gradings are such that the product u1 � u2 � · · · � up of p homo-
geneous elements of V has rank p ∈ N0 and degree

∑p
i=1|ui | ∈ Z. Accordingly,

we can decompose
⊙

(V ) as

⊙

(V ) =
⊕

n∈Z

⊕

p∈N0

⊙p(V )n with
⊙p(V )n =

⊕

n1+···+np=n
n1≤···≤np

⊙p
j=1 V n j ,

where
⊙p

j=1 V n j :=
⊗p

j=1 V n j mod I ⊆
⊙

(V ). When referring to the degree
of an element of

⊙

(V ), we shall always mean its degree with respect to the
Z-grading.

We observe that
⊙

(V ) is just the ordinary symmetric algebra if V is concentrated
in even degrees, and that it coincides with the exterior algebra of V if this space
is concentrated in odd degrees, albeit with an additional Z-grading. It is in
general isomorphic to

⊙

(Veven)⊗
⊙

(Vodd) if V = Veven⊕Vodd and Veven and Vodd
are concentrated in even and odd degrees respectively.
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2.1.2. Graded symmetric multilinear maps

Graded symmetric multilinear maps will play an important role throughout
this thesis. Given two Z-graded vector spaces V and W , a graded symmetric
multilinear map of arity p ∈ N0 (also called a graded symmetric p-linear map)
from the former to the latter is a map

f :
∏p V = V × V × · · · × V

︸ ︷︷ ︸

p copies

−→W ,

which is linear in each of its arguments and is graded symmetric in the sense
that for all homogeneous v1, v2, . . . , vp ∈ V and any two consecutive indices i
and i + 1,

f (v1, . . . , vi , vi+1, . . . , vp) = (−1)|vi ||vi+1| f (v1, . . . , vi+1, vi , . . . , vp).

All multilinear maps we shall consider are also homogeneous of some degree
d ∈ Z in the sense that f (V n1 × · · · × V np) ⊆W n1+···+np+d for all combinations of
degrees n1, n2, . . . , np ∈ Z. Since the product of zero copies of V is a singleton
set,

∏0 V = {∗}, a graded symmetric multilinear map of arity 0 from V to W
can be identified with its image f (∗) ∈W d .

Given a non-negative integer p ∈ N0, the map �p :
∏p V →

⊙p(V ) that sends
(v1, . . . , vp) to

⊙p
i=1 vi is a homogeneous graded symmetric multilinear map of

degree 0. This map, along with its codomain
⊙p(V ), is characterised up to

isomorphism by the following universal property: for any graded symmetric
multilinear map f :

∏p V →W there exists a unique linear map f̃ :
⊙p(V )→

W for which the diagram

∏p V W

⊙p(V )

�p−1

f

∃! f̃

commutes. Since f is conversely determined by f̃ through this diagram, this
describes a one-to-one correspondence between homogeneous linear maps from
⊙p(V ) to W and homogeneous graded symmetric p-linear maps from V to W
for any p ∈ N0.
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We often choose not to make a distinction between these two concepts by freely
identifying the maps f and f̃ described above and referring to both as a graded
symmetric multilinear maps. We therefore denote the space of homogeneous
graded symmetric multilinear from V to W of degree d by Lin(

⊙p(V ), W )d ,
and shall write

Lin(
⊙p(V ), W ) =

⊕

d∈Z

Lin(
⊙p(V ), W )d

to denote the Z-graded vector space obtained by combining these spaces.

We shall additionally consider homogeneous linear maps f :
⊙

(V )→ W of a
given degree d ∈ Z from the full graded symmetric algebra to W . The space
Lin(

⊙

(V ), W )d of such maps is naturally isomorphic to the product
∏

p∈N0

Lin(
⊙p(V ), W )d ' Lin

�
⊕

p∈N0

⊙p(V ), W
�d

,

whose elements are sequences ( fp)p∈N0
of graded symmetric multilinear maps

fp :
⊙p(V )→W of degree d which are indexed by arity. This isomorphism is

such that a map f :
⊙

(V )→W is identified with the sequence ( fp)p∈N0
given

by fp = f |⊙p(V ). Such homogeneous linear maps of degree d or, equivalently,
such sequences, together form a Z-graded vector space

Lin(
⊙

(V ), W ) =
⊕

d∈Z

Lin(
⊙

(V ), W )d '
⊕

d∈Z

∏

p∈N0

Lin(
⊙p(V ), W )d ,

whose elements we call homogeneous (graded symmetric) plurilinear maps of
degree d.

Once we have introduced a topology on the spaces V and W , as well as on their
graded symmetric algebras, we will usually work with the subspace L(

⊙

(V ), W )
of continuous plurilinear maps instead. Spaces of continuous linear maps are
discussed in appendix A.2.4, and the topological graded symmetric algebra is
introduced in section 2.3.

2.1.3. The Koszul sign rule

When dealing with the graded symmetric algebra and related objects, one must
often deal with signs that appear when commuting objects (either elements or
maps). These signs are generally compatible with and can often be derived from
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Chapter 2. L∞-algebras

the Koszul sign rule, which states that a factor (−1)|a| |b| should be introduced
whenever one switches the order in which two elements (or maps) a and b
appear in an expression or equation.

Given homogeneous elements u1, . . . , up ∈ V and a permutation σ ∈ Sp of their
indices, the Koszul sign of σ is defined as

ε
σ
(u1, . . . , up) =

∏

σ(i)<σ( j)
i> j

(−1)|ui ||u j |.

This sign is such that uσ(1) � · · · � uσ(p) = εσ(u1, . . . , up)u{1,...,p} and it will show
up in equations whenever the elements u1, . . . , up appear out of order. We can
accordingly associate a sign to any two disjoint subsets I and J of {1,2, . . . , p}
by setting

εI ,J(u1, . . . , up) =
∏

(i, j)∈I×J
i> j

(−1)|ui ||u j |, (2.1.1)

to ensure that uI � uJ = εI ,J uItJ . The Koszul sign corresponding to a decompos-
ition {1, . . . , p}= I1 t I2 t · · · t Im of {1, . . . , p} into disjoint subsets I1, . . . , Im is
given by

εI1,...,Im
(u1, . . . , up) =

∏

1≤r<s≤m

εIr ,Is
(u1, . . . , up),

and it is such that
⊙m

r=1 uIr
= εI1,...,Im

u{1,...,p}. For the sake of brevity, the homo-
geneous elements will usually be omitted and we will simply write ε

σ
, εI ,J or

εI1,...,Im
instead of these longer expressions.

To ensure consistency of the the Koszul sign rule, the definition of the tensor
product of two homogeneous linear maps f : V1→W1 and g : V2→W2 between
Z-graded vector spaces needs to be modified slightly. It is the map f ⊗ g : V1 ⊗
V2→W1 ⊗W2 that is given by

( f ⊗ g)(v1 ⊗ v2) = (−1)|g||v1| f (v1)⊗ g(v2)

for homogeneous v1, v2 ∈ V . The factor (−1)|g||v1| is necessary because g appears
on different sides of v1 in these expressions.

The Koszul sign rule also applies if one tries to compare the tensor algebra of a
Z-graded vector space V to that of its desuspension V [1]. This is the Z-graded
vector space given by (V [1])p = V p+1 for p ∈ Z, and we denote the element
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2.2. Discrete L∞-algebras

corresponding to v ∈ V p+1 by ↓v ∈ (V [1])p. The desuspension operator ↓ induces
an isomorphism ↓⊗p :

⊗p(V )→
⊗p(V [1]) for any p ∈ N0, which is given by

↓⊗p
�
⊗p

i=1 vi

�

= (−1)
∑p

i=1(p−i)|vi |
⊗p

i=1 ↓vi

for homogeneous v1, v2, . . . , vp ∈ V . These maps, or sometimes their inverses,
are often collectively referred to as the décalage isomorphism. It induces a vector
space isomorphisms between the graded skew symmetric algebra∧(V ) of V and
the graded symmetric algebra

⊙

(V [1]) of its desuspension, as well as between
the spaces

⊙

(V ) and ∧(V [1]).

2.2. Discrete L∞-algebras

Now that we have introduced the graded symmetric algebra of a graded vector
space, we define what an L∞-algebra is. We will first provide a version of the
definition of an L∞-algebra that generalises the conventional definition of a Lie
algebra. The more conceptual definition as a self-commuting coderivation on a
graded symmetric coalgebra is then presented in section 2.2.2 and we conclude
with a discussion of morphisms in section 2.2.3.

2.2.1. Definition in terms of brackets

Without much additional set-up, L∞-algebra structures can be defined as a col-
lections of graded symmetric multilinear maps.

Definition 2.2.1.
A curved L∞-algebra, (V ,`), is a Z-graded vector space V =

⊕

k∈Z V k, together
with a family `= (`p)p∈N0

of linear maps

`p :
⊙p(V ) −→ V

of degree 1 subject to the Jacobi identities
∑

ItJ={1,2,...,n}

εI ,J `#J+1(`#I (uI )� uJ ) = 0 (2.2.1)

for n ∈ N0 and u1, u2, . . . , un ∈ V homogeneous.
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Chapter 2. L∞-algebras

The zeroth structure map, `0 : R→ V 1, is identified with the image `0(1) ∈ V 1

and is called the curvature of (V ,`). An L∞-algebra is a curved L∞-algebra for
which `0 = 0.

The first structure map, `1 : V → V , is called the differential, and the higher
structure maps `p for p ≥ 2 are often referred to as brackets. Accordingly, it is
not uncommon to write du for `1(u), and {u1, . . . , uk} or [u1, . . . , uk] instead of
`k(u1 � · · · � uk) for any k ∈ N.

We shall write ` = (`p)p∈N0
when referring to all of the structure maps `p col-

lectively. It is often helpful to not view ` as a family of multilinear maps, but
as a single linear map `:

⊙

(V )→ V of degree 1 whose restrictions to
⊙p(V )

for p ∈ N0 are given by `|⊙p(V ) = `p. We should think of ` as the formal power
series expansion of a vector field on V , and of the components `p for p ∈ N0 as
its Taylor coefficients.

For an arbitrary sequence `= (`p)p∈N0
and n ∈ N0, we refer to the left-hand side

of equation (2.2.1) as the n-th Jacobiator of `, and write

Jacn(`)(u1, u2, . . . , un) =
∑

ItJ={1,2,...,n}

εI ,J `#J+1(`#I (uI )uJ )

for u1, u2, . . . , un ∈ V homogeneous. Since this expression is graded symmetric
and linear in each argument, the Jacobiator Jacn can itself be interpreted as
a homogeneous linear map Jacn(`):

⊙n(V ) → V of degree 2. As with the
structure maps `p, we shall write Jac(`) = (Jacn(`))n∈N0

when referring to these
Jacobiators collectively and again note that it can be interpreted as a single map
Jac(`):

⊙

(V )→ V of degree 2, which is given by

Jac(u{1,...,p}) =
∑

ItJ={1,...,p}

εI ,J`(`(uI )� uJ )

for homogeneous u1, u2, . . . , up ∈ V . We have left out the subscripts #I and
#J + 1 from the previous equation for the sake of brevity.

The zeroth Jacobi identity, `1(`0) = 0, states that the curvature of (V ,`) is `1-
closed, which is reminiscent of the Bianchi identity for connections. The first
Jacobi identity states that `1 ◦ `1 + `2(`0, �) = 0 and thus tells us that `1 squares
to zero if `2(`0, �) = 0. This in particular implies that the sequence

(V ,`1) =
�

· · ·
`1−→ V k−2 `1−→ V k−1 `1−→ V k `1−→ V k+1 `1−→ V k+2 `1−→ · · ·

�

40



2.2. Discrete L∞-algebras

is a cochain complex whenever (V ,`) is uncurved.

The second identity expresses a version of the Leibniz rule and it is given by

`1(`2(u1, u2)) + `2(`1(u1), u2) + (−1)|u1| |u2|`2(`1(u2), u1) + `3(`0, u1, u2) = 0

for homogeneous u1, u2 ∈ V . The additional final term drops out if either `3 = 0
or `0 = 0. Similarly, the first line in the following expression for the third Jacobi
identity,

`2(`2(v1, v2), v3) + ε{1,3},{2} `2(`2(v1, v3), v2) + ε{2,3},{1} `2(`2(v2, v3), v1)

+ `3(`1(v1), v2, v3) + ε{2},{1,3} `3(`1(v2), v1, v3) + ε{3},{1,2} `3(`1(v3), v1, v2)

`1(`3(v1, v2, v3)) + `4(`0, v1, v2, v3) = 0,

resembles the usual Jacobiator. We say that the binary bracket of an uncurved
L∞-algebra satisfies the Jacobi identity up to homotopy. The last four terms
drop out whenever `p = 0 for all p ≥ 3. We say that an L∞-algebra satisfies the
Jacobi identity up to homotopy. Beyond this, there is an infinite sequence of
higher Jacobi identifies Jacp = 0 for p ≥ 4.

Example 2.2.2 (Cochain complexes).
Any cochain complex (C , d) can, rather trivially, be interpreted as an L∞-alge-
bra with unary bracket `1 = d : C → C and `p = 0 for every p ∈ N0 other than
p = 1. If we choose an arbitrary closed element c ∈ ker(`1 : C1→ C2) and use
`0 = c instead of setting `0 to zero, then (C ,`) becomes a curved L∞-algebra
with curvature c. ◊

An L∞-algebra can be thought of as a generalisation of a differential graded Lie
algebra up to a shift in degree.

Example 2.2.3 (Differential graded Lie algebras).
Let (V , d, [ � , �]) be a differential graded Lie algebra (dgla) and let V [1] denote
its desuspension, i.e. the graded vector space obtained by shifting all degrees
down by 1. Its homogeneous components are given by (V [1])n = V n+1 for
every n ∈ Z and we denote the element of this space corresponding to v ∈ V
by ↓v ∈ V [1].
The space V [1] becomes an L∞-algebra if it is endowed with the structure
maps `0,`1,`2, . . . given by `p = 0 if p 6= 1, 2, and

`1(↓u) = ↓(du) and `2(↓u,↓v) = (−1)|u|↓[u, v],
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Chapter 2. L∞-algebras

for homogeneous u, v ∈ V . Taking into account the sign conventions discussed
in section 2.1.3, these identities can be rephrased as `1 ◦↓= ↓◦d and `2 ◦ (↓⊗
↓) = ↓ ◦ [ � , �].
The first Jacobiator for (↓V ,`) is given by Jac1(`)(↓u) = ↓(d

2u) and it is zero
precisely when d is a differential. The second Jacobiator reads

Jac2(`)(↓u,↓v) = `1(`2(↓u,↓v)) + `2(`1↓u,↓v) + (−1)|↓u| |↓v|`2(`1↓v,↓u)

= (−1)|u|↓
�

d[u, v]− [du, v]− (−1)|u|[u, dv]
�

,

and its vanishing thus similarly describes the property that d is a derivation
for [ � , �]. The third Jacobiator can similarly be expressed as

Jac3(`)(↓u,↓v,↓w) = (−1)|v|↓
�

[[u, v], w]− [u, [v, w]]− (−1)|v||w|[[u, w], v]
�

,

which is equal to the usual Jacobiator up to a global sign. The higher Jacobi-
ators Jacp(`) for p ≥ 4 vanish automatically due to the absence of brackets of
arity greater than 2.

This construction describes a one-to-one correspondence between differential
graded Lie algebra structures on V and L∞-algebra structures on V [1] for
which only the unary and binary brackets are (possibly) non-trivial. ◊

Example 2.2.4 (Formal power series).
A simple type of L∞-algebra is one which is concentrated in degrees 0 and 1.
Due to homogeneity, the only non-trivial components of the structure map of a
curved L∞-algebra (V ,`)with V = V 0⊕V 1 are the maps `p :

⊙p(V 0)→ V 1 for
p ∈ N0. Since the Jacobiator is homogeneous of degree two, it automatically
vanishes, which means that any sequence (`p)p∈N0

of such maps describes a
curved L∞-algebra structure on V .

We should think of the sequence (`p)p∈N0
as the power series expansion of a

map from V 0 to V 1. In fact, if V is finite-dimensional, we can always find a
smooth map µ: V 0→ V 1 such that

`p(u1, . . . , up) = Dpµ(0)(u1, . . . , up).

for every p ∈ N0 and u1, u2, . . . , up ∈ V 0. The L∞-algebra obtained from µ is
uncurved precisely when µ(0) = 0. ◊

Remark 2.2.5.
What we have presented as the definition of an L∞-algebra in Definition 2.2.1 is
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2.2. Discrete L∞-algebras

in fact only one of two equivalent definitions that one can expect to encounter
in the literature. The other definition, which goes back to [LS93], uses a dif-
ferent grading convention for which the brackets are graded skew-symmetric
and have a degree that depends on their arity.

To be more precise, according to this definition an L∞-algebra is a Z-graded
vector space V endowed with a sequence (lp)p∈N of graded skew-symmetric
multilinear maps lp : ⊗p V → V of degree 2− p such that

∑

p+q=r

∑

σ∈Shp,q

sgn(σ)ε
σ
lq+1

�

lp(vσ(1), . . . , vσ(p)), vσ(p+1), . . . , vσ(r)
�

= 0

for all homogeneous v1, v2, . . . , vr ∈ V , where summation runs over all (p, q)-
(un)shuffle permutations.

There is a natural one-to-one correspondence between such skew symmetric
L∞-algebra structures on a graded vector space V and symmetric L∞-algebra
structures, as described in Definition 2.2.1, on the desuspension V [1]. The
symmetric L∞-algebra (V [1],`) corresponding to a skew symmetric L∞-alge-
bra (V , l) is given by `p ◦ ↓

⊗p = ↓ ◦ lp, or

`p(↓v1, . . . ,↓vp) = (−1)
∑p

i=1(p−i)|vi |↓lp(v1, . . . , vp)

for homogeneous v1, v2, . . . , vp ∈ V . Different sign conventions are possible.

Although both definitions are actively used, what we call an L∞-algebra here is
often instead referred to as an L∞[1]-algebra because it is the structure on the
space V [1] that corresponds to a traditional L∞-algebra structure on V . The
obvious advantage of the skew-symmetric definition is its compatibility with
the usual grading on differential graded Lie algebras, which can be viewed as
skew symmetric L∞-algebras directly (without introducing any signs). On the
other hand, the fact that the skew symmetric brackets have different degrees
means that they cannot be combined into a single homogeneous operator
l : ∧(V ) → V . This is particularly important for the description of curved
L∞-algebra structures in terms of the canonical coalgebra structure on

⊙

(V ),
which is the topic of section 2.2.2. 4

2.2.2. Definition in terms of coderivations

We now present an alternative, and in some sense simpler, description of L∞-
algebras. The description arises by observing that

⊙

(V ) carries a canonical
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coalgebra structure, and that the structure map `:
⊙

(V ) → V determines a
unique degree 1 coderivation ¯̀:

⊙

(V )→
⊙

(V ). The Jacobi identities for the
structure map ` then become equivalent to the condition ¯̀◦ ¯̀= 0. This is in fact
how L∞-algebras first appeared, and how the Jacobi identities were identified.

The starting point for the definition is the fact that
⊙

(V ) has a graded cocom-
mutative, counital, coassociative coalgebra structure with comultiplication map
given by

∆:
⊙

(V ) −→
⊙

(V )⊗
⊙

(V ), v1 � v2 � · · · � vk 7→
∑

ItJ={1,2,...,k}

εI ,J vI ⊗ vJ ,

where vI =
⊙

i∈I vi and vJ =
⊙

j∈J v j are the ordered products introduced before
and εI ,J is the appropriate Koszul sign. The counit is the canonical projection
map ε:

⊙

(V )→
⊙0(V )' R sending an element of

⊙

(V ) =
⊕

p∈N0

⊙p(V ) to
its rank 0 component.

A morphism of counital coalgebras from
⊙

(V ) to
⊙

(W ) is a homogeneous
linear map f :

⊙

(V )→
⊙

(W ) of degree 0 such that ∆ ◦ f = ( f ⊗ f ) ◦∆ and
ε ◦ f = ε. A coderivation on

⊙

(V ) is a linear map `:
⊙

(V ) →
⊙

(V ) such
that ∆ ◦ ` = (` ⊗ id + id ⊗ `) ◦∆ and ε ◦ ` = 0 (although the latter equality
follows from the former). Here, the tensor product of maps is defined to be
compatible with the Koszul sign convention, which means that ( f ⊗ g)(u⊗ v) =
(−1)|g| |u| f (u)⊗ g(v), where |g| is the degree of g. Degree 0 coderivations can
be thought of as infinitesimal automorphisms, just as degree 0 derivations are
thought of as infinitesimal automorphisms of graded algebras.

There is a one-to-one correspondence between coderivations on
⊙

(V ) and
linear maps from

⊙

(V ) to V because any linear map f :
⊙

(V ) → V can be
lifted to a coderivation f̄ :

⊙

(V )→
⊙

(V ). This coderivation is given by

f̄ (u1 � · · · � un) =
∑

ItJ={1,...,n}

εI ,J f (uI )� uJ . (2.2.2)

for homogeneous u1, u2, . . . , un ∈ V . Conversely, f is recovered from f̄ through
post-composition with the canonical projection map onto

⊙1(V ) = V .

Because the graded commutator [ f̄ , ḡ] = f̄ ◦ ḡ − (−1)| f̄ | | ḡ| ḡ ◦ f̄ of two coderiva-
tions is also a coderivation, the space of coderivations for (

⊙

(V ),∆) is a graded
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Lie subalgebra of the algebra of endomorphisms of
⊙

(V ). The correspond-
ing graded Lie bracket on Lin(

⊙

(V ), V ) obtained through the correspondence
described above is called the Gerstenhaber bracket and it is given by

[ f , g](u1 � · · · � up) =
∑

ItJ={1,...,p}

εI ,J

�

f (g(uI )� uJ )− (−1)| f ||g|g( f (uI )� uJ )
�

for two homogeneous linear maps f :
⊙

(V ) → V and g :
⊙

(V ) → V and
homogeneous u1, u2, . . . , up ∈ V . We note the resemblance to equation (2.2.1)
and observe that the Jacobiator of a homogeneous linear map `:

⊙

(V )→ V of
degree 1 is given by

Jac(`) = 1
2 [`,`].

The Jacobi identity (2.2.1) thus reduces to [`,`] = 0, or [¯̀, ¯̀] = 0.

This enables a very succinct reformulation of Definition 2.2.1 in terms of the
coalgebra structure on

⊙

(V ).

Definition 2.2.6 (Alternative).
A curved L∞-algebra is a Z-graded vector space V =

⊕

n∈Z V n, together with a
degree 1 coderivation ¯̀:

⊙

(V )→
⊙

(V ) such that [¯̀, ¯̀] = 0. It is uncurved
if ¯̀(1) = 0.

We observe that 1
2 [¯̀, ¯̀] is equal to ¯̀◦ ¯̀ since ¯̀ is homogeneous of degree 1. The

condition [¯̀, ¯̀] can thus be replaced by ¯̀ ◦ ¯̀= 0.

Definition 2.2.6 tells us that we can think of a curved L∞-algebra (V ,`) as a
structure that lives on the coalgebra (

⊙

(V ),∆), rather than on the graded
vector space V . This suggests that intrinsic properties of curved L∞-algebras
should be invariant under coalgebra isomorphisms.

In light of this, the appearance of the unit element 1 ∈
⊙

(V ) in the definition
of an (uncurved) L∞-algebra may seem a bit out of place. We recall that 1 is
the unit element for the algebra structure on

⊙

(V ) and note that this algebra
structure is not itself invariant under coalgebra automorphisms. Nevertheless,
1 can be recovered from the coalgebra structure on

⊙

(V ) alone since it is the
only non-zero element of

⊙

(V ) with the property that ∆(1) = 1⊗ 1.

The coalgebra structure on (
⊙

(V ),∆) and the element 1 ∈
⊙

(V ) together
induce an increasing filtration

F0 ⊆ F1 ⊆ F2 ⊆
⋃

r∈N0

F r =
⊙

(V ).
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by graded subspaces given by F0 = R · 1 and

F r =
�

x ∈
⊙

(V )
�

�∆(x)− x ⊗ 1− 1⊗ x ∈ F r−1 ⊗ F r−1
	

for r ≥ 1. We can in fact work out that for every r ∈ N0, F r is equal to the space
⊕r

p=0

⊙p(V ) of elements of rank at most r for every r ∈ N0, which tells us that
even though the algebra structure on

⊙

(V ) is not invariant under coalgebra
automorphisms, the induced filtration by rank is.

Of the subspaces
⊙p(V ) ⊆

⊙

(V ) for p ∈ N0, only
⊙0(V ) and

⊙1(V ) are
completely determined by the coalgebra structure on

⊙

(V ): the first is equal
to F0, and the second is equal the intersection F1 ∩ ker(ε) of F1 with the kernel
of the counit. This in particular implies that the differential complex (V ,`1)
associated to an L∞-algebra (V ,`) is intrinsically determined by the differential
¯̀ on the coalgebra (

⊙

(V ),∆).

Remark 2.2.7.
A more intrinsic definition of a (curved) L∞-algebra would be as a Z-graded
cofree connected cocommutative counital coalgebra (C ,δ,ε), endowed with
a homogeneous self-commuting coderivation ¯̀: C → C of degree 1. Any such
coalgebra is non-canonically isomorphic to the graded symmetric coalgebra

�
⊕

r∈N0
(F r / F r−1),δ

�

' (
⊙

(V ),∆)

of V =
⊕

n∈N0
F1 / F0, where (Fr)r∈N0

is the canonical filtration of C . What
we called a (curved) L∞-algebra in Definition 2.2.6 is then strictly speaking a
split (curved) L∞-algebra, since finding an isomorphism between C and

⊙

(V )
amounts to choosing a splitting for this filtration. 4

2.2.3. Morphisms

To complete our description of the category of curved L∞-algebras, we should
discuss morphisms. While one might expect a morphism of L∞-algebras to be a
morphism of the underlying graded vector spaces that satisfies some compatib-
ility condition, the actual definition is a little more involved.

Definition 2.2.8.
A morphism f : (V ,`)→ (W ,`′) of curved L∞-algebras is a homogeneous linear
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map f :
⊙

(V )→W of degree 0 such that f (1) = 0 and
∑

ItJ={1,2,...,p}

εI ,J f (`(uI )� uJ ) =
∑

I1,...,Im

1
m! εI1,...,Im

`′
�
⊙m

j=1 f (uI j
)
�

(2.2.3)

for all p ∈ N0 and all homogeneous v1, v2, . . . , vp ∈ V .

In equation (2.2.3), and from this point onward,
∑

I1,...,Im
indicates summation

over all m ∈ N0 and all ordered partitions of {1,2, . . . , p} into disjoint subsets
I1, I2, . . . , Im. The factor 1

m! compensates for the fact that every partition is rep-
resented m! times in this sum (the number of ways in which the sets I1, I2, . . . , Im
can be ordered).

If (V ,`) is an uncurved L∞-algebra and f : (V ,`) → (W ,`′) is a morphism of
curved L∞-algebras, then also (W ,`′) is uncurved since `′0 = f (`0) = 0 as
part of the definition. We moreover observe that the linear component of f
then describes a morphism f1 : (V ,`1) → (W ,`′1) of cochain complexes since
equation (2.2.3) for p = 1 states that f ◦ `1 = `

′
1 ◦ f if (V ,`) is uncurved.

When expressed in terms of the coalgebra description from Definition 2.2.6,
the notion of a morphism of curved L∞-algebras becomes significantly simpler.
Below, ¯̀:

⊙

(V )→
⊙

(V ) and ¯̀′ :
⊙

(W )→
⊙

(W ) denote the lifts of ` and `′

as coderivations, which are explicitly given by equation (2.2.2).

Definition 2.2.9 (Alternative).
A morphism f̄ : (V ,`)→ (W ,`′) of curved L∞-algebras is a counital coalgebra
morphism f̄ :

⊙

(V )→
⊙

(W ) of degree 0 such that f̄ ◦ ¯̀= ¯̀′ ◦ f̄ .

To relate these two definitions, we note that any morphism f̄ :
⊙

(V )→
⊙

(W )
of coalgebras is completely determined by the map f :

⊙

(V )→W obtained by
post-composing with the projection map onto

⊙1(W ) = W . In terms of this
map, f̄ is given by

f̄ (u1 � · · · � un) =
∑

I1,...,Im

1
m! εI1,...,Im

⊙m
j=1 f (uI j

) (2.2.4)

for homogeneous u1, u2, . . . , un ∈ V .

We observe that any morphism f̄ : (
⊙

(V ),∆) → (
⊙

(W ),∆) of graded sym-
metric coalgebras automatically satisfies f̄ (1) = 1, even though this was not
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explicitly imposed in the definition, and that this corresponds precisely to the
condition that f (1) = 0. Using equation (2.2.4), the identity f̄ ◦ ¯̀= ¯̀′ ◦ f̄ can
then be expanded to

∑

ItJtK={1,2,...,p}

εI ,J ,K f (`(uI )� uJ )� f̄ (uK)

=
∑

I1,...,Im,K

1
m! εI1,...,Im ,K `

′�⊙m
j=1 f (uI j

)
�

� f̄ (uK),

which is equivalent to equation (2.2.3).

One of the advantages of the interpretation of an L∞-algebra as a structure on the
graded symmetric coalgebra is that it becomes evident what the composition of
two L∞-algebra morphisms should be. Given two morphisms f̄ : (V ,`)→ (W ,`′)
and ḡ : (W ,`′)→ (Z ,`′′) of curved L∞-algebras in the sense of Definition 2.2.9,
the composition ḡ ◦ f̄ :

⊙

(V ) →
⊙

(Z ) is clearly again such a morphism. If
we work out what this composition looks like in terms of the more elementary
objects from Definition 2.2.8, we obtain the expression

(g � f )(v1 � · · · � vp) =
∑

I1,...,Im

1
m! εI1,...,Im

g
�
⊙m

j=1 f (I j)
�

(2.2.5)

for homogeneous v1, v2, . . . , vp ∈ V . We moreover see that the identity morphism
id: (

⊙

(V ),∆) → (
⊙

(V ),∆) corresponds to the map i :
⊙

(V ) → V given by
i|V = idV and i|⊙p(V ) = 0 for p 6= 1.

Example 2.2.10 (Taylor series).
Let V and W be finite-dimensional vector spaces and let (V, 0) and (W, 0) be
the L∞-algebras concentrated in degree 0 obtained by endowing these spaces
with the zero maps 0:

⊙

(V ) → V and 0:
⊙

(W ) → W . The Taylor series
j∞ f = (Dp f )p∈N0

of any smooth map f : U → W for which f (0) = 0 from
a zero neighbourhood U in V is a morphism of L∞-algebras from (V , 0) to
(W , 0).
Given two such maps f : UV ⊆ V → UW ⊆ W and g : UW ⊆ W → Z , the
derivatives of the composition g ◦ f : UV → Z at 0 are given by

Dkh(0)(v̇1, . . . , v̇k) =
∑

I1,...,Im

1
m! D

m g(0)
�
⊙m

j=1 D#I j f (0)(v̇I j
)
�

for v̇1, v̇2, . . . , v̇k ∈ T0UV ' V . Consequently, the Taylor series j∞(g ◦ f )(0)
of their composition coincides with the composition ( j∞g) � ( j∞ f ) of their
Taylor series as L∞-algebra morphisms. ◊
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Example 2.2.11.
Let V and W be finite dimensional L∞-algebras concentrated in degrees 0 and
1, as in Example 2.2.4. For this example it is worth regarding V 0 × V 1 and
W 0 ×W 1 as trivial vector bundles over V 0 and W 0 respectively.

Then the brackets on V and W correspond to the power series expansion
of functions LV : V 0 → V 1 and LW : W 0 → W 1, i.e., sections of the bundles
V 0 × V 1→ V 0 and W 0 ×W 1→W 0. A morphism between V and W is a pair
of (families of) maps,

ϕp :
⊙p V 0 −→W 0, Φp :

⊙p−1 V 0 � V 1 −→W 1.

We can interpret the collection ϕp above as the power series expansion of a
map ϕ: V 0→W 0 and the maps Φp together as the power series expansion of
a bundle map Φ: V 0× V 1→W 0×W 1. In this light the condition that the pair
(ϕ,Φ) is a map of L∞-algebras corresponds to the statement that Φ ◦ LV and
LW ◦ϕ have the same infinite jet at 0. ◊

As we saw in Example 2.2.3, every differential graded Lie algebra is also an
L∞-algebra. It is interesting to study morphisms between differential graded Lie
algebras from the L∞ point of view. If (A, d, [·, ·]) and (B, d, [·, ·]) are differential
graded Lie algebras an L∞-morphism f : A → B is a collection of maps fp :
⊙p(A)→ B which are required to satisfy

d( fp(v{1,...,p})) +
∑

ItJ={1,...,p}

εI ,J[ f#I (vI ), f#J (vJ )]

=
∑

{i}tJ={1,...,p}

f#J+1((dvi)� vJ )

+
∑

{i}t{ j}tK={1,...,p}

ε{i},{ j},K f#K+1([vi , v j]� vK),

where the grading used is the one making A into an L∞-algebra, as in Ex-
ample 2.2.3

If the only nontrivial map in f was f1 this would translate into to the statement
that f is a usual morphism of differential graded Lie algebras. The presence of
the remaining maps, f2, f3,. . . leaves space for a number of other possibilities.
The next example illustrates this feature.
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Example 2.2.12.
Every morphism φ : (A, d, [ � , �])→ (B , d, [ � , �]) of differential graded Lie alge-
bras induces a linear morphism f : (A[1],`)→ (B[1],`′) between the corres-
ponding L∞-algebras for which f1 = ↓ ◦φ ◦ ↑ and fp = 0 for p 6= 1. Not all
morphisms between such L∞-algebras are of this form. ◊

Finally, we mention that in this algebraic context, there is a natural generalisa-
tion of the inverse function theorem for formal power series.

Proposition 2.2.13 (Inverse function theorem for L∞-algebras).
A morphism f : (V ,`)→ (W ,`′) of curved L∞-algebras is invertible if and only
if its linear component, f1 : V →W , is an isomorphism of graded vector spaces.

The inverse g : (W ,`′)→ (V ,`) provided by Proposition 2.2.13 is unique and
its first component is given by g1 = f −1

1 : W → V . The remaining components,
gp :

⊙p(W )→ V for p ≥ 2, can be constructed recursively. A complete proof
of this proposition can be found in the literature (e.g. [Mar12, Theorem 7.5] or
[KS, Theorem 1.3.1]), and a version that takes into account topology is provided
in Proposition 2.3.9 below.

A morphism f : (V ,`) → (W ,`′) of L∞-algebras is called a quasi-isomorphism
whenever its linear component, f1 : (V ,`1)→ (W ,`′1), is a quasi-isomorphism
of differential complexes. This means that the induced map in cohomology,
H( f1): H(V ,`1) → H(W ,`′1), is an isomorphism of graded vector spaces. A
quasi-inverse for g is a morphism g : (W ,`′)→ (V ,`) in the opposite direction
such that that H( f1) and H(g1) are mutually inverse.

Proposition 2.2.14.
A morphism f : (V ,`)→ (W ,`′) of L∞-algebras is a quasi-isomorphism if and
only if it admits a quasi-inverse g : (W ,`′)→ (V ,`).

A proof of Proposition 2.2.14 can for instance be found in [KS], where it is
Corollary 3.0.11. It is proven by first showing that every L∞-algebra is quasi-
isomorphic to a minimal L∞-algebra, i.e. one for which `1 = 0. The underlying
graded vector space of this so-called “minimal model” consists of the cohomology
groups of the original L∞-algebra. Morally, finding a minimal model is similar
to finding a formal Kuranishi family for an abstract deformation problem.
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2.2. Discrete L∞-algebras

Example 2.2.15.
In this example we will only consider the case where f is linear (i.e., fp = 0
for all p ≥ 2) and (W ,`′) is minimal (i.e., `′1 = 0). Below, we will therefore
assume that both of these statements hold. We will construct the components
gp for p ∈ N recursively by considering the component of ` � g = g � ` one at
a time.

The first component of this equation simply reads `1 ◦ g1 = 0 due to the
assumption that `′1 = 0. For the first component of g we can therefore pick
any linear section g1 : W → ker(`1) ⊆ V of f |ker(`1)

.

The arity 2 component of the equation reads

`1(g2(v1, v2)) + `2(g1(v1), g1(v2)) = g1(`2(v1, v2))

for v1, v2 ∈ W . An element g2(v1, v2) ∈ V solving this equation exists if and
only if z = g1(`2(v1, v2))− `2(g1(v1), g1(v2)) is `1-exact. This element is auto-
matically `1-closed because im(g1) ⊆ ker(`1) by construction and the second
Jacobi identity tells us that `2 maps pairs of closed elements to closed elements.
If we apply f1 to this element, we obtain

f1(z) = ( f1 ◦ g1)(`
′
2(v1, v2))− `2( f1 ◦ g1(v1), f1 ◦ g1(v2)) = 0

by using that f is a morphism of L∞-algebras and that g1 is a right inverse of
f1. Since f1 is a quasi-isomorphism and z is closed, this shows that z is exact.
The equation ` � g = g � `′ is therefore solved up to arity 2 if we set

g2(v1, v2) = P
�

g1(`2(v1, v2))− `2(g1(v1), g1(v2))
�

for all v1, v2 ∈W .

This argument can be continued to recursively define the components gr for
every r ∈ N. Assume that ` � g − g � `′ vanishes on

⊙s(W ) and that im(gs) ⊆
ker(`1) for every s ≤ r. If we apply `1 to the arity r+1 component of `�g−g �`′

we obtain

`1 ◦ (` ◦ ḡmor − g ◦ ¯̀′
cod)

�

�
⊙r+1(W ) = ` ◦ (¯̀cod ◦ ḡmor − ḡmor ◦ ¯̀′

cod)
�

�
⊙r+1(W )

−
∑

p≥2

`p ◦ (¯̀ ◦ ḡ − ḡ ◦ ¯̀′)
�

�
⊙r+1(W ).

The sum on the second line vanishes identically due to the induction hypo-
thesis. We are thus left with

`◦¯̀cod◦ ḡmor−`◦ ḡmor◦¯̀
′
cod

�

�
⊙n+1(W ) = `◦¯̀cod◦ ḡmor− g ◦¯̀′cod◦¯̀

′
cod

�

�
⊙n+1(W ),
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where the equality follows from the induction hypothesis and the fact that
¯̀′(
⊙n+1(W )) ⊆

⊙n(W ) due to the assumption that `′1 = 0. The first is zero
because (V ,`) is an L∞-algebra and the second because (W ,`′) is, so we see
that ` ◦ ḡmor − g ◦ ¯̀′

cod is indeed `1-closed.

To show that this element is exact, we should again verify that it is in the kernel
of f1 by applying this map to it. Since f = f1 is a morphism of L∞-algebras,
we have that

f1 ◦ (` � g − g � `)
�

�
⊙r+1(W ) =

�

` ◦ f ◦ ḡmor − f ◦ g � ¯̀cod

��

�
⊙r+1(W ),

which is zero because g1 is a right inverse for f1 and im(gp) ⊆ ker( f1) for all
p ≥ 2. We can therefore set

gr+1(v{1,...,r+1}) = P
�

−
∑

I1,...,Im
m≥2

εI1,...,I+m `
�
⊙m

j=1

�

g(vI j
)

+
∑

ItJ={1,...,r+1}

εI ,J g(`(vI )� vJ ).

�

This map satisfies im(gr+1) ⊆ ker( f1) and
�

`�g−g �`′
��

�
⊙r (W ) = 0. By applying

this construction recursively, we obtain a map g = (gp)p∈N :
⊙

(W )→ V which
satisfies ` � g = g � `′ and is consequently a morphism of L∞-algebras. It is
a quasi-inverse for f because the linear component g1 was chosen to be such
that . ◊

2.2.4. A second look at composition of maps

In the previous section we discussed morphisms between L∞-algebras as well as
their composition. It is worth taking a step back and re-evaluating the process
that justified Definition 2.2.8 and led to the composition rule (2.2.5).

As argued in the previous section, the natural way to regard an L∞-algebra
structure on V is as a self-commuting degree 1 coderivation on the symmetric
coalgebra

⊙

(V ). From this point of view the notions of morphisms and their
composition agrees with one’s intuition. For computational purposes, it is often
useful to have the less intuitive formulas involving sequence of multilinear maps,
such as (2.2.3) and (2.2.5). In this short section we take a second look at the
process that gave produces those equations.
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2.2. Discrete L∞-algebras

Both coderivations and morphisms are represented by similar types of objects.
For a coderivation this is a linear map

a:
⊙

(V ) −→ V ,

which always admits a unique lift to a coderivation of (
⊙

(V ),∆). In fact, as
we argued before, there is a one-to-one correspondence between coderivations
and such maps. The inverse of this lifting procedure corresponds to composing
a coderivation ā with a projection onto V :

⊙

(V )

⊙

(V ) V .

ā

a

prV

For a morphism this object is a degree zero linear map

a:
⊙

(V ) −→W ,

which admits a unique lift to a morphism from
⊙

(V ) to
⊙

(W ) if and only if
a0 = 0.

In particular we see that there is little difference in the object describing a
coderivation of

⊙

(V ) and the object describing an endomorphism of
⊙

(V ). A
difference only becomes evident when we try to lift these sequences, since the
lifts as coderivation and as morphism are very different. It is therefore useful
to make a visual distinction between these two possible lifts. We write ācod and
āmor for the lifts of (ap)p∈N0

as coderivation and morphism, repectively.

When it comes to composing sequences of maps (ap)p∈N0
and (bp)p∈N0

it is
important to understand what type of object these represent, i.e., if they are
intended to describe morphisms or coderivations. Once the appropriate lift has
been chosen, composition is just the usual composition of functions. Therefore,
in principle, starting with two linear maps a, b:

⊙

(V ) → V , there are four
possible ways to compose them. For each of a and b we must specify whether
we want to lift it as a coderivation or a morphism, then we can compose the
lifted maps and project back to V :

prV ◦ āmor ◦ b̄mor, prV ◦ āmor ◦ b̄cod,

prV ◦ ācod ◦ b̄mor, prV ◦ ācod ◦ b̄cod.
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Since prV ◦ ācod = prV ◦ āmor = a the final expression for the maps above only
depends on how b is lifted, but, this map does not carry in itself any information
on whether it represents a morphism or a coderivation (along a morphism) or
anything at all. This gives rise to two composition rules for linear maps from
⊙

(V ) to V :

a � b = prV ◦ ā∗ ◦ b̄cod = a ◦ b̄cod

a � b = prV ◦ ā∗ ◦ b̄mor = a ◦ b̄mor,

where ā∗ can be either ācod or āmor. More concretely, we obtain the expressions

a � b(v{1,...,p}) =
∑

ItJ={1,...,p}

εI ,J a(b(vI )� vJ ) (2.2.6)

and

a � b(v{1,...,p}) =
∑

I1,...,Im

εI1,...,Im
a
�
⊙m

j=1 b(vI j
)
�

. (2.2.7)

by applying these to homogeneous elements v1, v2, . . . , vp ∈ V .

These same composition rules are also meaningful for maps a:
⊙

(W )→ Z and
b:
⊙

(V )→ W between different graded vector spaces. The only restrictions
are that the composition a � b is only defined V = W and that a � b is only
sensible if b is homogeneous of degree 0.

Both composition rules are also meaningful if a is a map from
⊙

(W ) to Z
for two different Z-graded vector spaces W and Z , and the latter is moreover
well-defined.

With this notation at hand, we see that a number of equations we dealt with
in the previous sections acquire a simpler form. For example the graded Lie
bracket discussed in section 2.2.2 is given by

[`,`′] = ` � `′ − (−1)|`||`
′|`′ � `.

In particular `:
⊙

(V ) → V is an L∞-algebra structure if ` has degree 1 and
[`,`] = 2` � ` = 0. Phrased differently, a degree 1 map ` is an L∞-algebra
structure if and only if ` is a Maurer–Cartan element for the graded Lie algebra
(Lin(

⊙

(V ), V ), [ � , �]). Furthermore, if (V ,`) and (W ,`′) are L∞-algebras, a map
f :
⊙

(V )→W is a morphism of curved L∞-algebras if and only if `′ � f = f �`
and the composition of L∞-algebra morphisms f :

⊙

(V )→W and g :
⊙

(W )→
Z is g � f :

⊙

(V )→ Z .
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2.3. Topological L∞-algebras

Although we have thus far viewed L∞-algebras as purely algebraic objects, the
ones we are interested come from geometry and thus carry additional (topolo-
gical) information. We will incorporate this information by providing a topolo-
gical version of Definition 2.2.1. This allows us to make sense of the Maurer–
Cartan equation and gauge equivalence in cases where the number of summands
is infinite.

The minimum we need to assume is that V has a locally convex topology since
this allows us to define an appropriate topology on the graded symmetric algebra,
⊙

(V ), and use the corresponding notion of continuity for the structure maps `p.
Some choices need to be made for the topology on tensor products and direct
sums of locally convex vector spaces because the graded symmetric algebra
⊙

(V ) was defined as a direct sum of symmetric tensor products. These choices
are only briefly mentioned here, and the reader is referred to appendix A.2 for
further details.

Families of Maurer–Cartan elements are expected to give rise to analytic families
of L∞-algebras. For this to be true we have to sharpen our requirements and
impose that each of the components V n is in fact a Fréchet space. This is in line
with the applications we have in mind, since many deformation problems that
arise from geometry are formulated in terms of sections of vector bundles and
differential operators.

2.3.1. Definition

Because we require topological versions of the direct sum and tensor product
operations, which are discussed in appendix A.2, we will only work with locally
convex vector spaces. These are topological vector spaces whose topology is
generated by a collection of semi-norms and which we will moreover assume to
be Hausdorff. Most interesting topological vector spaces that occur in geometry
are locally convex, including finite-dimensional vector spaces, Banach spaces,
Fréchet spaces and many spaces that can be obtained from these using standard
constructions (such as subspaces, quotients (if Hausdorff), products, direct sums,
limits and topological duals).
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A locally convex Z-graded vector space is a Z-graded vector space V =
⊕

n∈Z V n

whose homogeneous components V n for n ∈ Z are locally convex vector spaces.
We endow the full space V with the locally convex direct sum topology induced
by these subspaces, and the graded symmetric algebra

⊙

(V ) with the locally
convex direct sum topology for the decomposition

⊙

(V ) =
⊕

p∈N0

⊕

n1≤···≤np

V n1 � V n2 � · · · � V np , (2.3.1)

where the symmetric tensor product
⊙p

j=1 V np comes with the projective tensor
product topology. A more detailed discussion of these topological constructions
can be found in appendix A.2.

We note that both of the decompositions
⊙

(V ) =
⊕

p∈N0

⊙p(V ) and
⊙

(V ) =
⊕

n∈Z

⊙

(V )n, (2.3.2)

corresponding to the N0-grading (by rank) and the Z-grading (by total degree)
on
⊙

(V ) respectively, are locally convex direct sums with respect to this topo-
logy.

Remark 2.3.1.
One can show that the canonical coalgebra structure ∆:

⊙

(V ) →
⊙

(V ) ⊗
⊙

(V ) described in section 2.2.2 is continuous if the latter space is endowed
with the projective Z-graded tensor product topology. Since also the counit
ε:
⊙

(V )→ R is continuous, (
⊙

(V ),∆) is a topological Z-graded coalgebra.
4

We say that a graded vector space V =
⊕

n∈Z V n is of Fréchet type if each of its
homogeneous components, V n for n ∈ Z, is a Fréchet space. Similarly, we call
V of finite-dimensional type, of Banach type or of nuclear Fréchet type if V n

is a space of the corresponding type for every n ∈ Z. This does not imply that
the direct sum topology on

⊕

n∈Z V n is of the specified type (unless only finitely
many of the spaces V n are non-trivial).

This brings us to the types of L∞-algebra we wish to consider.

Definition 2.3.2.
A (curved) L∞-algebra of locally convex type of is a (curved) L∞-algebra (V ,`)
which consists of a Z-graded locally convex vector space V =

⊕

n∈Z V n and a
continuous structure map `:

⊙

(V )→ V .

56



2.3. Topological L∞-algebras

For us, the most important class of topological L∞-algebras will be those that
live on a graded vector space of Fréchet type.

Definition 2.3.3.
A (curved) L∞-algebra of Fréchet type is a (curved) L∞-algebra (V ,`) consisting
of a Z-graded vector space V =

⊕

n∈Z V n of Fréchet type and a continuous
structure map `:

⊙

(V )→ V .

L∞-algebras of finite-dimensional type, of Banach type, and of nuclear Fréchet type
type are defined analogously. Since these are all special cases of Definition 2.3.3,
they will not be explicitly discussed in this chapter. For readers who are not
familiar with general locally convex vector spaces, it may be useful to keep in
mind that finite-dimensional spaces are also Banach spaces, that Banach spaces
are also Fréchet spaces and that Fréchet spaces are by definition locally convex.
The space of smooth sections of any finite-dimensional vector bundle is a nuclear
Fréchet space.

There are several equivalent ways to formulate the compatibility of the structure
map `:

⊙

(V )→ V with the topology on V .

Proposition 2.3.4.
Let V =

⊕

n∈Z V n be a Z-graded locally convex vector space and let `:
⊙

(V )→ V
be a homogeneous linear map of degree d ∈ Z. The following statements are
equivalent.

(i) Continuity: the map `:
⊙

(V )→ V is continuous.

(ii) Continuity by rank: the restriction `p :
⊙p(V ) → V is continuous for

each p ∈ N0.

(iii) Continuity by degree: the restriction `|⊙(V )n :
⊙

(V )n → V n+d is con-
tinuous for each n ∈ Z.

(iv) Continuity by component: the restriction

`p

�

�
⊙p

i=1 V ni :
⊙p

i=1 V ni −→ V n1+···+np+d

is continuous for any sequence of degrees n1, n2, . . . , np ∈ Z.

(v) Continuity of multilinear maps: the graded symmetric multilinear map

`p : V n1 × · · · × V np −→ V n1+···+np+d

is continuous for any sequence of degrees n1, n2, . . . , np ∈ Z.
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(vi) Continuity of the coderivation: the lift of ` as a coderivation ¯̀: on
(
⊙

(V ),∆) is continuous.

Proof: The spaces
⊙

(V ) can be decomposed by rank, by degree or by compon-
ent, as described in equations (2.3.1) and (2.3.2). Equivalence of statements (i),
(ii), (iii) and (iv) thus follow directly from the universal property for the locally
convex direct sum, as stated in Proposition A.2.14. Also statements (iv) and (v)
are equivalent due to the universal property of the projective tensor product,
which is described in Proposition A.2.36.

Statement (vi) implies statement (i) because the projection map prV :
⊙

(V )→
V is continuous, so we only need to show that one of the first five statements
implies the last. Note that by the same argument used before, continuity of
¯̀:
⊙

(V )→
⊙

(V ) is equivalent to continuity of its restriction to V n1 �· · ·�V np

for every sequence of integers n1, n2, . . . , np ∈ Z due to the nature of the direct
sum topology on

⊙

(V ).

Now assume that statement (iv) holds and suppose we are given a sequence of
degrees n1, n2, . . . , np ∈ Z. The coderivation ¯̀ is described by equation (2.2.2),
so its restriction to

⊙p
j=1 V n j can be written as a finite sum

∑

ItJ={1,...,p} εI ,J
¯̀

I ,J ,
where ¯̀

I ,J is the composition of

`#I � id:
�
⊙

i∈I V ni
�

�
�
⊙

j∈J V n j
�

−→ V nI+d �
�
⊙

j∈J V n j
�

and the continuous inclusion map V nI+d�
�
⊙

j∈J V n j
�

,→
⊙

(V ) for nI =
∑

i∈I ni .
Since `#I :

⊙

i∈I V ni → V nI+d is continuous by assumption, the maps ¯̀
I ,J de-

scribed above are as well by Proposition A.2.38. As a finite sum of such maps,
also ¯̀|V n1�···V np is continuous for any given sequence of integers, as is therefore
the coderivation ¯̀:

⊙

(V )→
⊙

(V ).

We conclude that all six statements are equivalent. �

Using this proposition, we can also describe a locally convex (curved) L∞-alge-
bra in terms of a coderivation for the canonical coalgebra structure on

⊙

(V ).

Definition 2.3.5 (Alternative).
A locally convex curved L∞-algebra is a Z-graded locally convex vector space
V =

⊕

n∈Z V n endowed with a coderivation ¯̀: (
⊙

(V ),∆) → (
⊙

(V ),∆) of
degree 1 which is continuous and satisfies [¯̀, ¯̀] = 0. It is uncurved if ¯̀(1) = 0.
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Both the space V and its topology can be recovered from the topological coal-
gebra (

⊙

(V ),∆) through the canonical embedding V ,→
⊙

(V ) mentioned
above Remark 2.2.7. We could thus have chosen to define a locally convex
curved L∞-algebra as a topological coalgebra which is (non-canonically) iso-
morphic to (

⊙

(V ),∆) and comes endowed with a degree 1 self-commuting
coderivation.

Remark 2.3.6.
The tensor product V ⊗W of two complete locally convex vector spaces is
not generally complete (unless either V or W is finite-dimensional). This
may be undesirable since one might, for instance, like the tensor product
of two Fréchet to also be a Fréchet space. For this reason, the completed
tensor product V ⊗̄W := V ⊗W is often used instead. It is determined by the
same universal property as the usual projective tensor product, but within the
category of complete locally convex vector spaces.

One can similarly define the completed graded symmetric tensor products
⊙p

j=1 V of a complete locally convex vector space with itself and, subsequently,
the completed graded symmetric algebra

⊙

(V ) =
⊕

n1≤···≤np

⊙p
j=1 V n j .

For the purpose of describing continuous multilinear or plurilinear maps of
Fréchet type, it generally makes little difference which tensor product is used
since the spaces L(

⊙

(V ), W ) and L(
⊙

(V ), W ) are canonically isomorphic (as
topological vector spaces). It should be noted, however, that

⊙

(V ) does not
carry a canonical coalgebra structure. 4

2.3.2. Morphisms

At this point, the definition of a morphisms of locally convex L∞-algebras should
not be surprising. We can simply take the original definition and impose com-
patibility of the underlying map with the chosen topologies.

Definition 2.3.7.
A morphism f : (V ,`)→ (W ,`′) of locally convex L∞-algebras is a continuous
homogeneous linear map f :

⊙

(V )→W such that f (1) = 0 and f �`= `′� f .
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Chapter 2. L∞-algebras

Again, continuity of f can be expressed in many different ways. The proof of
the following proposition is largely similar to that of Proposition 2.3.4.

Proposition 2.3.8.
Let V and W be Z-graded locally convex vector spaces and let f :

⊙

(V )→ W
be a homogeneous linear map of degree 0 such that f (1) = 1. The following
statements are equivalent.

(i) Continuity: the map f :
⊙

(V )→W is continuous.

(ii) Continuity by rank: the restriction fp :
⊙

(V )p → W is continuous for
each p ∈ N0.

(iii) Continuity by degree: the restriction f |⊙(V )n :
⊙

(V )n → W n is con-
tinuous for each n ∈ Z.

(iv) Continuity by component: the restriction

fp

�

�
⊙p

i=1 V ni :
⊙p

i=1 V ni −→W n1+···+np

is continuous for any sequence of degrees n1, n2, . . . , np ∈ Z.

(v) Continuity of multilinear maps: the graded symmetric multilinear map

fp : V n1 × · · · × V np −→W n1+···+np

is continuous for any sequence of degrees n1, n2, . . . , np ∈ Z.

(vi) Continuity of the morphism: the lift of f as a coalgebra morphism f̄
from (

⊙

(V ),∆) to (
⊙

(W ),∆) is continuous.

Proof: Equivalence of conditions (i)–(v) was already proven in Proposition 2.3.4
and the proof of the implication (vi)⇒ (i) can be copied verbatim from there.
We will demonstrate the implication (iv)⇒ (vi).

Assume that statement (iv) holds and suppose we are given a sequence of de-
grees n1, n2, . . . , np ∈ Z. The morphism f̄ is described by equation (2.2.4), so
its restriction to

⊙p
j=1 V n j can be written as a finite sum

∑

I1,...,Im
εI1,...,Im

f̄I1,...,Im
,

where summation is over the partitions of {1, . . . , p} and f̄I1,...,Im
denotes the

composition of
⊙m

j=1 f#I j
:
⊙m

j=1

�
⊙

i∈I V ni
�

−→
⊙m

j=1 W
nI j

with the continuous inclusion map
⊙m

j=1 W
nI j ,→

⊙

(W ), where nI =
∑

i∈I ni
for any subset I ⊆ {1, . . . , p}. Since f#I :

⊙

i∈I V ni → W nI is continuous by
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assumption, the maps f̄I1,...,Im
described above are as well by Proposition A.2.38.

As a finite sum of such maps, also f̄ |V n1�···V np is continuous for any given sequence
of integers, as is therefore the morphism f̄ :

⊙

(V )→
⊙

(W ).

We conclude that all six statements are equivalent. �

Proposition 2.2.13 has a topological analogue.

Proposition 2.3.9 (Inverse function theorem).
Let (V ,`) and (W ,`′) be curved locally convex L∞-algebras and let f : (V ,`)→
(W ,`′) be a continuous L∞-algebra morphism. Then f is invertible if and only
if its linear component, f1 : V →W , is a topological isomorphism.

Proof: Let f : (V ,`)→ (W ,`′) be a morphism of curved L∞-algebras such that
f1 : V →W is a topological isomorphism. An inverse to f is a continuous linear
map g :

⊙

(W ) → V such that ḡmor ◦ f̄mor = id⊙(V ) and f̄mor ◦ ḡmor = id⊙(W ).
Any such map is automatically itself a morphism of curved L∞-algebras because
the equations f̄mor ◦ ¯̀

cod = ¯̀′
cod ◦ f̄mor and ¯̀

cod ◦ f̄ −1
mor = f̄ −1

mor ◦ ¯̀′
cod are equivalent

whenever f̄mor is invertible.

We will first show that f admits a right inverse, for which we need to solve the
equation f̄mor ◦ ḡmor = id⊙(W ) or, equivalently, f � g = prW . This can be done
recursively by considering the restrictions to

⊙p(W ) for p ∈ N. For p = 1, the
resulting equation states that f1 ◦ g1 = idW , which is uniquely solved by the
(continuous) map g1 = f −1

1 . For subsequent p ∈ N, it reads

f1

�

gp(w{1,...,p})
�

+
∑

I1,...,Im
m≥2

1
m! εI1,...,Im

fm

�
⊙m

j=1 g#I j
(wI j
)
�

= 0

for homogeneous w1, w2, . . . , wp ∈ W with p ≥ 2. Since #I1, . . . ,#Im < p for
every term of this sum and f1 is a bijection, gp is completely determined by the
lower arity components gp′ with p′ < p. We can in fact read off that gp for p ≥ 2
is given by

gp = −
∑

I1,...,Im
m≥2

f −1
1 ◦ fm ◦

�
⊙m

j=1 g#I j

�

and thus obtain a unique sequence g = (gp)p∈N satisfying f̄mor ◦ ḡmor = id⊙(W ).

For any given p ∈ N, continuity of gp can be derived from continuity of f −1
1 and

of gp′ with p′ < p because compositions, tensor products and sums of continuous

61



Chapter 2. L∞-algebras

linear maps are continuous. Continuity of g therefore follows by induction. By
interchanging the roles of f and g, a right inverse to ḡmor :

⊙

(W )→
⊙

(V ) can
also be found. Since this inverse necessarily coincides with f̄mor, we conclude
that f is invertible and that g is its inverse.

If the linear component f1 is not a topological isomorphism, then f is not in-
vertible because the first order components of the equations g � f = prV and
f � g = prW state that the continuous maps f1 and g1 must be mutually in-
verse. �

2.4. The Maurer–Cartan locus

In this section we will describe the Maurer–Cartan equation for L∞-algebras of
Fréchet type, as well as an appropriate notion of gauge equivalence for solu-
tions to this equation. Before presenting the Maurer–Cartan equation itself in
section 2.4.3, it makes sense to first discuss the twisting procedure for such
L∞-algebras. This is done in section 2.4.1 and section 2.4.2. A few results from
chapter 3 are used in this section.

2.4.1. Twisting of L∞-algebra structures

We will now discuss how to twist a curved L∞-algebra (V ,`) of Fréchet type
by a degree 0 element u ∈ V 0 to obtain a new curved L∞-algebra (V ,`u) of
Fréchet type. As we will see, (V ,`u) has vanishing curvature precisely when u
is a Maurer–Cartan element.

One can readily verify that for any u ∈ V 0, the map

mu :
⊙

(V ) −→
⊙

(V ), v1 � · · · � vp 7→ u� v1 � · · · � vp

describing multiplication by u is a degree 0 coderivation. Heuristically, we can
try to integrate it to a coalgebra automorphism,

emu :
⊙

(V ) −→
⊙

(V ), v1 � · · · � vp 7→
∑

k∈N0

1
k!

⊙k u� v1 � · · · � vp,
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2.4. The Maurer–Cartan locus

and use that to produce a new coderivation by conjugation: ¯̀u = e−mu ◦ ¯̀ ◦ emu .
We refer to this procedure as the twisting of the L∞-algebra (V ,`) by u.

By expanding the associated map `u :
⊙

(V )→ V in its components, we obtain
new structure maps `u

p :
⊙

(V )→ V , given by

`u
p(v1 � · · · � vp) =

∑

q∈N0

1
q!`p+q(

⊙q u� v1 � · · · � vp) (2.4.1)

for v1, v2, . . . , vp ∈ V . A version of this definition for nilpotent L∞-algebras can
for instance be found in section 4 of [Get09].

The problem with the twisting procedure, as it is outlined above, is that emu is
not a well-defined automorphism of

⊙

(V ) since it takes values in the product
∏

p∈N0

⊙p(V ), rather than in
⊙

(V ) itself. We can nevertheless use equa-
tion (2.4.1) to define new brackets on V if this series converges.

Proposition 2.4.1.
For any L∞-algebra (V ,`) of Fréchet type and any u ∈ V 0, the following state-
ments are equivalent.

(i) The series (2.4.1) converges for all v1, v2, . . . , vp ∈ V .

(ii) The series
∑

q∈N0

1
q! `(

⊙q u� �) (2.4.2)

converges in L(
⊙

(V ), V ) to a continuous linear map `u :
⊙

(V )→ V .

Before proving this proposition, we briefly recall that L(
⊙

(V ), V ) was defined,
as a topological vector space, as the locally convex direct sum

L(
⊙

(V ), V ) =
⊕

d∈Z

L(
⊙

(V ), V )d

and that L(
⊙

(V ), V )d carries the topology of uniform convergence on precom-
pact subsets, a definition for which can be found in Definition A.2.20. This
topology can be characterised by the fact that the canonical map

L(
⊙

(V ), V )d ∼−→
∏

n1≤...≤np

L
�
⊙p

j=1 V n j , V n1+···+np+d
�

(2.4.3)

is an isomorphism of topological vector spaces for every d ∈ Z.
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Proof: The second statement implies the first because uniform convergence on
precompact subsets is a stronger condition than pointwise convergence.

To demonstrate the converse, we first of all note that any element of
⊙

(V ) can
be written as a linear combination of decomposable elements, i.e. elements of
the form v{1,...,p} for homogeneous v1, v2, . . . , vp ∈ V . Although this tells us that
the series (2.4.2) converges pointwise to a linear map from

⊙

(V ) to V , we still
need to show that it is convergent in L(

⊙

(V ), V ).

Note that each term in the series (2.4.2) is an element of the closed subspace
L(
⊙

(V ), V )1 ⊆ L(
⊙

(V ), V ). Because the map from equation (2.4.3) is a to-
pological isomorphism, it therefore suffices to demonstrate convergence of the
series

∑

q∈N0

1
q! `(

⊙q u� �)
�

�
⊙p

j=1 V n j

in L(
⊙p

j=1 V n j , V n1+···+np+1) for arbitrary n1, n2, . . . , np ∈ Z.

Since the components V n for n ∈ Z are Fréchet spaces, they are in particular
metrisable barrelled vector spaces. Consequently, the projective tensor product
⊗p

j=1 V n j is metrisable and barrelled as well for any sequence n1, n2, . . . , np ∈ Z
due to Proposition A.2.43. Since

⊙p
j=1 V n j is a quotient of

⊗p
j=1 V n j , also this

space is barrelled.

Now assume that statement (i) holds. Since
⊙p

j=1 V n j is a barrelled vector space,
the Banach–Steinhaus theorem (Theorem A.2.28) tells us that the series (2.4.2)
converges with respect to the topology of uniform convergence on precom-
pact subsets of

⊙p
j=1 V n j . We conclude that the original series is convergent in

L(
⊙

(V ), V )1 ⊆ L(
⊙

(V ), V ). �

Due to the nature of its construction, it seems reasonable to expect the twisted
bracket `u to satisfy the Jacobi identity [`u,`u] = 0, which would mean that
(V ,`u) is a also curved L∞-algebra of Fréchet type. We will see that this indeed
the case in Proposition 2.4.4.

2.4.2. Analytic dependence on the twisting parameter

Now that we have seen that the twisting procedure provides us with new struc-
ture maps `u :

⊙

(V ) → V for some u ∈ V 0, it seems natural to ask how `u
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2.4. The Maurer–Cartan locus

depends on the parameter u ∈ V 0. We will see that these twisted structure maps
form a real analytic family of curved L∞-algebras.

Definition 2.4.2.
The domain of convergence D` ⊆ V 0 of a curved L∞-algebra (V ,`) of Fréchet
type is the interior of the set of all u ∈ V 0 for which the series

`u =
∑

q∈N0

1
q! `(

⊙q u� �)

converges. We call the (V ,`) convergent if D` 6=∅ and entire if D` = V 0.

When we say that the series defining `u converges we mean that it converges
in L(

⊙

(V ), V ) with respect to the topology of uniform convergence on precom-
pact subsets of

⊙

(V ). We have however seen in Proposition 2.4.1 that this is
equivalent to pointwise convergence. The set D` thus consists of all u ∈ V 0 that
admit a neighbourhood U ⊆ V 0 such that the series (2.4.1) converges for all
u′ ∈ U and all v1, v2, . . . , vp ∈ V .

If the domain of convergence is non-empty it is a neighbourhood of 0 ∈ V 0 due
to Proposition B.1.19. If only finitely many of the brackets (`p)p∈N0

are non-
trivial, which is not uncommon, then the series (2.4.1) terminates and (V ,`) is
consequently entire.

Proposition 2.4.3.
For any curved L∞-algebra (V ,`) of Fréchet type with domain of convergence
D` ⊆ V 0, the map

l: D` −→ L(
⊙

(V ), V ), u 7→ `u

is real analytic (and therefore smooth) and its derivatives are given by

Dkl(u)(
⊙k u̇)(v{v1,...,vp}

) = l(u)(
⊙k u̇� v{1,...,p}) (2.4.4)

for k ∈ N0, u ∈ D`, u̇ ∈ V 0 and v1, . . . , vp ∈ V .

Proof: Although the map l: D` → L(
⊙

(V ), V ) was defined as the limit of a
formal power series, we have not yet shown that the individual terms of this
series depend continuously on the parameter u. If we can prove this, analyticity
of l will follow from Proposition B.1.22.
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By employing the embedding from equation (2.4.3), we see that continuity of
the q-th term of the series (2.4.2) defining l is equivalent to continuity of the
map

lq;n1,...,np
: D` −→ L(

⊙p
j=1 V n j , V n+1), u 7→ `p+q(

⊙q u� �)

for all sequences of degrees n1, n2, . . . , np ∈ Z and n=
∑p

j=1 n j . This in turn can
be viewed as a consequence of the fact that `p+q is continuous as a map from
⊙q V 0 ⊗

⊙p
j=1 V n j to V n+1 and the fact that the spaces

L
�
⊙q V 0 ⊗

⊙p
j=1 V n j , V n+1

�

' L
�
⊙q V 0, L(

⊙p
j=1 V n j , V n+1)

�

are canonically isomorphic as topological vector spaces (cf. Corollary A.2.48).

Because l is analytic, Proposition B.1.25 tells us that it is smooth and that its
derivatives can be computed by adding up the derivatives of the individual
terms in the defining power series. Since u 7→ `(

⊙q u� �) is a homogeneous
polynomial of degree q, its derivatives are easy to compute. The k-th order
derivative at u in the direction u̇ is given by

q!
(q−k)! `p+q(

⊙k u̇�
⊙q−k u� �).

We deduce that the derivatives of l are given by

Dkl(u)(
⊙k u̇)(v{1,...,p}) =

∑

q∈N0

1
(q−k)! `p+q(u

q �
⊙k u̇� v1 � · · · � vp)

= l(u)(
⊙k u̇� v1 � · · · � vp).

for any u ∈ D`, any u̇ ∈ V 0 and v1, v2, . . . , vp ∈ V . �

We shall refer to the identity (2.4.4) as the derivative property. In terms of the
coalgebra description from section 2.2.2, it states that the derivative of u 7→ ¯̀u in
the direction u̇ ∈ V 0 is [¯̀u, mu̇], the graded commutator of the coderivations ¯̀u

and mu̇. This is essentially how the twisted structure map ¯̀u was (heuristically)
defined at the start of this section.

The derivative of the Jacobiator Jac(¯̀u) = [¯̀u, ¯̀u] satisfies the same equation,
since

d
dt [¯̀

ut , ¯̀ut ] = [[¯̀ut , mu̇t
], ¯̀ut ] + [¯̀ut , [¯̀ut , mu̇t

]] = [[¯̀ut , ¯̀ut ], mu̇t
]
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for any path t 7→ ut in V 0 with derivative u̇t =
d
dt ut . To make this argument

rigorous we would need to choose an appropriate topology on the subspace of
L(
⊙

(V ),
⊙

(V )) in which these equations take values. We instead use it merely
as a motivation for the proof of the following proposition.

Proposition 2.4.4.
For any (curved) L∞-algebra (V ,`) of Fréchet type and any u ∈ D`, the twisted
brackets `u

p define a curved L∞-algebra structure on V .

Proof: To prove this statement we will show that derivative property for the
structure maps implies that the associated Jacobiators have the same property.
Analyticity of the maps involved will then allow us to conclude that the twisted
structure maps also satisfy the Jacobi identities.

For fixed indices n1, n2, . . . , np ∈ Z, consider the map Jac(̌l)p : U×
⊙n

j=1 V i j → V n

with n=
∑n

i=1i ni given by

Jac(̌l)p(u, v1 � · · · � vn) =
∑

ItJ={1,...,n}

εI ,J l(u)
�

l(u)(uI )uJ

�

for u ∈ D` and vi ∈ V ni for i = 1, 2, . . . , p. It follows from Proposition 3.1.14 and
Proposition B.1.28 that this map is analytic, and from Proposition B.1.25 that it
is smooth. Its derivative with respect to the first argument is given by

D1Jac(̌l)p(u, v1 � · · · � vp)(v0) =
∑

ItJ={1,...,p}

εI ,J

�

l(u)
�

v0 � l(u)(vI )� vJ

�

+ l(u)
�

l(u)(v0 � vI )� vJ

�

�

=
∑

ĨtJ̃={0,1,...,p}

ε Ĩ ,J̃ l(u)
�

l(u)(vĨ ) vJ̃

�

,

because l has the derivative property. This coincides with Jac(̌l)p+1(u, v0 � v1 �
· · · � vp), so it follows by induction on k that

Dk
1Jac(̌l)p(u, v1 � · · · � vp)(u̇) = Jac(̌l)p+k(u,

⊙k u̇� v1 � · · · � vp)

for every p, k ∈ N0, u ∈ D` and v0 ∈ V 0 and any p-tuple v1, v2, . . . , vp ∈ V .

The fact that (V ,`) is a curved L∞-algebra means that Jac(̌l)p(0, �) = 0 for every
p ∈ N0. Consequently, also the derivatives Dk

1Jac(̌l)p vanish at 0 for every p ∈ N0
and all k ∈ N0. By analyticity, it now follows that Jac(̌l)p(u, v1�· · ·� vp) = 0 for
every u ∈ D` and all v1, v2, . . . , vp ∈ V . �
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The proof of Proposition 2.4.4 relies on the analytic dependence of `u on u. An
entirely algebraic proof can also be provided if the series (2.4.1) terminates for
every p ∈ N0.

2.4.3. The Maurer–Cartan equation

The Maurer–Cartan equation arises naturally when one examines the twists
of any given curved L∞-algebra. For p = 0, equation (2.4.1) describes a real
analytic function µ: D` → V 1 which is given by µ(u) = `u

0 or, more concretely,
by

µ(u) =
∞
∑

p=0

1
p!`p(

⊙p u). (2.4.5)

This map will henceforth be referred to as the Maurer–Cartan map. It assigns
to a point u in D` the curvature of the curved L∞-algebra (V ,`u) obtained from
(V ,`) through twisting by u.

Definition 2.4.5.
A Maurer–Cartan element for (V ,`) is an element u ∈ D` ⊆ V 0 satisfying the
Maurer–Cartan equation,

µ(u) :=
∑

p∈N0

1
p!`p(

⊙p u) = 0. (2.4.6)

We denote the set of Maurer–Cartan elements by MC(V ,`) := µ−1(0).

We observe that the zero element 0 ∈ V 0 satisfies the Maurer–Cartan equation
precisely when (V ,`) is uncurved. It is however only a Maurer–Cartan element
in the sense of Definition 2.4.5 if the domain of converge is non-empty.

Because we know from Proposition 2.4.3 that the derivative of the Maurer–
Cartan map is given by

Dµ(u)(u̇) = `u
1(u̇),

for u ∈ D` and u̇ ∈ V 0, we can think of the kernel of `u
1 : V 0 → V 1 as (a can-

didate for) the tangent space to MC(V ,`) at u. Although the tangent space to
the Maurer–Cartan locus is contained in this kernel at any point where it is a
manifold, it need not coincide.
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2.4.4. Gauge equivalence

The Maurer–Cartan locus of a curved L∞-algebra (V ,`) of Fréchet type is parti-
tioned by gauge equivalence classes. These equivalence classes are essentially
the leaves of the foliation corresponding to the distribution∆ on MC(V ,`) given
by ∆u = im(`u

1|V−1) ⊆ V 0 at u ∈MC(V ,`).

While this can be made precise for L∞-algebras of finite-dimensional type, we
will for now only use this as motivation for the following definition.

Definition 2.4.6.
A smooth homotopy of Maurer–Cartan elements is a pair γ+ ηdt of smooth
paths,

γ: [0,1] −→MC(V ,`) and η: [0, 1] −→ V−1,

satisfying the differential equation

γ′(t) + `γ(t)1 η(t) = 0

for all t ∈ [0, 1]. Two Maurer–Cartan elements u0 and u1 are gauge equivalent
if there exist a homotopy γ+ηdt with end points γ(0) = u0 and γ(1) = u1.

This definition states that two Maurer–Cartan elements are gauge equivalent
whenever they can be connected by a path that is tangent to the distribution
described above and for which a corresponding family of primitives can be
found.

Instead of the standard interval [0, 1], any other closed interval [a, b]with a < b
could have been used. We observe that homotopies can be reparametrised: given
a homotopy u+ v dt and a smooth map f : [a, b] → [c, d] with f (a) = c and
f (b) = d, the pull-back f ∗(γ+ηdt) := γ ◦ f +η ◦ f · f ′ dt is a homotopy with
the same end points.

Before moving on, we will quickly verify that gauge equivalence, as defined
above, is an equivalence relation. Reflexivity, symmetry and transitivity corres-
pond to the following facts:

• The constant path t 7→ u + 0dt is a homotopy from u to itself for any
u ∈MC(V ,`).

• If γ+ηdt is a homotopy from u0 to u1 and f : [0,1]→ [0,1] is given by
f (t) = 1− t, then f ∗(γ+ηdt) is a homotopy from u1 to u0.
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• If γ + ηdt is a homotopy and f : [0,1] → [0,1] is such that f (0) = 0,
f (1) = 1 and all derivatives of f vanish at 0 and 1, then γ̃ + η̃dt =
f ∗(γ + ηdt) is such that γ̃(t) = γ(t) and η̃(t) = 0 for t = 0,1 and all
derivatives of both γ̃ and η̃ vanish at the endpoints. Homotopies of this
type can be concatenated.

One could alternatively work with piecewise smooth homotopies to make the ar-
gument for transitivity more straightforward. These are pairs γ+ηdt consisting
of a continuous piece-wise smooth path γ: [a, b]→MC(V ,`) and a piece-wise
smooth (but not necessarily continuous) path η: [a, b] → V−1 satisfying the
equation γ′(t) + `γ(t)1 η(t) in all but finitely many points.

Given a Maurer–Cartan element u0 ∈MC(V ,`), we shall refer to the equivalence
class [u0] ⊆MC(V ,`) as the (gauge) orbit of u0.

Example 2.4.7 (Differential graded Lie algebras).
If the L∞-algebra (V ,`) corresponds to a differential graded Lie algebra, then
(V−1,`2) is a Lie algebra and

`1 : V−1 × D` −→ V 0,

describes a Lie algebra action. If V is of finite-dimensional type, then this
action integrates to a local action of the simply connected Lie group integrating
(V−1,`2) on D` and two Maurer–Cartan elements are gauge equivalent if and
only if they are in the same orbit for this action. ◊
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Holonomic families of L∞-algebras

We wish to demonstrate that every equivariant deformation problem of Fréchet
type gives rise to an L∞-algebra that can be said to control its deformations in
some sense. We will not just obtain a single L∞-algebra, however, but a family
of curved L∞-algebras that change smoothly as the reference structure is varied.
The families that can arise in this way can be viewed as jets of some of their
components, which is why we call them holonomic. To understand the relation
between deformation problems and L∞-algebras, it will be helpful to first study
families of this type.

We have already seen a holonomic family of curved L∞-algebras in chapter 2,
since the family of twists of a curved L∞-algebra has this property. Holonomic
families will generally resemble this example, and we will see that every analytic
holonomic family of curved L∞-algebras can in fact locally be realised as the fam-
ily of twists of one of its members. It will eventually be proven in chapter 5 that
holonomic families of curved L∞-algebras of Fréchet type are locally equivalent
to curved L∞-algebroids of the same type.

Before we can talk about holonomic families, however, we will need to have a
clear understanding of what it means for a family of multilinear maps between
locally convex vector spaces to be smooth or analytic. This is the subject of
section 3.1. While this theory may be neither very surprising nor very exciting,
it is important to be thorough here, since it will lay the foundation for things
to come in the upcoming chapters. Once we have dealt with this, we can in-
troduce holonomic families of plurilinear maps and discuss their description as
families of coderivations and coalgebra morphisms in section 3.2. The category
of holonomic families of curved L∞-algebras of Fréchet type is introduced in
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section 3.3, where also different types of morphisms between its objects are
discussed.

3.1. Families of linear maps

In this section we will develop the tools that are necessary to be able to work
with differentiable families of continuous linear maps. By a family of continuous
linear maps from a locally convex vector space V to another such space W we
mean a function

α: X −→ L(V, W )

from a set X to the space L(V, W ) of continuous linear maps from V to W . We
endow this space with the topology of precompact convergence of V , which is
defined in Definition A.2.19, and use the corresponding notions of continuity,
differentiability and analyticity whenever X is a space of an appropriate type
(either a topological space or a smooth or analytic Fréchet manifold).

We shall start this section with a number of results for continuous families of
continuous linear maps, which we are not interested in per se, but which we
need to be able to prove similar assertions for differentiable families. We will
show that there are several equivalent ways to characterise smooth and analytic
families of continuous linear maps, and that smoothness and analyticity are
preserved by most elementary operations. Families of multilinear maps are
discussed as well, since these will be used frequently in the remainder of this
chapter, as well as in chapters 4 and 5.

3.1.1. Continuous families of linear maps

Let X be a topological space and let V and W be arbitrary locally convex vector
spaces. The space L(V, W ) of continuous linear maps from V to W is endowed
with the topology of precompact convergence from Definition A.2.19. A basis
of zero neighbourhoods for this topology is given by the subsets

N (KV , UW ) =
�

A∈ L(V, W )
�

� A(KV ) ⊆ UW

	

determined by precompact subsets KV ⊆ V and (absolutely convex) zero neigh-
bourhoods UW ⊆ W . A family α: X → L(V, W ) of continuous linear maps is
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consequently continuous at x ∈ X if and only if for every zero neighbourhood
UW ⊆ W and every precompact subset KV ⊆ V there exists a neighbourhood
UX ⊆ X of x such that α(x)(v) ∈ UW for every x ∈ KU and every v ∈ KV .

The space C0(X , L(V, W )) of continuous families of linear maps parametrised by
X is endowed with the compact-open topology. This is a locally convex vector
space topology, and a basis of zero neighbourhoods for it is provided by the
subsets N (KX ,N (KV , NW )) for KX ⊆ X compact, KV ⊆ V precompact and for
zero neighbourhoods NW ⊆W .

If both X and V are metrisable, continuity of a family of continuous linear maps
from V to W parametrised by X can be characterised in several reasonable and
equivalent ways.

Lemma 3.1.1.
Let X be a metrisable space, let V be a metrisable locally convex vector space and
let W be a locally convex vector space. For any function α: X → L(V, W ), the
following statements are equivalent:

(i) α is continuous;

(ii) the map α̌: X × V →W given by α̌(x , v) = α(x)(v) is continuous;

(iii) there exists a (unique) continuous linear map α̂: C0(X , V ) → C0(X , W )
such that α̂(e)(x) = α(x)(e(x)) for all e ∈ C0(X , V ) and every x ∈ X .

Proof: We will first show that statements (i) and (ii) are equivalent.

Assume that α̌ is continuous, pick a point x ∈ X and let N (KV , UW ) ⊆ C0(V, W )
be a zero neighbourhood that is determined by some precompact subset KV ⊆ V
and an absolutely convex open zero neighbourhood UW ⊆ W . To show that
α is continuous, we need to find a neighbourhood of UX ⊆ X of x such that
α(UX ) ⊆ α(x) +N (KV , UW ).

The continuity of α̌, along with the fact that α̌(x , 0) = 0, provides us with a
neighbourhood UX ,0 ×UV,0 ⊆ X × V of (x , 0) such that α̌(U0

X ×U0
V ) ⊆

1
3 UW . The

fact that KV is precompact then allows us to pick elements y1, y2, . . . , yN ∈ KV
for some N ∈ N0 such that KV ⊆

⋃N
i=1 yi +U0

V . Let the neighbourhoods U yi
X ⊆ X

of x be such that α̌(U yi
X × {yi}) ⊆

1
3 UW for i = 1,2, . . . , N and define UX =

UX ,0 ∩
⋂N

i=1 U yi
X as the intersection of all of these neighbourhoods.
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Given x ′ ∈ UX and y ∈ KV , let i ∈ {1,2, . . . , N} be such that y ∈ yi + UV,0. Now,
since α̌ is linear in its second argument,

�

α(x ′)−α(x)
�

(y) = α̌(x ′, y − yi)− α̌(x , y − yi) +
�

α̌(x ′, yi)− α̌(x , yi)
�

.

We observe that α̌(x ′, y − yi) and α̌(x , y − yi) are both elements of 1
3 UW since

(x ′, y− yi), (x , y− yi) ∈ UX ,0×UV,0 and that α̌(x ′, yi)− α̌(x , yi) ∈
1
3 UW because

x ′ ∈ U yi
X . Consequently,

�

α(x ′)−α(x)
�

(y) ∈ 1
3 UW −

1
3 UW +

1
3 UW ⊆ UW

for all x ′ ∈ UX and all y ∈ KV , which implies that α(x ′)−α(x) ∈ N (KV , UW ) for
all x ′ ∈ UX . Since x ∈ X was arbitrary and any neighbourhood of α(x) contains
one of the form α(x) +N (KV , UW ), continuity of α follows.

To prove the converse, assume that α is continuous and let (xn, yn)n∈N be
a convergent sequence in X × V with limit (x , y). Let UW ⊆ W be a zero
neighbourhood in W and let KV = {yn |n ∈ N} ∪ {y}. Since KV ⊆ V is com-
pact it is also precompact, and we can thus find an index n0 ∈ N such that
α(xn) − α(x) ∈ N (KV , 1

2 UW ) for all n ≥ n0, which in particular implies that
α̌(xn, yn) − α̌(x , yn) ∈

1
2 UW for such n. Continuity of α(x) moreover tells us

that we can choose an n1 ≥ n0 such that α(x)(yn)−α(x)(y) ∈
1
2 UW whenever

n≥ n1. Now, given n ∈ N,

α̌(xn, yn)− α̌(x , y) =
�

α̌(xn, yn)− α̌(x , yn)
�

+
�

α̌(x , yn)− α̌(x , y)
�

,

which is an element of 1
2 UW +

1
2 UW ⊆ UW if n ≥ n1. The neighbourhood UW

was arbitrary, so α̌(xn, yn) in fact converges to α̌(x , y) as n → ∞. Because
X × V is metrisable and α̌ maps convergent sequences in X × V to convergent
sequences in W , we deduce that α̌ is indeed continuous.

We will now show that statement (ii) is also equivalent to statement (iii).

Assume that the α̌ is continuous, then the identity α̂(e)(x) = α(x , e(x)) de-
scribes a function α̂ from C0(X , V ) to C0(X , W ) for elementary reasons. Let
N (KX , UW ) ⊆ C0(X , W ) be the zero neighbourhood determined by some com-
pact subset KX ⊆ X and a convex open zero neighbourhood UW ⊆W . For any
x ∈ KX we can find a neighbourhood U x

X × U x
V ⊆ X × V of (x , 0) such that

α̌(U x
X × U x

V ) ⊆ UW . Since KX is compact, we can pick a finite number of point
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x1, x2, . . . , xN such that KX ⊆
⋃N

i=1 U x i
X and consider the corresponding intersec-

tion UV :=
⋂N

i=1 U x i
V . Now, α̌(x , v) ∈ UW for every x ∈ KX and every v ∈ UV ,

which means that
α̂(ϕ)(x) = α̌(x ,ϕ(x)) ∈ UW

for all x ∈ KX and all ϕ ∈ N (KX , UV ). We infer that α̂(ϕ) ∈ N (KX , UW ) when-
ever ϕ ∈ N (KX , UV ) and hence that α̂ is continuous, proving that statement (ii)
implies statement (iii).

Now assume that statement (iii) holds and consider the map α̌V : V → C0(X , V )
given by α̌V (v)(x) = α̂(cv), where cv ∈ C0(X , V ) denotes the constant map
x 7→ v. This map is continuous because both α̂ and the inclusion map v 7→ cv
are. Continuity of α̌ now follows from Proposition B.2.1.

We conclude that all three statements are equivalent. �

Equivalence of the first two statements in Lemma 3.1.1 can also be deduced from
Lemma 0.1.2 and Theorem 0.3.8 of [Kel74]. It is worth noting the metrisability
of V was not used to prove either of the implications (ii)⇒ (i) and (ii)⇒ (iii)
in this lemma.

An even simpler characterisation of the continuity of α can be used if V is
barrelled. The following proposition essentially coincides with Corollary A.2.29
to the Banach–Steinhaus theorem.

Proposition 3.1.2.
Let X be a metrisable space, let V be a barrelled locally convex vector space
(e.g. a Fréchet space) and let W be a locally convex vector space. A function
α: X → L(V, W ) is continuous if and only if the map

α( �)(v): X −→W, x 7→ α(x)(v)

is continuous for every v ∈ V .

Even though the composition map ◦: L(W, Z) × L(V, W ) → L(V, Z) is seldom
continuous, the composition of two continuous families is continuous whenever
the parameter space is metrisable.
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Proposition 3.1.3.
Let X be a metrisable space and let V , W and Z be locally convex vector spaces.
Given two continuous maps α: X → L(V, W ) and β : X → L(W, Z), the composi-
tion

β ◦α: X −→ L(V, Z), (β ◦α)(x)(v) =
�

β(x) ◦α(x)
�

(v)

is continuous as well. Moreover, the composition map

◦: C0(X , L(W, Z))×C0(X , L(V, W )) −→ C0(X , L(V, Z))

is always continuous in its first argument. It is continuous in its second argument
if W is either metrisable or barrelled.

Proof: Let (xn)n∈N be a convergent sequence in X with limit x and consider
the zero neighbourhood N (KV , UZ) ⊆ L(V, Z) determined by some precompact
subset KV ⊆ V and a convex open zero neighbourhood UZ ⊆ Z . We claim that
the subset

KW = {0} ∪α(x)(KV )∪
⋃

n∈N

�

α(xn)−α(x)
�

(KV ) ⊆W

is precompact

To demonstrate this, pick an arbitrary absolutely convex zero neighbourhood
UW ⊆W . Because α is continuous, there is an N ∈ N such that α(xn)−α(x) ∈
N (KV , UW ) whenever n> N and such that consequently

⋃

n>N

�

α(xn)−α(x)
�

(KV ) ⊆ UW .

Each of the subsets
�

α(xn)−α(x)
�

(KV ) for n ∈ {1, . . . , N} and α(x)(KV ) of W is
the image of the precompact subset KV ⊆ V for a a continuous linear map and
is therefore also precompact, as is consequently their union. Consequently,

N
⋃

n=1

�

α(xn)−α(x)
�

(KV ) ⊆
M
⋃

i=1

(wi + UW )

for some finite collection of points w1, w2, . . . , wM ∈W . Since also 0 ∈ UW , we
infer that KW is covered a finite collection of neighbourhoods of the form w+UW
and that, since UW was arbitrary, KW is indeed precompact.
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Now choose an open zero neighbourhood U ′W ⊆W such that β(U ′W ) ⊆
1
3 UZ . We

can write the difference (β ◦α)(xn)− (β ◦α)(x) for any n ∈ N as

β(xn)◦α(xn)−β(x)◦α(x) = β(x) ◦
�

α(xn)−α(x)
�

+
�

β(xn)− β(x)
�

◦α(x)

+
�

β(xn)− β(x)
�

◦
�

α(xn)−α(x)
�

.

Note that both α(x)(KV ) and (α(xn)− α(x))(KV ) are contained in KW by con-
struction. If we can now show that (α(xn) − α(x))(KV ) ⊆ U ′W and that also
(β(xn)− β(x))(KW ) ⊆

1
3 UZ for all sufficiently large n ∈ N, it would follow that

(β ◦α)(xn)−(β ◦α)(x) is an element ofN (KV , 1
3 UZ+

1
3 UZ+

1
3 UZ) ⊆N (KV , UZ)

for such n.

Because α and β are continuous, we know that α(xn)→ α(x) and β(xn)→ β(x)
as n → ∞ and we can thus choose an N ∈ N such that α(xn) ∈ α(x) +
N (KV , U ′W ) and β(xn) ∈ β(x) + N (KW , 1

3 UZ) for all n > N . For such n ∈
N, we do have (α(xn) − α(x))(KV ) ⊆ U ′W and (β(xn) − β(x))(KW ) ⊆

1
3 UZ

and consequently (β ◦ α)(xn) ∈ (β ◦ α)(x) +N (KV , UZ). Because any zero
neighbourhood in L(V, Z) contains one of the form N (KV , UZ), we deduce that
(β ◦α)(xn)→ (β ◦α)(x) as n→∞.

We have shown that the composition β ◦ α: U → L(V, Z) maps convergent se-
quences in X to convergent sequences in L(V, Z). Since X is metrisable, β ◦α is
therefore continuous.

To show that precomposition by a fixed map α ∈ C0(X , L(V, W )) is continuous,
pick a zero neighbourhood N (KX ,N (KV , NZ)), which is determined by a com-
pact subset KX ⊆ X , a precompact subset KV ⊆ V and a zero neighbourhood
NZ ⊆ Z . Since α is continuous and KX is compact, also α(KX ) ⊆ L(V, W ) is com-
pact, and thus in particular precompact. Lemma A.2.26 therefore tells us that
also KW := α(KX )(KV ) ⊆W is precompact. Given a map β ∈ N (KX ,N (KW , NZ))
and two elements x ∈ KX and v ∈ KV it now follows that

(β ◦α)(x)(v) = β(x) ◦α(x)(v) ∈ β(KX )(KW ) ⊆ NZ ,

so β ◦ α ∈ N (KX ,N (KV , NZ)) whenever β ∈ N (KX ,N (KW , NZ)). Any neigh-
bourhood in C0(X , L(V, Z)) contains one of the form N (KX ,N (KV , NZ)), so
continuity of β 7→ β ◦α follows.

To show that postcomposition by β ∈ C0(X , L(W, Z)) is continuous if W is either
metrisable or barrelled, we first assume that W is metrisable. We then con-
sider the zero neighbourhood N (KX ,N (KV , NZ)) in C0(X , L(V, Z)) which is
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determined by the compact subset KX ⊆ X , the precompact subset KV ⊆ V
and the zero neighbourhood NZ ⊆ Z . Because X and W are metrisable, β
induces a continuous map from X ×W to Z by Lemma 3.1.1, which tells us
that there exists a neighbourhood N x

X × N x
W ⊆ X ×W of (x , 0) for any x ∈ KX

such that β(N x
X )(N

x
W ) ⊆ NZ . Because KX is compact, we can pick a finite subset

FX ⊆ X such that such that KX ⊆
⋃

x∈FX
N x

X and consider the zero neighbourhood
NW =

⋂

x∈FX
N x

W ⊆W . For any α ∈ N (KX ,N (KV , NW )), we now have

(β ◦α)(x)(v) = β(x) ◦α(x)(v) ∈ β(KX )(NW ) ⊆ NZ ,

for all x ∈ KX and all v ∈ KV , and thus β ◦α ∈ N (KX ,N (KV , NZ)). Because any
neighbourhood in C0(X , L(V, Z)) contains one of the form N (KX ,N (KV , NZ)),
continuity of α 7→ β ◦α follows.

Now assume that W is barrelled and let N (KX ,N (KV , NZ)) be as described
above. Because β is continuous, β(KX ) ⊆ L(W, Z) is compact and consequently
also bounded for the topology of precompact convergence. Since this implies
boundedness for the topology of simple convergence, the uniform boundedness
principle (Theorem A.2.27) tells us that β(KX ) is equicontinuous. There there-
fore exists a zero neighbourhood NW ⊆W such that β(KX )(NW ) ⊆ NZ . For any
α ∈ N (KX ,N (KV , NW )) we now have

(β ◦α)(x)(v) = β(x) ◦α(x)(v) ∈ β(KX )(NW ) ⊆ NZ

for all x ∈ KX and all v ∈ KV . It follows that β ◦ α ∈ N (KX ,N (KV , NZ)), and
continuity of α 7→ β ◦α follows. �

A similar statement for the evaluation map follows because W ' L(R, W ) as a
topological vector space for any locally convex vector space W . Note that the
evaluation map ev: L(V, W )× V →W itself is never continuous unless either V
is normable or W = 0.

Corollary 3.1.4.
Let X be a metrisable space and let V and W be locally convex vector spaces.
Given two continuous maps e: X → V and β : X → L(V, W ), the composition

β ◦ e: X −→W, (β ◦ e)(x)(v) = β(x)(e(x))

is continuous as well. The evaluation map

ev: C0(X , L(V, W ))×C0(X , V ) −→ C0(X , W ), (β , e) 7→ β ◦ e
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is always continuous in its first argument, and it is continuous in its second
argument if V is metrisable or barrelled.

Given two (continuous) linear maps α1 ∈ L(V1, W1) and α2 ∈ L(V2, W2), we can
consider their tensor product

α1 ⊗α2 : V1 ⊗ V2 −→W1 ⊗W2, v1 ⊗ v2 7→ α1(v1)⊗α2(v2),

which is again a continuous linear map. The following proposition is a general-
isation of the usual product rule from Proposition B.1.7.

Proposition 3.1.5.
Let X be a metrisable locally convex vector space and let V1, V2, W1 and W2 be
locally convex vector spaces. The tensor product

α1 ⊗α2 : X −→ L(V1 ⊗ V2, W1 ⊗W ), x 7→ α1(x)⊗α2(x)

of two continuous maps α1 : X → L(V1, W1) and α2 : X → L(V2, W2) is continuous.
Moreover, the resulting operator

⊗: C0(X , L(V1, W1))×C0(X , L(V2, W2)) −→ C0(X , L(V1 ⊗ V2, W1 ⊗W2))

is continuous whenever V1 and V2 are metrisable.

Proof: The tensor product is continuous as a map from L(V1, W1)×L(V2, W2) to
L(V1, W1)⊗L(V2, W2) by definition, so continuity of α1⊗α2 follows from the first
half of Proposition A.2.38. When combined with Lemma B.2.4, the second half
of this proposition tells us that this describes a continuous operation whenever
the spaces V1 and V2 are metrisable. �

3.1.2. Differentiable families of linear maps

Each of the statements from section 3.1.1 has an analogue for differentiable
families of linear maps parametrised by a Fréchet domain. As in Definition B.2.2,
a Fréchet domain is defined as a connected open subset X ⊆ T of a Fréchet
space T , and we endow the space Ck(X , V ) of maps of class Ck from this domain
to a locally convex vector space V with the compact-open Ck topology from
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appendix B.2.2. The space L(V, W ) of continuous linear maps from V to W still
comes with the relevant topology of precompact convergence.

For the sake of presentation, Proposition 3.1.6 and Proposition 3.1.8 appear out
of order in the sense that the latter is required to prove part of the former. The
part in question is the implication (i) ⇒ (iii) from Proposition 3.1.6, since it
relies on the smoothness of a composition of smooth families of linear maps.

Proposition 3.1.6.
Let T and V be metrisable locally convex vector spaces, let W be a locally convex
vector space and let X ⊆ T be an open subset. For any function α: X → L(V, W )
and any k ∈ N0 ∪ {∞}, the following statements are equivalent:

(i) α is of class Ck;

(ii) the map α̌: X × V →W given by α̌(x , v) = α(x)(v) is of class Ck;

(iii) there exists a (unique) continuous linear map

α̂k : Ck(X , V ) −→ Ck(X , W ) with α̂k(e)(x) = α(x)(e(x))

for all e ∈ Ck(X , V ) and every x ∈ X .

Proof: We will prove the implications (i)⇒ (iii), (iii)⇒ (ii) and (ii)⇒ (i), in
that order.

We first prove that (i) implies statement (iii) and therefore assume that α is of
class Ck for some k ∈ N0. Then Proposition 3.1.8 tells us that also the composi-
tion α̂k(e) = α ◦ e is of class Ck for any e ∈ Ck(X , V ), and that its derivatives are
described by the commuting diagram

Ck(X , V ) Ck(X , W )

∏k
p=0 C0(X , L(

⊙p(T ), V ))
∏k

q=0 C0(X , L(
⊙q(T ), W )).

α̂k

∑

0≤p≤q≤k F̂p,q

jk jk

Here jk is the k-th jet map introduced in appendix B.1.2 and F̂p,q denotes the
map

F̂p,q : C0(X , L(
⊙p(T ), V )) −→ C0(X , L(

⊙q(T ), V )),
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given by

F̂p,q(Ep)(x)( ẋ{1,...,q}) =
∑

ItJ={1,...,q}
#I=q−p,#J=p

Dq−pα(x)( ẋ I )
�

Ep(x)( ẋJ )
�

for Ep ∈ C0(X , L(
⊙p(T ), V )), x ∈ X and ẋ1, ẋ2, . . . , ẋq ∈ T . Since the topologies

on Ck(X , V ) and Ck(X , W ) were defined to be such that these two jet maps are
topological embeddings, we only need to show that F̂p,q is continuous for all
appropriate p, q ∈ N0.

To prove that F̂p,q is continuous, we observe that F̂p,q(Ep) can be expressed as

F̂p,q(Ep) = Dq−pα ◦ (id⊙q−p(T ) ⊗ E) ◦∆p,q

for any E ∈ C0(X , Lq−p(T, V )), where ∆p,q :
⊙q(T )→

⊙q−p(T )⊗
⊙p(T ) is the

map given by
∆p,q

�
⊗q

i=1 ẋ i

�

=
∑

ItJ={1,...,q}
#I=q−p,#J=p

ẋ I ⊗ ẋJ

for ẋ1, ẋ2, . . . , ẋq ∈ T . Since both Dq−pα and ∆p,q are continuous and
⊙q(T )

and V ⊗
⊗q−p(T ) are metrisable, it now follows from Proposition 3.1.3 and

Proposition 3.1.5 that F̂p,q(Ep) depends continuously on Ep. Consequently, the
map α̂k described above is continuous for a given k ∈ N0 whenever α is of class
Ck.

The spaces of Ck maps from X to V and W for k ∈ N0 together form two
projective systems of locally convex vector spaces whose limits are the spaces
C∞(X , V ) and C∞(X , W ) of smooth sections. If α is of class C∞, then the maps
α̂l for l ∈ N0 together form a morphism between these projective systems and
therefore induce a continuous map α∞ : C∞(X , V )→ C∞(X , W ). We conclude
that the implication (i)⇒ (iii) therefore also holds when k =∞.

To prove the implication (iii)⇒ (ii), we shall assume that the map α̂k exists and
is continuous for a given k ∈ N0 ∪ {∞}. Now α̌ can be described in terms of
α̂k by the equation α̌(x , v) = α̂k(cv)(x), where cv : X → V denotes the constant
map x 7→ v (which is of class Ck). Consequently, the restriction α̌|X×{v} is of
class Ck for every v ∈ V . We will use Proposition B.1.3 to show that α̌ is of class
Ck.
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We observe that for any p ∈ N0 such that p ≤ k and (x , v) ∈ X × V , the partial
derivative Dp

1α̌(x , v) is equal to (Dp ◦ α̂k(cv))(x). We deduce that Dp
1α(x , v) is

continuous, as well as linear, as a function of v because

Dp ◦ α̂k ◦ c : V −→ Ck−p(X , Lp(T, W )), v 7→ Dp(α̂k(cv)),

is a composition of continuous linear maps, and evaluation at x ∈ X is both
continuous and linear as well. This in particular means that Dp

1α̌|{x}×V is of class
Ck−P for any x ∈ X and that D2Dp

1α̌(x , v) = Dp
1α̌(x , �) and Dq

2Dp
1α̌(x , v) = 0 for

all q ≥ 2 and (x , v) ∈ X × V .

The continuity of Dp ◦ α̂k ◦ c also tells us, through Lemma 3.1.1, that Dp
1α̌ is

continuous as a map from X × V to Lp(X , W ). By applying Lemma 3.1.1 again,
we see that also the derivative D2Dp

1α̌: (x , v) 7→ Dp
1α̌(x , �) is continuous. Since

all of its hypotheses are satisfied, we now conclude from Proposition B.1.3 that
α̌ is itself of class Ck.

We can prove that the implication (ii)⇒ (i) holds for all k ∈ N0 by induction.
The case k = 0 was already proven in Lemma 3.1.1. Assume that this claim
holds for a given k ∈ N0 and that α̌ is of class Ck+1, then the induction hypothesis
tells us α is of class Ck. It follows from Lemma 3.1.1 and Corollary A.2.48 that
the (k+ 1)-st derivative,

Dk+1
1 α̌: X × V −→ Lk(T, V ),

of α̌ with respect to the first argument induces a continuous map,

Ak+1 : X −→ L
�

V, Lk+1(T, W )
�

' Lk+1
�

T, L(V, W )
�

,

which is given by Ak+1(x)( ẋ1, . . . , ẋp)(v) = Dk+1
1 α̌(x , v)( ẋ1, . . . , ẋp) for (x , v) ∈

X × V and ẋ1, ẋ2, . . . , ẋp ∈ T . We claim that this is the derivative of Dkα.

Suppose we are given a point x ∈ X and a vector ẋ ∈ T and let N (KV , UT,W ) be
the zero neighbourhood in L(

⊙k(T ), L(V, W ))' L(V, L(
⊙k(T ), W )) determined

by some precompact subset KV ⊆ V and a convex open zero neighbourhood
UT,W ⊆ L(

⊙k(T ), W ). We need to show that

1
t

�

Dkα(x + t ẋ)−Dkα(x)
�

∈ Ak+1(x)( ẋ) +N (KV , UT,W )

for all t ∈ R sufficiently close to 0.
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Since Dk+1
1 α̌ is continuous, we can choose a convex neighbourhood UX × UV ⊆

X×V of (x , 0) such that Dk+1α̌(x ′, v′) ∈ 1
4 UT,W for all (x ′, v′) ∈ UX ×UV . We can

similarly choose a neighbourhood Ux ,v for any v ∈ KV such that Dk+1
1 α̌(x ′, v) ∈

Dk+1
1 α̌(x , v) + 1

4 UT,W for all x ′ ∈ Ux ,v . The precompactness of KV then allows
us to choose v1, v2, . . . , vN ∈ KV such that KV ⊆

⋃N
i=1 vi + UV and consider the

intersection UX :=
⋃N

i=1 UX ,vi
. For every x ′ ∈ UX and every v ∈ KV we can now

pick an i ∈ {1, . . . , N} such that v ∈ vi + Uv,vi
and such that therefore

Dk+1
1 α̌(x ′, v)−Dk+1

1 α̌(x , v) = Dk+1
1 α̌(x ′, v − vi) +

�

Dk+1
1 α̌(x , vi − v)

�

+
�

Dk+1
1 α̌(x ′, vi)−Dk+1

1 α̌(x ′, vi)
�

is an element of 1
4 UT,W +

1
4 UT,W +

1
4 UT,W ⊆

3
4 UT,W .

We observe that since Dk
1α̌ is differentiable,

Dkα(x + t ẋ)( �)(v)−Dkα(x)( �)(v)− t Ak+1(x)( ẋ � �)(v)

= Dk
1α̌(x + t ẋ , v)−Dk

1α̌(x , v)− t Dk+1
1 α̌(x , v)(t ẋ)

=

∫ t

0

�

Dk+1
1 α̌(x + s ẋ , v)−Dk+1

1 α̌(x , v)
�

( ẋ)ds

for every t ∈ R and every v ∈ KV . Since we have just shown that the integrand
is an element of 3

4 UT,W for all s ∈ R such that x + s ẋ ∈ UX and UX is convex, it
follows that this expression describes an element of 3

4 t UT,W ⊆ t UT,W for every
t ∈ R such that x + t ẋ ∈ UX and every v ∈ KV . Therefore,

1
t

�

Dkα(x + t ẋ)−Dkα(x)− Ak+1(x)(t ẋ � �)
�

∈ N
�

KV , UT,W

�

.

for every t ∈ R such that x + t ẋ ∈ UX . Since any zero neighbourhood in
L(V, Lk(T, W )) contains one of this form and x and ẋ were arbitrary, we conclude
that Dkα is differentiable and that Ak+1 is its (continuous) derivative. It follows
by induction that the implication (ii)⇒ (i) holds for all k ∈ N0, and therefore
also for k =∞.

We conclude that these three statements are equivalent for any k ∈ N0 ∪ {∞}.
�

For barrelled spaces we can again do even better.
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Lemma 3.1.7.
Let T be a metrisable locally convex vector space, let V and W be locally convex
vector spaces of which the first is barrelled and let X ⊆ T be an open subset. A
function α: X → L(V, W ) is of class Ck for a given k ∈ N0 ∪ {∞} if and only if
the map

αv := α( �)(v): X −→W, x 7→ α(x)(v)

is of class Ck for every v ∈ V .

Proof: Since the evaluation map evv : L(V, W ) → W is continuous and linear
for any fixed v ∈ V , αv = evv ◦α is of class Ck whenever α is. We will prove the
converse implication by induction on k ∈ N.

Suppose that α is of class Ck−1 for some k ∈ N and that αv is of class Ck for every
v ∈ V . This means that for all x ∈ X , every v ∈ V and any ẋ ∈ T ,

lim
t→0

1
t

�

Dk−1αv(x + t ẋ)−Dk−1αv(x + ẋ)
�

= Dkαv(x)( ẋ) ∈ Lk−1(T, W ),

where Dkαv(x) ∈ Lk(T, W ) depends continuously on x ∈ X . One can demon-
strate that the derivatives Dpα(x)( ẋ{1,...,k−1})(v) of α for p = 0, 1, . . . , k− 1 coin-
cide with by Dk−1αv(x)( ẋ{1,...,k−1}) , and also for p = k if this derivative exists.

Since V is barrelled, the Banach–Steinhaus theorem (Theorem A.2.28) tells us
that the aforementioned limit is uniform on precompact subsets of V and thus
induces a similar limit in the space L(V, Lk−1(T, W )). The same corollary can also
be used to show that there exists a canonical injective map L(V, Lk−1(V, W )) ,→
Lk−1(T, L(V, W )), which is easily shown to be a topological embedding. It follows
that the limit

Ak(x)( ẋ) = lim
t→0

1
t

�

Dk−1α(x + t ẋ)−Dk−1α(x + ẋ)
�

∈ Lk−1(T, L(V, W )),

exists for every x ∈ X and every ẋ ∈ T . The only thing that remains to be shown
that Ak(x) is an element of Lk(T, L(V, W )) that depends continuously on x ∈ X .

One can readily verify that Ak(x)( ẋ{1,...,k})(v) = Dkαv( ẋ{1,...,k}) for all x ∈ X ,
v ∈ V and ẋ1, ẋ2, . . . , ẋk ∈ T . Continuous dependence of this expression on
the parameters (x , ẋ1, . . . , ẋk) ∈ X ×

∏k T follows from Lemma 3.1.1 because
Dkαv is continuous by assumption and both X and T are metrisable. Since
V is barrelled, we learn from Proposition 3.1.2 that also Ak(x)( ẋ1, . . . , ẋk) ∈
L(V, W ) depends continuously on these parameters, and finally deduce from
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Lemma 3.1.1 that Ak is a continuous map from X to Lk(T, L(V, W )). We conclude
that α is of class Ck.

Since the case k = 0 was already covered in Lemma 3.1.7, it now follows by
induction that for any k ∈ N0, α is of class Ck whenever all maps αv for v ∈ V
are. Given this fact, the case k =∞ is immediate. �

Proposition 3.1.8 and its corollaries are versions of the usual chain rule for
families of continuous linear maps.

Proposition 3.1.8.
Let T , be a metrisable locally convex vector space, let V , W and Z be locally convex
vector spaces and let X ⊆ T be an open subset. Given two maps α: X → L(V, W )
and β : X → L(W, Z) of class Ck for some k ∈ N0 ∪ {∞}, the composition

β ◦α: X −→ L(V, Z), (β ◦α)(x)(v) =
�

β(x) ◦α(x)
�

(v)

is of class Ck as well. Its derivatives are given by

Dp(β ◦α)(x)( ẋ1, . . . , ẋp) =
∑

ItJ={1,...,p}

�

D#Iβ(x)( ẋ I ) ◦D#Jα(x)( ẋJ )
�

(3.1.1)

for all x ∈ X and ẋ1, . . . , ẋp ∈ T with p ∈ N0.

The composition map,

◦: Ck(X , L(W, Z))×Ck(X , L(V, W )) −→ Ck(X , L(V, Z)), (β ,α) 7→ β ◦α

is always continuous in its first argument, and continuous in its second argument
if W is metrisable or barrelled.

Proof: We shall first consider the case k = 1 and then do the general case using
an inductive argument.

Assume that both β and α are of class C1 and pick a point x ∈ X and a vector
ẋ ∈ T . Because both β and α are differentiable, there exist continuous maps
Qα : R→ L(V, W ) and Qβ : R→ L(W, Z) that are given by

Qα(t) =

¨

1
t

�

α(x + t ẋ)−α(x)
�

if t 6= 0

Dα(x)( ẋ) if t = 0
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and

Qβ (t) =

¨

1
t

�

β(x + t ẋ)− β(x)
�

if t 6= 0

Dβ(x)( ẋ) if t = 0

for t ∈ R. In terms of these, the difference quotient for t 7→ (β ◦α)(x + t ẋ) can
be expressed as

1
t

�

(β ◦α)(x + t ẋ)− (β ◦α)(x)
�

=Qβ (t) ◦α(x + t ẋ) + β(x) ◦Qα(t).

Now, Proposition 3.1.3 tells us that the limit of this expression for t → 0 exists
and is given by

lim
t→0

1
t

�

(β ◦α)(x + t ẋ)− (β ◦α)(x)
�

= Dβ(x)( ẋ) ◦α(x) + β(x) ◦Dα(x)( ẋ).

which is compatible with equation (3.1.1). We shall denote the right-hand side
of this equation by D(β ◦α)(x)( ẋ).

To show that this derivative depends continuously on the base point x ∈ X ,
consider the following maps:

αX×T : X × T −→ L(V, W ), (x , ẋ) 7→ α(x)

βX×T : X × T −→ L(W, Z), (x , ẋ) 7→ β(x)

(Dα)X×T : X × T −→ L(V, W ), (x , ẋ) 7→ Dα(x)( ẋ)

(Dβ)X×T : X × T −→ L(W, Z), (x , ẋ) 7→ Dβ(x)( ẋ).

Because X and T are metrisable, Lemma 3.1.1 tells us that each of these maps
is continuous, which means that continuity of the composition

D(β ◦α)X×T = (Dβ)X×T ◦αX×T + βX×T ◦ (Dα)X×T : X × T −→ L(V, Z)

now follows from Lemma 3.1.1. By applying Lemma 3.1.1 again, we deduce
that the derivative

D(β ◦α): X −→ L(T, L(V, Z))

is continuous. We conclude that β ◦ α is of class C1 and that its derivative is
given by equation (3.1.1) for p = 1.

Now assume that the statement of this proposition is true for some k ∈ N and
that both α and β are of class Ck+1. We know that the derivative of β ◦ α is
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given by Dβ ◦ α+ β ◦Dα and that α, β , Dα and Dβ are all of class Ck, so the
induction hypothesis tells us that D(β ◦ α) is of class Ck. It moreover follows
that the k-th order derivative of D(β ◦α) is given by

Dk(D(β ◦α))(x)( ẋ{1,...,k}) =
∑

ItJ={1,...,k}

D#I (Dβ)(x)( ẋ I ) ◦D#Jα(x)( ẋJ )

+D#Iβ(x)( ẋ I ) ◦D#J (Dα)(x)( ẋJ )

for any x ∈ X and all ẋ1, ẋ2, . . . , ẋk ∈ T .

Since D(β ◦α) is of class Ck, we infer that β ◦α is in fact of class Ck+1, and that
its (k+ 1)-st order derivative is given by

Dk+1(β ◦α)(x)( ẋ{0,...,k}) = Dk
�

D(β ◦α)
�

(x)( ẋ{1,...,k})( ẋ0)

=
∑

ItJ={1,...,k}

(D#I+1β(x)( ẋ0 � ẋ I ) ◦D#Jα(x)( ẋJ ))

+ (D#Iβ(x)( ẋ I ) ◦D#J+1α(x)( ẋ0 � ẋJ ))

=
∑

ĨtJ̃={0,1,...,k}

(D# Ĩβ(x)( ẋ Ĩ ) ◦D#J̃α(x)( ẋ J̃ )),

for any x ∈ X and ẋ0, ẋ1, . . . , ẋk ∈ T .

We conclude that the statment of this proposition is true for all k ∈ N, and that
it therefore also holds for k =∞.

Continuity of pre- and postcomposition can be proven in the same way as in
Proposition 3.1.3 by using the canonical embedding

Ck
�

X , L(V ′, W ′)
�

,−→
k
∏

p=0

C0
�

X , L
�
⊙p(T ), L(V ′, W ′)

��

for any two locally convex vector spaces V ′ and W ′, as well as the fact that
L(
⊙p(T ), V ′) is isomorphic to L(

⊗r(T ), L(
⊗s(T )V ′))whenever p = r+s. These

facts are discussed in Proposition A.2.46 and Proposition A.2.47. �

The following corollary follows from Proposition 3.1.8 and the basic fact that
L(R, V ) is isomorphic to V for any locally convex vector space V .
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Corollary 3.1.9.
Let T , be a metrisable locally convex vector space, let V and W be locally convex
vector spaces and let X ⊆ T be an open subset. Given two maps e: X → V and
β : X → L(V, W ) of class Ck for some k ∈ N0 ∪ {∞}, the composition

β ◦ e: X −→W, (β ◦ e)(x)(v) = β(x)(e(x))

is of class Ck as well. Its derivatives are given by

Dp(β ◦ e)(x)( ẋ1, . . . , ẋp)(v) =
∑

ItJ={1,...,p}

D#Iβ(x)( ẋ I ) ◦D#J e(x)( ẋJ ) (3.1.2)

for all x ∈ X , all v ∈ V and ẋ1, . . . , ẋp ∈ T with p ∈ N0. The evaluation map

ev: Ck(X , L(V, W ))×Ck(X , V ) −→ Ck(X , W ), (β , e) 7→ β ◦ e

is always continuous in its first argument, and it is continuous in its second
argument if W is metrisable or barrelled.

Proof: This is a special case of Proposition 3.1.8 since the space V is naturally
isomorphic to L(R, V ) for any locally convex vector space V . �

The next corollary, essentially describes the composition of vector bundle morph-
isms that need not be base-preserving.

Corollary 3.1.10.
Let S and T be metrisable locally convex vector spaces, let V , W and Z be locally
convex vector spaces and let X ⊆ S and Y ⊆ T be open subsets. Given three maps
α: X → L(V, W ), β : Y → L(W, Z) and f : X → Y of class Ck, with k ∈ N0∪{∞},
the composition

β ◦ (α, f ): X −→ L(V, Z), x 7→ β( f (x)) ◦α(x)

is of class Ck as well. For any p ∈ N0, its p-th order derivative is given by

Dp(β ◦ (α, f ))(x)( ẋ{1,...,p}) =
∑

ItJ={1,...,p}

Dmβ( f (x))
�

DI f (x)( ẋ I )
�

◦D#Jα(x)( ẋJ )

for all x ∈ X and ẋ1, . . . , ẋp ∈ T, where DI f (x)( ẋ I ) denotes the sum

DI f (x)( ẋ I ) :=
∑

I1,...,Im

1
m!

⊙m
j=1 D#I j f (x)( ẋ I j

)

over all subsets I1, I2, . . . , Im ⊆ I that form an (ordered) partition of I .
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Proof: Since β ◦ (α, f ) = (β ◦ f ) ◦α by definition, this corollary is essentially a
combination of Proposition B.1.6 and Proposition 3.1.8. �

Given families αi : X → L(Vi , Wi) of continuous linear maps for i = 1,2, . . . , q,
we may consider the product

⊗q
i=1αi : X −→ L

�
⊗q

i=1 Vi ,
⊗q

j=1 Wj

�

,

which is the family of continuous linear maps given by
�
⊗q

i=1αi

�

(x)(v1 ⊗ · · · ⊗ vq) =
⊗q

i=1αi(x)(vi)

when applied to a decomposable element v1⊗ v2 · · ·⊗ vq ∈
⊗q

i=1 Vi . The product
rule from Proposition B.1.7 can be adapted to apply to tensor products of this
type.

Proposition 3.1.11 (Product rule).
Let X ⊆ T be an open subset of a metrisable locally convex vector space T , and
let V1, V2, . . . , Vq and W1, W2, . . . , Wq be locally convex vector spaces. Given maps
αi : X → L(Vi , Wi) for i = 1,2, . . . , q of class Ck with k ∈ N0 ∪ {∞}, also the
tensor products

⊗q
i=1αi is of class Ck and its derivatives are given by

Dp
�
⊗q

i=1αi

�

(x)( ẋ{1,...,p})(v{1,...,q}) =
∑

I1,...,Iq

⊗q
i=1 D#Iiαi(x)( ẋ Ii

)(vi)

for p ∈ N0, x ∈ X and all ẋ1, ẋ2, . . . , ẋp ∈ T and vi ∈ Vi for i = 1,2, . . . , q.
Moreover, the operator

⊗:
q
∏

i=1

Ck(X , L(Vi , Wi)) −→ Ck
�

X , L
�
⊗q

i=1 Vi ,
⊗q

j=1 Wj

��

that maps (α1, . . . ,αq) to
⊗q

i=1αi is continuous.

Proof: This is nearly a direct consequence of Proposition B.1.7. The key obser-
vation is the existence of a canonical continuous linear map from

⊗p
i=1 L(Vi , Wi)

to L
�
⊗q

i=1 Vi ,
⊗q

j=1 Wj

�

that relates the tensor product defined above to that
from Proposition B.1.7. Postcomposition by this map produces another map

Ck
�

X ,
⊗q

i=1 L(Vi , Wi)
�

−→ Ck
�

X , L
�
⊗q

i=1 Vi ,
⊗q

j=1 Wj

��

,

whose continuity is readily verified. Continuity of the tensor product operator
described above then follows.. �
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Proposition 3.1.12 (Direct sum).
Let X ⊆ T be an open subset of a metrisable locally convex vector space T , and
let (Vλ)λ∈Λ be a collection of locally convex vector spaces. Given maps αλ : X →
L(Vλ, Wλ) for λ ∈ Λ of class Ck with k ∈ N0 ∪ {∞}, also the sum

⊕

λ∈Λ
αλ : X −→ L

�
⊕

κ∈Λ Vκ,
⊕

λ∈ΛWλ

�

,
∑

λ∈A vλ 7→
∑

λ∈Aαλ(vλ)

is of class Ck. The induced operator

⊕:
∏

λ∈Λ

Ck(X , L(Vλ, Wλ)) −→ Ck
�

X , L
�
⊕

κ∈Λ Vκ,
⊕

λ∈ΛWλ

��

is a topological isomorphism onto its image.

Proof: The collection (αλ)λ∈Λ can be viewed as a single map of class Ck from
X to the product

∏

λ∈Λ L(Vλ, Wλ), and the sum
⊕

λ∈Λαλ is the composition of
this map with the canonical maps

∏

λ∈Λ

L(Vλ, Wλ) ,−→
∏

κ∈Λ
L
�

Vκ,
⊕

λ∈ΛWλ

� ∼−→ L
�
⊕

κ∈Λ Vκ,
⊕

λ∈ΛWλ

�

.

The first map is clearly a topological embedding, and Proposition A.2.25 tells
us that the second map is a topological isomorphism. From this, we not only
learn that that

⊕

λ∈Λαλ is of class Ck, but also that the corresponding inclusion
of Ck(X , L(Vλ, Wλ)) into Ck

�

X , L
�
⊕

κ Vκ,
⊕

λWλ

��

is a topological isomorphism
onto its image. �

Although we have stated Proposition 3.1.11 using the uncompleted projective
tensor product, the exact same statements would also hold if the spaces

⊗p
i=1 Vi

and
⊗q

j=1 Wj had been replaced by their completions. This follows from the
observation in Remark A.2.42 that the space L

�
⊗q

i=1 Vi ,
⊗q

j=1 Wj

�

can be (ca-
nonically) embedded into L

�
⊗q

i=1 Vi ,
⊗q

j=1 Wj

�

if the spaces Vi for i = 1, 2, . . . , q
are metrisable.

Proposition 3.1.13 (Transposition).
Let X ⊆ T be an open subset of a metrisable locally convex vector space T , and
let V and W be locally convex vector spaces of which the second is barrelled.
The transpose α̌ : X → L( ˇW , ˇV ) of a map α: X → L(V, W ) is of class Ck with
k ∈ N0 ∪ {∞} whenever α is.
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Proof: This is a consequence of Proposition A.2.30 and the fact that the com-
position of map of class Ck with a continuous linear map is of class Ck. �

3.1.3. Analytic families of linear maps

The last type of families we consider are analytic families of linear maps. We
will see that statements similar to those in section 3.1.1 and section 3.1.2 hold
for this class as well. Given a Fréchet domain X ⊆ T and two locally convex
vector spaces V and W , the space Cω(X , L(V, W )) of analytic maps is a sub-
space of C∞(X , L(V, W )), and will be endowed with the corresponding subspace
topology.

The next proposition describes a number of equivalent characterisations of ana-
lytic families of families of continuous linear maps.

Proposition 3.1.14.
Let X ⊆ T be a Fréchet domain, let V be a barrelled, metrisable locally convex
vector space and let W be an arbitrary locally convex vector space. For any
function α: X → L(V, W ), the following statements are equivalent:

(i) α is analytic;

(ii) the map α̌: X × V →W given by α̌(x , v) = α(x)(v) is analytic;

(iii) there exists a (unique) continuous linear map

α̂ω : Cω(X , V ) −→ Cω(X , W ) with α̂ω(e)(x) = α(x)(e(x))

for all e ∈ Cω(X , V ) and every x ∈ X .

(iv) the map α( �)(v): X →W is of class Cω for every v ∈ V;

Proof: It is easy to see that statement (iv) is implied by each of the other three
statements. Equivalence of this conditions to statement (i) follows from the
Banach–Steinhaus theorem, Theorem A.2.28, which directly states that a se-
quence in L(V, W ) is convergent for the topology of precompact convergence if
and only if it is pointwise convergent.

It is also relatively simple to see that condition (ii) holds whenever condition (i)
does because evaluation at v is a continuous operation and convergence of
a sequence converging to α(x) ∈ L(V, W ) therefore implies convergence to
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α(x)(v) of the corresponding sequence in L(W ) for every v ∈ V . This proposition
would therefore be proven if we can show that condition (iii) is implied by
statement (i).

To demonstrate this last implication, we need to do two things: we need to show
that α̂ω(e) is analytic for every e ∈ Cω(X , V ) and that α̂ω is continuous. The
first fact is a form of the chain rule that is important on its own and is stated and
proven separately in Corollary 3.1.16 below. The first fact is proven in Corol-
lary 3.1.16 below, which we state and prove separately because it is important
in its own right. Once it is established that αω is well-defined, its continuity is
an immediate consequence of the similar claim from Proposition 3.1.6 because
Cω(X , V ) and Cω(X , W ) are embedded subspaces of the corresponding spaces
of smooth sections. �

Proposition 3.1.15 and its corollaries are versions of the usual chain rule for
families of continuous linear maps.

Proposition 3.1.15.
Let X ⊆ T be a Fréchet domain and let V , W and Z be arbitrary locally convex
vector spaces. Given two analytic maps α: X → L(V, W ) and β : X → L(W, Z),
the composition

β ◦α: X −→ L(V, Z), (β ◦α)(x)(v) =
�

β(x) ◦α(x)
�

(v)

is analytic as well.

Proof: Proposition B.1.23 tells us that there exists a complex Fréchet domain
X̃ ⊆ T ⊗C containing X and analytic maps α̃: X̃ → L(V ⊗C, W ⊗C) and β̃ : X̃ →
L(W ⊗ C, Z ⊗ C) that extend α and β . We know from Proposition B.1.24 that
both of these maps satisfy the Cauchy–Riemann equation.

It follows from Proposition 3.1.8 that the composition β̃ ◦ α̃ is smooth when
viewed as a map between real vector spaces. Its derivative is given by D(β̃ ◦α̃) =
Dβ̃ ◦ α̃ + β̃ ◦ Dα̃ and one can readily verify that it also satisfies the Cauchy–
Riemann equation. We can thus deduce from Proposition B.1.24 that β̃ ◦ α̃ is
complex analytic, and that β ◦α= β̃ ◦ α̃|X is therefore analytic as well. �
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Corollary 3.1.16.
Let X ⊆ T be a Fréchet domain, and let W and Z be locally convex vector spaces.
Given two analytic maps e: X →W and β : X → L(W, Z), the composition

β ◦ e: X −→ Z , (β ◦ e)(x)(v) = β(x)(e(x))

is analytic as well.

By combining Proposition 3.1.15 and Proposition B.1.28, the following corollary
is obtained.

Corollary 3.1.17.
Let X ⊆ S and Y ⊆ T be Fréchet domains and let V , W and Z be arbitrary
locally convex vector spaces. Given three analytic maps α: X → L(V, W ), β : Y →
L(W, Z) and f : X → Y , the composition

β ◦ (α, f ): X −→ L(V, Z), x 7→ β( f (x)) ◦α(x)

is also analytic.

We finally formulate analytic versions of the product, direct sum and transposi-
tion rules Proposition 3.1.11 and Proposition 3.1.13 for analytic maps.

Proposition 3.1.18 (Product rule).
Let X ⊆ T be a Fréchet domain, and let V1, V2, . . . , Vq and W1, W2, . . . , Wq be
locally convex vector spaces. Given analytic maps αi : X → L(Vi , Wi) for i =
1,2, . . . , q, also the tensor product

⊗q
i=1αi : X → L

�
⊗q

i=1 Vi ,
⊗q

j=1 Wq

�

is ana-
lytic.

Proof: This follows from the product rule in Proposition B.1.28, along with the
continuity of the canonical map from

⊗p
i=1 L(Vi , Wi) to L

�
⊗q

i=1 Vi ,
⊗q

j=1 Wj

�

.
�

Proposition 3.1.19 (Direct sum).
Let X ⊆ T be an open subset of a metrisable locally convex vector space T , and
let (Vλ)λ∈Λ be a collection of locally convex vector spaces. Given analytic maps
αλ : X → L(Vλ, Wλ) for λ ∈ Λ, the sum

⊕

λ∈Λ
αλ : X −→ L

�
⊕

κ∈Λ Vκ,
⊕

λ∈ΛWλ

�

,
∑

λ∈A vλ 7→
∑

λ∈Aαλ(vλ)

is analytic as well.
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Proof: The argument from Proposition 3.1.12 can nearly be copied verbatim
since the composition of an analytic map with a continuous linear map is analytic
and the space of analytic maps from X to a locally convex vector space is an
embedded subspace of the corresponding space of smooth maps. �

Proposition 3.1.20 (Transposition).
Let X ⊆ T be an open subset of a metrisable locally convex vector space T , and
let V and W be locally convex vector spaces of which the second is barrelled. The
transpose α̌ : X toL( ˇW , ˇV ) of a map α: X → L(V, W ) is analytic whenever α is.
Transposition is continuous as a map from Ck(X , L(V, W )) to Ck( ˇW , ˇV ).

Proof: Analyticity of the transpose α̌ can be demonstrated by applying Pro-
position A.2.30, and continuity of transposition is a consequence of Proposi-
tion 3.1.13. �

3.1.4. Families of multilinear maps

A continuous multilinear map from the product of locally convex vector spaces
V1, V2, . . . , Vp to another such space W is a continuous map from

∏p
i=1 Vi to

W which is linear in each argument. We denote the space of such maps by
L(V1, V2, . . . , Vp;W ) and recall from Proposition A.2.46 that the tensor product
operator χ :

∏p
i=1 Vi →

⊗p
i=1 Vi induces a canonical isomorphism

L
�
⊗p

i=1 Vi , W
� ∼−→ L(V1, . . . , Vp; W ), α 7→ α ◦χ (3.1.3)

of locally convex vector spaces whenever each of the spaces Vi is metrisable.

We define a family of continuous multilinear maps from the product of locally
convex vector spaces V1, V2, . . . , Vp to W , parametrised by a space X , as a func-
tion

α: X −→ L
�
⊗p

i=1 Vi , W
�

,

and declare this family to be of class Ck for k ∈ N0 ∪ {∞,ω} whenever this
map is of class Ck for the aforementioned topology. Most of the statements
from sections 3.1.2 and 3.1.3 have multilinear analogues, which are presented
below.
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Lemma 3.1.21.
Let X ⊆ T be a Fréchet domain, let V1, V2, . . . , Vp be barrelled, metrisable locally
convex vector spaces and let W be an arbitrary locally convex vector space. For
any function α: X → L

�
⊗p

i=1 Vi , W
�

and any k ∈ N0 ∪ {∞,ω}, the following
statements are equivalent:

(i) α is of class Ck;

(ii) the map α̌: X ×
∏p

i=1 Vi →W given by α̌(x , v1, . . . , vp) = α(x)(v1, . . . , vp)
is of class Ck;

(iii) there exists a (unique) continuous multilinear map

α̂k :
⊗p

i=1 Ck(X , Vi) −→ Ck(X , W ),

which is given by

α̂k

�
⊗p

i=1 ei

�

(x) = α(x)
�
⊗p

i=1 ei(x)
�

for all ei ∈ Ck(X , Vi) with i = 1,2, . . . , p and every x ∈ X .

(iv) for all (v1, v2, . . . , vp) ∈
∏p

i=1 Vi , the map

αv1,...,vp
= α( �)(v1, . . . , vp): X −→W, x 7→ α(x)(v1, . . . , vp)

is of class Ck.

Proof: Because the canonical map from
∏p

i=1 Vi to
⊗p

i=1 Vi is continuous and
multilinear it is in particular of class Ck for any k ∈ N0∪{∞} (resp. of class Cω).
Consequently, Proposition 3.1.6 (resp. Proposition 3.1.14) and Proposition 3.1.8
(resp. Proposition 3.1.15) can be used to demonstrate the implication (i)⇒ (ii).
Continuity of the multilinear map from

∏p
i=1 Ck(X , Vi) to Ck(X ,

⊗p
i=1 Vi), which

was shown in Proposition B.1.7 (resp. Proposition B.1.28), similarly allows us
to use tells us to use Proposition 3.1.6 (resp. Proposition 3.1.14) to prove the
implication (i)⇒ (iii).

It is clear that both statements (i) and (iii) imply statement (iv), so the only
implication that remains to be demonstrated is (iv)⇒ (i). This can be done by
applying Lemma 3.1.7 if k ∈ N0 ∪ {∞} and Proposition 3.1.14 if k =ω.

Assume that αv1,...,vp
is of class Ck for all (v1, v2, . . . , vp) ∈

∏p
i=1 Vi and some

fixed k ∈ N0 ∪ {∞,ω}. For any element v ∈
⊗

i=1p Vi , the corresponding
map αv from X to W is a linear combination of maps of the form αv1,...,vp

with
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(v1, v2, . . . , vp) ∈
∏p

i=1 Vi and is therefore of class Ck. As a projective tensor
product of barrelled metrisable locally convex vector spaces,

⊗

i=1p Vi is both
metrisable and barreled due to Proposition A.2.43(iv). Therefore, Lemma 3.1.7
(resp. Proposition 3.1.14) tells us that α is of class Ck as well. �

Proposition 3.1.22.
Let X ⊆ T be a Fréchet domain, let V1, V2, . . . , Vp, W1, W2, . . . , Wq be metrisable
locally convex vector spaces and let Z1 and Z2 be arbitrary locally convex vector
spaces. Consider two maps α: X → L

�
⊗p

i=1 Vi , Z1

�

and β : X → L
�
⊗q

j=1 Wj , Z2

�

which are of class Ck for some k ∈ N0 ∪ {∞,ω}. The map

α⊗ β : X −→ L
�
⊗p

i=1 Vi ⊗
⊗q

j=1 Wj , Z1 ⊗ Z2

�

,

which is given by

(α⊗ β)(x)(v1, . . . , vp, w1, . . . , wq) = α(x)(v1, . . . , vp)⊗ β(x)(w1, . . . , wq),

for x ∈ X , vi ∈ Vi and w j ∈Wj , is of class Ck as well.

Proof: This follows directly from Proposition 3.1.11 and Proposition 3.1.18. �

Whenever we have a family β : X → L
�
⊗p

j=1 Wj , Z
�

of continuous multilinear

maps and a p-tuple (α j)
p
j=1 of similar families α j : X → L

�
⊗q j

i=1 Vi, j , Wj

�

, we can
consider the composition

β ◦ (α1, . . . ,αp): X −→ L
�
⊗p

i=1

⊗qi
j=1 Vi, j , Z

�

,

which is given by

(β ◦α)(x)
�
⊗p

i=1

⊗qi
j=1 vi, j

�

= β(x)
�
⊗p

i=1α1(x)
�
⊗qi

j=1 vi, j

��

for x ∈ X and vi, j ∈ Vi, j with i = 1,2, . . . , p and j = 1, 2, . . . , qi .

Proposition 3.1.23.
Let X ⊆ T be Fréchet domain, let Vi, j and Wj for i = 1,2, . . . , p and j =
1, 2, . . . , qp be locally convex vector spaces and assume that each of the spaces Vi, j
is metrisable. Let the maps αi and β for i = 1,2, . . . , p and j = 1,2, . . . , qp be
as described above. If each of the maps αi and β is of class Ck for some fixed
k ∈ N0 ∪ {∞,ω}, then so is the composition β ◦ (α1, . . . ,αp).
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Proof: The map β ◦ (α1, . . . ,α0) can be expressed as a composition

β ◦ (α1, . . . ,αp) = β ◦
�
⊗p

i=1αi

�

of β with the tensor products of the maps αi . It therefore follows from Pro-
position 3.1.22, along with Proposition 3.1.8 and Proposition 3.1.15, that β ◦
(α1, . . . ,αp) is of class Ck whenever each of the maps β and αi is. �

There is a multitude of other ways to compose families of multilinear maps, but
these can generally be viewed as special cases of Proposition 3.1.23. Two such
compositions are discussed in and section 3.2.3.

3.2. Holonomic families

In this section, we will introduce families of continuous plurilinear maps and,
more importantly, the concept of a holonomic family of such maps. We have
borrowed the term “holonomicity” from the theory of jet bundles and use it
to describe families of plurilinear maps that contain their own derivatives and
can thus be viewed as infinite jets of other families of plurilinear maps. We
will describe what holonomicity means for the families of coderivations and
coalgebra morphisms that a family of plurilinear maps represents, and will show
that this property is respected by the compositions described in section 2.2.4.

3.2.1. Families of plurilinear maps

We recall from section 2.1.2 that a homogeneous continuous plurilinear map
from a Z-graded metrisable locally convex vector space V to another such space
W of degree d is a continuous linear map from the graded symmetric algebra
⊙

(V ) to W of the same degree. We endow the space L(
⊙

(V ), W ) with the
topology of precompact convergence and note that since

⊙

(V ) is a locally
convex direct sum of spaces of the form

⊙p
i=1 V ni , Proposition A.2.25 tells us

that this space decomposes as a product

L(
⊙

(V ), W )d '
∏

p∈N0

∏

n1≤···≤np

L
�
⊙p

i=1 V ni , W n1+···+np+d
�

,
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of topological vector spaces.

A family of homogeneous plurilinear maps from V to W parametrised by a space
X can therefore be defined as either a single function

f: X −→ L(
⊙

(V ), W )d

for some d ∈ Z, or as a collection (fn1,...,np
)n1≤n2≤...≤np

of families

fn1,...,np
: X −→ L

�
⊙p

i=1 V ni , W n1+···+np+d
�

of continuous linear maps. We can also think of f as a collection (fp)p∈N0
of

families fp : X → L(
⊙p(V ), W )d of homogeneous multilinear maps, given by

fp(x) = f(x)|⊙p(V ).

If X is a Fréchet domain, we declare the map f described above smooth or
analytic if it is smooth in the sense of Definition B.1.1 or analytic in the sense
of Definition B.1.21 respectively. The following proposition is a culmination of
some of the results from section 3.1.

Proposition 3.2.1.
Let X ⊆ T be a Fréchet domain, let V be a Z-graded vector space of Fréchet type
and let W be a Z-graded locally convex vector space. For any family α: X →
L(
⊙

(V ), W )d of plurilinear maps of degree d and any k ∈ N0 ∪ {∞,ω}, the
following statements are equivalent:

(i) α is of class Ck as a map from X to L(
⊙

(V ), W );

(ii) for any sequence n1, n2, . . . , np ∈ Z of degrees and n=
∑p

i=1 ni , the map

α̌n1,...,np
: X ×

p
∏

i=1

V ni −→W n+d , (x , v1, . . . , vp) 7→ α(x)
�
⊙p

i=1 vi

�

is of class Ck;

(iii) for any sequence v1, v2, . . . , vp ∈ V of homogeneous elements, the map

αv1,...,vp
: X −→W |v1|+···+|vp |+d , x 7→ α(x)

�
⊙p

i=1 vi

�

is of class Ck;
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(iv) there exists a continuous multilinear map

α̂k :
⊙

(Ck(X , V )) −→ Ck(X , W ),

which is such that α̂k

�
⊙p

i=1 ei

�

(x) = α(x)
�
⊙p

i=1 ei(x)
�

for all functions
e1, e2, . . . , ep ∈ Ck(X , V ) and any x ∈ X .

Proof: Since the space L(
⊙

(V ), V )d is canonically isomorphic to the product
of L(

⊙p
i=1 V ni , W )d for n1 ≤ · · · ≤ np ∈ Z, α is of class Ck for a given k ∈

N0 ∪ {∞,ω} precisely when the components

αn1,...,np
= πn1,...,np

◦α: X −→ L
�
⊙p

i=1 V ni , W n+d
�

are of class Ck for every sequence n1.n2, . . . , np ∈ Z of degrees and n=
∑p

i=1 ni .
Since the canonical inclusion map L

�
⊙p

i=1 V ni , W
�

,→ L
�
⊗p

i=1 V ni , W
�

is an
embedding, this in turn happens if and only if the corresponding map from X
to L

�
⊗p

i=1 V nk , W n+d
�

is of class Ck. Equivalence of statements (i), (ii) and (iii)
consequently follows from Lemma 3.1.21.

Lemma 3.1.21 moreover tells us that these statements are therefore equivalent
to existence and continuity of the operators

α̂n1,...,np
:
⊗p

i=1 Ck(X , V ni ) −→ Ck(X , W n+d),

given by α̂n1,...,np
(
⊗p

i=1 ei)(x) = α(x)(
⊗p

i=1 ei(x)) for x ∈ X and ei ∈ Ck(X , V ni )
with i = 1,2, . . . , p, and n1, n2, . . . , np ∈ Z. Because this map is necessarily
graded symmetric, this is equivalent to existence and continuity of a similar
map from

⊙p
i=1 Ck(X , V ni ) to Ck(X , W n+d). Since the graded symmetric algebra

from statement (iv) is a locally convex direct sum
⊙

(Ck(X , V )) =
⊕

n1≤···≤np
n1+···+np=n

⊙p
i=1 Ck(X , V ni ),

of the domains of these maps, the universal property of the locally convex direct
sum tells us that this last statement is also equivalent to the first three. �

We recall from Definition B.1.16 that the infinite jet of a smooth map f : X →W
defined on an open subset X ⊆ T of a locally convex vector space T is the map

j∞ f : X −→ L(
⊙

(T ), W ),
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given by

j∞ f (x)
�
⊙p

i=1 ẋ i

�

= Dp f (x)
�
⊙p

i=1 ẋ i

�

for x ∈ X and ẋ1, ẋ2, . . . , ẋp ∈ T . As in Definition B.1.18, we call a general map
f̃ from X to the space L(

⊙

(T ), W ) holonomic whenever it is of this form.

Below, we will consider a Z-graded vector space V of Fréchet type and the
subspace V 6=0 =

⊕

n 6=0 V n consisting of all homogeneous components of V apart
from V 0. We observe that the graded symmetric algebra

⊙

(V ) is algebraically
isomorphic to the tensor product

⊙

(V 0)⊗
⊙

(V 6=0), and that

L(
⊙

(V ), W )d ' L
�
⊙

(V 0), L(
⊙

(V 6=0), W )
�d

,

as a topological vector space, for any d ∈ Z.

Definition 3.2.2.
Let V and W be Z-graded vector spaces of Fréchet type and let X ⊆ V 0 be an
open subset. A smooth map from X to L(

⊙

(V ), W ) is holonomic if it is of the
form

j∞ f̃: X −→
∏

q∈N0

L
�
⊙q(V 0), L(

⊙

(V 6=0), W )d
�

' L(
⊙

(V ), W )

for some smooth map f̃: X → L(
⊙

(V 6=0), W )d .

We shall write C∞hol

�

X , L(
⊙

(V ), W )
�

to denote the space of holonomic maps
from X to L(

⊙

(V ), W ). Because the restriction of j∞ f̃(x) to
⊙

(V 6=0) coincides
with f̃(x) for any x ∈ X , the maps

C∞hol

�

X , L(
⊙

(V ), W )
�

C∞
�

X , L(
⊙

(V 6=0), W )
�

,

� |⊙
(V 6=0)

j∞
(3.2.1)

are mutually inverse isomorphisms of graded vector spaces.

We will often use the following characterisation of holonomic maps instead of
directly working with Definition 3.2.2.

Proposition 3.2.3.
Let V and W be Z-graded vector spaces of Fréchet type and let X ⊆ V 0 be a
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Fréchet domain. A smooth map f: X → L(
⊙

(V ), W ) is holonomic if and only if
its derivative is given by

Df(x)( ẋ)(v{1,...,p}) = f(x)( ẋ � v{1,...,p}). (3.2.2)

for every x ∈ X , every ẋ ∈ V 0 and all v1, v2, . . . , vp ∈ V .

Proof: If we assume that equation (3.2.2) holds, it can be applied repeatedly,
along with Corollary 3.1.9, to deduce that

Dqf(x)( ẋ{1,...,q})(v{1,...,p}) = f(x)( ẋ{1,...,q} � v{1,...,p}).

for any x ∈ X and all ẋ1, ẋ2, . . . , ẋq ∈ V 0 and v1, v2, . . . , vp ∈ V . This tells us that
f is of the form j∞ f̃ for f̃= f|⊙(V 6=0) and that it is therefore holonomic.

If, on the other hand, f is holonomic and f̃: X → L(
⊙

(V 6=0), W ) is such that
f= j∞ f̃, then the derivative of f derivative can be expressed as

Df(x)( ẋ0)( ẋ{1,...,q} � v{1,...,p}) = D
�

Dq f̃(x)
�

( ẋ0)( ẋ{1,...,q})(v{1,...,p})

= Dq+1 f̃(x)( ẋ0 � ẋ{1,...,q})(v{1,...,p})

= f(x)( ẋ0 � ẋ{1,...,q} � v{1,...,p})

for x ∈ X , ẋ0, ẋ1, . . . , ẋq ∈ V 0 (with q ∈ N0) and homogeneous v1, . . . , vp ∈ V of
non-zero degree. We conclude that equation (3.2.2) holds in this case. �

We have encountered the condition (3.2.2) before in Proposition 2.4.3, where
it was referred to as the derivative property. In that proposition we had shown
that the family of twists of a curved L∞-algebra (V ,`),

l: D` ⊆ V 0 −→ L(
⊙

(V ), V ), u 7→
∑

p∈N0

`(
⊙p u� �),

has this property. Proposition 3.2.3 thus allows us to conclude that this family
is in fact holonomic. We had used the following fact in the proof of Proposi-
tion 2.4.4.

Proposition 3.2.4.
Let V and W be Z-graded vector spaces of Fréchet type, let X ⊆ V 0 be a Fréchet
domain and let x0 ∈ X be arbitrary. If two analytic holonomic families f: X →
L(
⊙

(V ), W ) and g: X → L(
⊙

(V ), W ) are such that f(x0) = g(x0), then f= g.
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Proof: Let f and g be as described as above, then there exist analytic functions
f and g from X to L(

⊙

(V 6=0), W ) such that f= j∞ f and g= j∞g. The infinite
jets of f and g at x0 coincide because f(x0) = g(x0), so Corollary B.1.26 tells us
that that f = g on X . It follows that also f= g. �

3.2.2. Families of coderivations and morphisms

Although we started this section by introducing smooth and holonomic famil-
ies of plurilinear maps, it is really the corresponding families of coderivations
or morphisms that we would like to describe. In this section, we show that
also these families are smooth, and describe conditions that are equivalent to
holonomicity for the corresponding families of plurilinear maps.

Families of coderivations

Recall from section 2.2.2 that every homogeneous linear map `:
⊙

(V ) → V
can be lifted to a unique coderivation ¯̀

cod :
⊙

(V )→
⊙

(V ) on (
⊙

(V ),∆). This
coderivation is given by

¯̀
cod(v{1,...,p}) =

∑

ItJ={1,...,p}

εI ,J `(vI )� vJ .

for v1, v2, . . . , vp ∈ V . By applying this construction at every point in its domain,
a smooth family of linear maps l: X → L(

⊙

(V ), V ) can thus be lifted to a family
of coderivations,

l̄cod : X −→ L(
⊙

(V ),
⊙

(V )), x 7→ l(x)cod.

Proposition 3.2.5.
Let V be a Z-graded vector space of Fréchet type, let X ⊆ V 0 be an open subset
and let l: X → L(

⊙

(V ), V ) be a homogeneous family of plurilinear maps (not
necessarily smooth). The associated family of coderivations,

l̄cod : X −→ L(
⊙

(V ),
⊙

(V )), x 7→ l(x)cod,

is smooth or analytic if and only if l is. Moreover, it satisfies the equation

D̄lcod(x)( ẋ) = [̄lcod(x), m ẋ], (3.2.3)

for every x ∈ X and every ẋ ∈ V 0, if and only if l is holonomic.
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3.2. Holonomic families

In equation (3.2.3), m ẋ denotes the coderivation on
⊙

(V ) that describes mul-
tiplication by ẋ ∈ V 0, and is given by m ẋ(v{1,...,p}) = ẋ � v{1,...,p}. This equation
therefore states that

D̄lcod(x)( ẋ)(v{1,...,p}) = l̄cod(x)( ẋ � v{1,...,p})− ẋ � l̄cod(x)(v{1,...,p})

for every x ∈ X , every ẋ ∈ V 0 and v1, v2, . . . , vp ∈ V .

Proof: We first assume that l is smooth (resp. analytic). To prove that also
l̄cod is smooth, it is sufficient to show that l̄x( �)(v{1,...,p}) depends smoothly
(resp. analytically) on x for an arbitrary sequence of homogeneous elements
v1, v2, . . . , vp ∈ V , in light of to Lemma 3.1.21.

Given such homogeneous elements, we can write l̄cod( �)(v{1,...,p}) as a finite sum
∑

I ,J l̄I ,J , where l̄I ,J denotes the map

l̄I ,J : X −→ V |l|+|vI | �
⊙

j∈J V |v j |, x 7→ εI ,J l(x)(vI )� vJ .

and I and J range over all decompositions of {1, . . . , p} into pairs of disjoint
subsets. Smoothness (resp. analyticity) of each of these maps, and thereby of
l̄cod, follows from the assumption that l is smooth and the fact that w 7→ w� vJ
is a continuous linear map.

Conversely, smoothness (or analyticity) of l̄cod implies smoothness of l due to
the continuity of the canonical projection map L(

⊙

(V ),
⊙

(V ))→ L(
⊙

(V ), V ).

If we now work out the derivative of l̄cod, we obtain the expression

D̄lcod(x)( ẋ)(v{1,...,p}) =
∑

ItJ={1,...,p}

εI ,J Dl(x)( ẋ)(vI )� vJ , (3.2.4)

while on the other hand

[̄lcod(x), m ẋ](v{1,...,p}) = l̄cod(x)( ẋ � v{1,...,p})− ẋ � l̄cod(x)( ẋ � v{1,...,p})

=
∑

ItJ={1,...,p}

εI ,J l(x)( ẋ � vI )� vJ
(3.2.5)

for all x ∈ X and all ẋ ∈ V 0. These expressions coincide if l is holonomic because
Proposition 3.2.3 provides us with the identity Dl(x)( ẋ)(vI) = l(x)( ẋ � vI ) in
this case.
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Chapter 3. Holonomic families of L∞-algebras

Conversely, if equation (3.2.3) holds, then the rank 1 components in equa-
tions (3.2.4) and (3.2.5) (the terms for which J = ∅) must also coincide. The
identity Dl(x)( ẋ)(v{1,...,p}) = l(x)( ẋ � v{1,...,p}) thus necessarily holds, which al-
lows us to conclude that l is holonomic by again applying Proposition 3.2.3. �

A more conceptual argument for the second part of Proposition 3.2.5 uses
that the derivative D̄lcod(x)( ẋ) and the graded commutator [̄lcod, m ẋ] are both
smooth families of coderivations, regardless of whether l is holonomic. These
are determined by the fact that they extend Dl(x)( ẋ) and l(x)( ẋ� �) respectively,
so, by Proposition 3.2.3, they coincide if and only if l is holonomic.

We will henceforth refer to a family l: X → L(
⊙

(V ),
⊙

(V )) as holonomic when-
ever it satisfies equation (3.2.3) for all x ∈ X and any ẋ ∈ V 0.

Families of morphisms

We can similarly lift a plurilinear map f :
⊙

(V )→W of degree 0 to a (unique)
coalgebra morphism f̄mor : (

⊙

(V ),∆) → (
⊙

(W ),∆) if f0 := f (1) vanishes.
While this is not possible if f0 6= 0, we can always define f̄mor as the lift f − f0,
so that

f̄mor(v1 � · · · � vp) =
∑

I1,...,Im 6=∅

εI1,...,Im

1
m!

⊙m
j=1 f (vI j

), (3.2.6)

for homogeneous v1, v2, . . . , vp ∈ V . The sum on the right-hand side of this
equation is over all subsets I1, I2, . . . , Im ⊆ {1, . . . , p} that form an (ordered)
partition of {1, . . . , p}. Note that f0 = f (v∅) does not appear in this sum since
each of the subsets I j ⊆ {1, . . . , p} is by assumption non-empty.

Since the coalgebra morphism f̄mor is uniquely determined by the fact that it
extends f − f0 :

⊙

(V )→W , the pair ( f̄mor, f0) encodes the same information
as the original linear map f :

⊙

(V )→W . We can apply the same procedure to
holonomic families of plurilinear maps.

Proposition 3.2.6.
Let V and W be a Z-graded vector spaces of Fréchet type, let X ⊆ V 0 be a Fréchet
domain and let f: X → L(

⊙

(V ), W ) be a family of plurilinear maps of degree 0.
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Then f is smooth (or analytic) if and only if both f0 : X →W 0 and the associated
family of coalgebra morphisms,

f̄mor : X −→ L(
⊙

(V ),
⊙

(W )), x 7→ f(x)mor,

are smooth (resp. analytic). Moreover, f is holonomic if and only if the pair
(̄fmor, f0) satisfies

Df̄mor(x)( ẋ) = f̄mor(x) ◦m ẋ −mDf0(x)( ẋ)
◦ f̄mor(x) (3.2.7)

for every x ∈ X and every ẋ ∈ V 0.

Proof: Assume that f is smooth or analytic and that we are given homogeneous
elements v1, v2, . . . , vp ∈ V , let ni = |vi | for i = 1,2, . . . , p and let nI = |vI | for
I ⊆ {1, . . . , p}. We can express f̄mor( �)(v{1,...,p}) as a sum

∑

I1,...,Im
f̄I1,...,Im

of maps

f̄I1,...,Im
: X −→

⊙m
j=1 W

nI j , x 7→ εI1,...,Im

1
m!

⊙m
j=1 f(x)(vI j

),

where I1, . . . , Im range over all ordered partitions of {1,2, . . . , p}. If we can
show that these maps are smooth (resp. analytic), this will imply that also
f̄mor( �)(v{1,...,p}) is smooth (resp. analytic) and thereby that f̄mor is smooth due
to Lemma 3.1.21.

We know that f( �)(vI): X → W nI is smooth (resp. analytic) for each subset
I ⊆ {1, . . . , p}, so the same is true for the product

�

f( �)(vI j
)
�m

j=1 : X →
∏m

j=1 W
nI j .

Smoothness (resp. analyticity) of f̄I1,...,Im
, and thereby of f̄mor, therefore follows

from the fact that �:
∏m

j=1 V
nI j →

⊙m
j=1 V

nI j is a continuous multilinear map.

Conversely, smoothness or analyticity of f̄mor implies that f has the same prop-
erty due to the continuity of the canonical projection map L(

⊙

(V ),
⊙

(V ))→
L(
⊙

(V ), V ).

To prove the second statement, we observe that equation (3.2.7) reads

Df̄mor(x)( ẋ)(v{1,...,p}) = f(x)( ẋ � v{1,...,p})−Df0(x)( ẋ)� f̄mor(x)(v{1,...,p}).

when applied to to elements v1, v2, . . . , vp ∈ V .

By projecting onto W =
⊙1(W ), we obtain the identities

0= f(x)( ẋ)−Df(x)( ẋ)(1)
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Chapter 3. Holonomic families of L∞-algebras

if p = 0 (since v∅ = 1), and

Df(x)( ẋ)(v{1,...,p}) = f(x)( ẋ � v{1,...,p})− 0

otherwise. Through Proposition 3.2.3, these equations together imply that f is
holonomic.

Now assume that f is holonomic and let v1, v2, . . . , vp ∈ V again be homogeneous
with p ≥ 1. The derivative Df̄mor(x)( ẋ)(v{1,...,p}) is now given by

∑

I1,...,Im 6=∅

εI1,...,Im

1
m!

m
∑

i=1

⊙

j<i f(x)(vI j
)�Df(x)( ẋ)vI j

�
⊙

j>i f(x)(vI j
)

=
∑

I1,...,Im 6=∅

εI1,...,Im

1
(m−1)! f(x)( ẋ � vI1

)�
⊙m

j=2 f(x)(vI j
).

By writing v0 = ẋ , we can rewrite this as
∑

I1,...,Im 6=∅

εI1,...,Im

1
(m−1)! f(x)(v{0}∪I1

)�
⊙m

j=2 f(x)(vI j
),

=
∑

Ĩ1,..., Ĩm 6=∅

ε Ĩ1,..., Ĩm

1
m!

⊙m
j=1 f(x)(vĨ j

),

−
∑

I2,...,Im 6=∅

ε Ĩ1,..., Ĩm

1
(m−1)! Df0(x)( ẋ)�

⊙m
j=2 f(x)(vI j

),

= f̄mor(x)( ẋ � v{1,...,p})−Df0(x)( ẋ)� f̄mor(x)(v{1,...,p}),

where the second sum is over all subsets Ĩ1, Ĩ2, . . . , Ĩm ⊆ {0, 1, . . . , p} that form a
partition of {0, . . . , p}. We thus see that

Df̄mor(x)( ẋ)(v{1,...,p}) = f̄mor(x)( ẋ � v{1,...,p})−Df0(x)( ẋ)� f̄mor(x)(v{1,...,p})

whenever p ≥ 1. The same equation also holds if p = 0, since in this case the
left-hand side reads Df̄mor(x)( ẋ)(1), which is zero, and the right-hand side reads
f(x)( ẋ)−Df0(x)( ẋ), which also vanishes by assumption. �

Proposition 3.2.6 effectively states that there is a canonical one-to-one corres-
pondence between holonomic families of plurilinear maps from V to W , para-
metrised by X ⊆ V 0, and pairs (̄fmor, f0) consisting of a smooth map f0 : X →W 0
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and smooth families of coalgebra morphisms f̄mor : X → L(
⊙

(V ),
⊙

(W )) subject
to equation (3.2.7).

If we view
⊙

(V ) and
⊙

(W ) as trivial vector bundles over X ⊆ V 0 and W 0

respectively, the pair (̄fmor, f0) can be interpreted as a bundle morphism that
covers f0 : X → W 0 and is compatible with the coalgebra structures on the
fibres.

3.2.3. Composition of plurilinear maps

Since families of plurilinear maps can represent either families of coderivations
or families morphisms, there are several different ways to compose them. These
correspond to the different types of composition discussed in section 2.2.4, now
performed fibrewise.

If we are given homogeneous smooth maps l: X → L(
⊙

(V ), V ) and f: X →
L(
⊙

(V ), W ) we can define f � l as the map

f � l: X −→ L(
⊙

(V ), W ), x 7→ f(x) � l(x) := f(x) ◦ l̄cod(x).

Explicitly, this composition is given by

(f � l)(x)(v{1,...,p}) =
∑

ItJ={1,...,p}

εI ,J f(x)
�

l(x)(vI )� vJ

�

,

for x ∈ X and v1, v2, . . . , vp ∈ V homogeneous.

Proposition 3.2.7.
Let V and W be Z-graded vector spaces of Fréchet type and let X ⊆ V 0 be an
open subset. For any two smooth or analytic maps l: X → L(

⊙

(V ), V ) and
f: X → L(

⊙

(V ), W ), the composition f � l is also smooth (resp. analytic). If both
f and l are holonomic, then so is f � l.

Proof: Let l and f be as described in this proposition and note that the fam-
ily of coderivations l̄cod : X → L(

⊙

(V ),
⊙

(V )) associated to l is smooth (resp.
analytic) as well due to Proposition 3.2.5. Proposition 3.1.8 (resp. Proposi-
tion 3.1.15) therefore tells us that the composition f � l= f◦ l̄cod is smooth (resp.
analytic) and that its derivative is given by

D(f � l)(x)( ẋ) = Df(x)( ẋ) ◦ l̄cod(x) + f(x) ◦ D̄lcod(x)( ẋ)
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for x ∈ X and ẋ ∈ V 0.

If l and f are holonomic, then we can apply Proposition 3.2.3 and Proposi-
tion 3.2.5 to rewrite this as

D(f � l)(x)( ẋ) = f(x)
�

ẋ � l̄cod(x)( �)
�

+ f(x)
�

l̄cod(x)( ẋ � �)− ẋ � l̄cod(x)( �)
�

=
�

f(x) ◦ l̄cod(x)
�

( ẋ � �),

which is equal to (f � l)(x)( ẋ � �). We conclude that also f � l is holonomic. �

The following proposition can be proven in exactly the same way as Proposi-
tion 3.2.7, but it can also be derived from it by using Proposition 3.2.5.

Proposition 3.2.8.
Let V and W be Z-graded vector spaces of Fréchet type and let X ⊆ V 0 be
an open subset. Given a smooth or analytic family of coderivations l̄: X →
L(
⊙

(V ),
⊙

(V )) and a smooth (resp. analytic) family f̄: X → L(
⊙

(V ),
⊙

(W ))
of coalgebra morphisms, the composition f̄◦ l̄ of is a smooth (resp. analytic) family
of coalgebra derivations along (̄f, f0).

If l̄ and (̄f, f0) are such that D̄l(x)( ẋ) = [̄l(x), m ẋ] and Df̄(x)( ẋ) = mDf0(x)( ẋ)
−

f̄ ◦m ẋ , then h̄= f̄ ◦ l̄ satisfies

Dh̄(x)( ẋ) = mDf0(x)( ẋ)
− h̄ ◦m ẋ

for all x ∈ X and all ẋ ∈ V 0.

The graded Lie algebra structure on L(
⊙

(V ), V ) was defined in section 2.2.2
through the vector space isomorphism ` 7→ ¯̀

cod between this space and the space
of coderivations on (

⊙

(V ),∆). It can also be described using the operator �
as

[`,`′] = ` � `′ − (−1)|`||`
′|`′ � `.

for homogeneous `,`′ ∈ L(
⊙

(V ), V ). The following corollary is therefore an
immediate consequence of Proposition 3.2.7.

Corollary 3.2.9.
Let V be a Z-graded vector space of Fréchet type and let X ⊆ V 0 be an open
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subset. For any two smooth or analytic maps l′ : X → L(
⊙

(V ), V ) and l: X →
L(
⊙

(V ), V ), the graded commutator

[l, l′]: X −→ L(
⊙

(V ), V ), x 7→ [l(x), l′(x)]

is smooth (resp. analytic). It is holonomic whenever both l and l′ are.

The equivalent statement for the lifts of l and l′ as families of coderivations
follows directly from Corollary 3.2.9 and Proposition 3.2.5.

Corollary 3.2.10.
Let V be a Z-graded vector space of Fréchet type and let X ⊆ V 0 be an open subset.
Given two smooth or analytic families of coderivations l̄: X → L(

⊙

(V ),
⊙

(V ))
and l̄′ : X → L(

⊙

(V ),
⊙

(V )), the graded commutator [̄l, l̄′] is a smooth (resp.
analytic) family of coderivations.

If l̄ and l̄′ are such that D̄l(x)( ẋ) = [̄l(x), m ẋ] and D̄l′(x)( ẋ) = [̄l′(x), m ẋ], then
h̄= [l, l′] satisfies

Dh̄(x)( ẋ) = [h̄(x), m ẋ]

for all x ∈ X and all ẋ ∈ V 0.

Now assume we are given two homogeneous smooth maps f: X → L(
⊙

(V ), W )
and g: X ′→ L(

⊙

(W ), Z ) such that f has degree 0 and f(X ) ⊆ X ′. We can define
g � f as the map

g � f: X −→ L(
⊙

(V ), Z ), x 7→ g(f0(x)) � f(x) := g(f0(x)) ◦ f̄mor(x).

Thus,

(g � f)(x)(v{1,...,p}) =
∑

I1,...,Im 6=∅

εI1,...,Im

1
m! g(f0(x))

�
⊙m

j=1 f(x)(vI j
)
�

,

for x ∈ X and v1, v2, . . . , vp ∈ V homogeneous.

Proposition 3.2.11.
Let V , W and Z be Z-graded vector spaces of Fréchet type and let X ⊆ V 0 and X ′ ⊆
W 0 be open subsets. Given two homogeneous smooth maps f: X → L(

⊙

(V ), W )
and g: X ′→ L(

⊙

(W ), Z ) such that |f|= 0 and f0(X ) ⊆ X ′, the composition g� f
is smooth. It is holonomic whenever both f and g are.
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Proof: Let f and g be as described in this proposition and note that the associated
maps f0 : X →

⊙

(W ) and f̄mor : X → L(
⊙

(V ),
⊙

(W )) are smooth due to Propos-
ition 3.2.6. The three maps f̄mor : X → L(

⊙

(V ),
⊙

(W )), g: X → L(
⊙

(W ), Z )
and f0 : X → X ′ thus satisfy the hypotheses of Corollary 3.1.10, which tells us
that g � f= g ◦ (̄fmor, f0) is again smooth and that its derivative is given by

D(g � f)(x)( ẋ) = Dg(f0(x))
�

Df0(x)( ẋ)
�

◦ f̄mor(x) + g(f0(x)) ◦Df̄mor(x)( ẋ)

for x ∈ X and ẋ ∈ V 0.

If f and g are holonomic, then we can apply Proposition 3.2.3 and Proposi-
tion 3.2.6 to rewrite this as

D(g � f)(x)( ẋ) = g(f0(x))
�

Df0(x)( ẋ)� f̄mor(x)( �)
�

+ g(f0(x))
�

f̄mor(x)( ẋ � �)−Df0(x)( ẋ)� f̄mor(x)( �)
�

=
�

g(f0(x)) ◦ f̄mor(x)
�

( ẋ � �),

= (g � f)(x)( ẋ � �).

From this we can conclude that also g � f is holonomic. �

We observe that the composition, g � f of two smooth maps f: X → L(
⊙

(V ), W )
and g: X ′ → L(

⊙

(W ), Z ) of degree 0 such that f0(X ) ⊆ X ′ is uniquely defined
by the property that

�

g � fmor(x), (g � f)0(x)
�

=
�

ḡmor(f0(x)) ◦ f̄mor(x),g0(f0(x))
�

for all x ∈ X . This is in line with the earlier observation that families of coal-
gebra morphisms can be interpreted as bundle maps, since the expression above
describes the composition of such maps.

Corollary 3.2.12.
Let V , W and Z be Z-graded vector spaces of Fréchet type and let X ⊆ V 0,
X ′ ⊆W 0 and X ′′ ⊆ Z0 be open subsets. For any two smooth families (̄f, f0): X →
L(
⊙

(V ),
⊙

(W )) × X ′ and (ḡ,g0): X → L(
⊙

(W ),
⊙

(Z )) × X ′′ of coalgebra
morphisms, the composition ((ḡ ◦ f0) ◦ f̄,g0 ◦ f0) is a smooth family of coalgebra
morphisms.

If both (̄f, f0) and (ḡ,g0) have the derivative property from Proposition 3.2.6,
then so does ((ḡ ◦ f0) ◦ f̄,g0 ◦ f0).
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In this description, it is clear that the composition of holonomic families of
plurilinear maps of degree 0 is an associative operation. For any Z-graded
vector space V of Fréchet type and any open subset X ⊆ V 0 there moreover
exists a corresponding identity map, which is the map iV : X → L(

⊙

(V ), V ) that
extends to the pair (x 7→ id⊙(V ), idX ).

3.3. Families of L∞-algebras

We can combine what we know from sections 2.3 and 2.4 about curved L∞-
algebras of Fréchet type with our newly acquired knowledge about holonomic
families to describe the category of holonomic families of curved L∞-algebras of
Fréchet type. As we will see in section 5.1, holonomic families of curved L∞-alge-
bras are in some sense locally equivalent to curved L∞-algebroids. The natural
notions of morphisms for these categories however do not match: morphisms
of L∞-algebroids correspond to a subset of all morphisms between the corres-
ponding holonomic families which we call fibre preserving. These morphisms
will also be described in this section.

3.3.1. Holonomic families of curved L∞-algebras

Now that we have discussed holonomic families of plurilinear maps, the defin-
ition of a holonomic family of curved L∞-algebras becomes rather straightfor-
ward.

Definition 3.3.1.
Let V be a Z-graded vector space of Fréchet type and let X ⊆ V 0 be an open
subset. A holonomic family of curved L∞-algebra structures on V is a holonomic
map l: X → L(

⊙

(V ), V ) of degree 1 such that (V , l(x)) is a curved L∞-algebra
for every x ∈ X .

The family of twists of a curved L∞-algebra from section 2.4 is an example of
a holonomic family of curved L∞-algebras. Up to the choice of domain, this
family is characterised by the fact that it is both analytic and holonomic and has
the original L∞-algebra as a member, as the following proposition shows.
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Proposition 3.3.2 (Families of twists).
A curved L∞-algebra (V ,`) of Fréchet type is convergent if and only if there exists
a holonomic family l: X ⊆ V 0→ L(

⊙

(V ), V ) of curved L∞-algebras, defined on
a neighbourhood X of 0 ∈ V 0, which is analytic and such that l(0) = `.
At most one such family exists for every connected open subset X ⊆ V 0 that
contains 0. It coincides with the family u 7→ `u of twists of (V ,`) on some
neighbourhood of 0 ∈ X .

Proof: Convergence of the curved L∞-algebra (V ,`) means precisely that there
exists a family u 7→ `u of twists parametrised by a non-empty domain of conver-
gence D` ⊆ V 0. Analyticity of this family was demonstrated in Proposition 2.4.3,
and holonomicity follows from this proposition through Proposition 3.2.3. That
(V ,`u) is a curved L∞-algebra for every u ∈ D` is verified in Proposition 2.4.4.
A family matching the above specifications thus exists whenever (V ,`) is integ-
rable.

Uniqueness of such families on a given domain is a consequence of Proposi-
tion 3.2.4. If a holonomic family l: X → L(

⊙

(V ), V ) as described above exists,
analyticity tells us that it is locally given by its Taylor series, and that con-
sequently

l(u)(v{1,...,p}) =
∞
∑

k=0

1
k! Dkl(0)(

⊙k u)(v{1,...,p}) =
∞
∑

k=0

1
k! l(0)

�
⊙k u� v{1,...,p}

�

for all u sufficiently close to 0 ∈ V 0 and all v1, v2, . . . , vp ∈ V . Since this is
precisely how the twisted structure `u is defined, existence of such families
therefore implies convergence of the curved L∞-algebra. �

It should at this point not be surprising that we can describe holonomic families
of curved L∞-algebra structures as Maurer–Cartan elements of a graded Lie
algebra.

Proposition 3.3.3.
Let V be a Z-graded vector space of Fréchet type and let X ⊆ V 0 be an open subset.
The space C∞hol

�

X , L(
⊙

(V ), V )
�

comes with a graded Lie algebra structure given
by

[l, l′](x) = [l(x), l′(x)]

for any two holonomic maps l, l′ : X → L(
⊙

(V ), V ) and x ∈ X .
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3.3. Families of L∞-algebras

The Maurer–Cartan locus of
�

C∞hol

�

X , L(
⊙

(V ), V )
�

, [ � , �]
�

is the set of holonomic
families of curved L∞-algebra structures on V parametrised by X .

Proof: It was shown in Corollary 3.2.9 that the graded Lie bracket [l, l′] of
two holonomic families is holonomic. It defines a graded Lie algebra structure
because the Jacobi identity can be verified pointwise.

In section 2.2.2, we had observed that a linear map `:
⊙

(V ) → V defines a
curved L∞-algebra structure on V precisely if it is homogeneous of degree 1 and
satisfies [`,`] = 0. A homogeneous smooth map l: X → L(

⊙

(V ), V ) of degree
1 therefore describes a family of curved L∞-algebras if and only if it satisfies the
Maurer–Cartan equation 1

2 [l, l] = 0. �

The first part of Proposition 3.3.3 also holds for the space of analytic holonomic
families, Cωhol

�

X , L(
⊙

(V ), V )
�

. If this space is used, the Maurer–Cartan locus
consists of all analytic holonomic families of curved L∞-algebra structures on V
parametrised by X .

We can turn holonomic families of curved L∞-algebras into a category by adding
morphisms. Below, let l: X → L(

⊙

(V ), V ) and l′ : Y → L(
⊙

(W ), W ) denote
two holonomic families of curved L∞-algebras of Fréchet type parametrised by
open subsets X ⊆ V 0 and Y ⊆W 0 respectively.

Definition 3.3.4.
Given holonomic families of curved L∞-algebras l: X → L(

⊙

(V ), V ) and
l′ : Y → L(

⊙

(W ), W ), a morphism from l to l′ is a holonomic map f: X →
L(
⊙

(V ), W ) of degree 0 such that f0(X ) ⊆ Y and (f− f0)(x) is a morphism of
curved L∞-algebras from (V , l(x)) to (W , l(f0(x))) for every x ∈ X .

In light of the discussion at the end of section 3.2.2, a morphism of holonomic
families of curved L∞-algebras can be repackaged as a pair (f0, f̄mor) consisting of
a smooth map f0 : X → Y and a smooth family f̄mor : X →Morcoalg(

⊙

(V ),
⊙

(W ))
of coalgebra morphisms such that

f̄mor(x) ◦ l̄cod(x) = l̄′cod(f0(x)) ◦ f̄mor(x)

for every x ∈ X . In terms of the operators � and � from Proposition 3.2.7 and
Proposition 3.2.11, this condition can be formulated very concisely as f � l =
l′ � f.
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Chapter 3. Holonomic families of L∞-algebras

Proposition 3.3.5.
Holonomic families of curved L∞-algebras of Fréchet type form a category if the
composition of two composable morphisms f and g is defined as g � f.

Proof: Let li : X i → L(
⊙

(Vi), Vi), be holonomic families of curved L∞-algebras
of Fréchet type for i = 1,2,3. Let f be a morphism from l1 to l2 and let g be a
morphism from l2 to l3. The composition g � f is such that and (g � f)0 = g0 ◦ f0
and g � f− (g � f)0 = (g− g0) � (f− f0), as discussed just above Corollary 3.2.12.
It is a morphism of holonomic families of curved L∞-algebras because the first
observation tells us that (g � f)0(X1) ⊆ X3 and the second tells us that that
g � f − (g � f)0 :

⊙

(V1) → V3 is a morphism of L∞-algebras from (V1, l1(x)) to
(V3, l3(z)), where z = (g � f)0(x).

The associativity of � follows from the fact that both h � (g � f) and (h � g) � f
lift to the morphism hmor ◦ gmor ◦ fmor. Two simple computations moreover show
that the identity morphism for a given holonomic family of curved L∞-algebras,
l: X1→ L(

⊙

(V1), V1), is the map f: X1→ L(
⊙

(V1), V1) for which f0 = idX1
and

f̄mor = id⊙(V1)
. �

3.3.2. Different types of morphisms

Although the definition of a morphism of holonomic families of curved L∞-
algebras provided in Definition 3.3.4 seems reasonable, it is not the type of
morphism that we will need in chapter 5. The morphisms encountered in that
chapter satisfy an additional compatibility condition, which we describe here.

Before we can state this condition, let us remark that the graded symmetric
coalgebra (

⊙

(V ),∆) is part of an exact sequence

0 −→ (
⊙

(V 6=0),∆)
ı̄
−→ (

⊙

(V ),∆)
π̄
−→ (

⊙

(V 0),∆) −→ 0

in the category of cocommutative coalgebras. We would like to think of
⊙

(V )
as a bundle over

⊙

(V 0) with fibre
⊙

(V 6=0), and consider those morphisms that
are compatible with this “bundle structure”.

Definition 3.3.6.
Let V and W be Z-graded vector space of Fréchet and let X ⊆ V 0 be a Fréchet
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domain. A holonomic family f̄: X → L(
⊙

(V ),
⊙

(W )) of coalgebra morphisms
is fibre preserving if f̄(x) is part of a commuting diagram

�
⊙

(V 6=0),∆
� �

⊙

(V ),∆
� �

⊙

(V 0),∆
�

�
⊙

(W 6=0),∆
� �

⊙

(W ),∆
� �

⊙

(W 0),∆
�

.

f̄′(x) f̄(x) f̄′′(x)

ı̄

ı̄

π̄

π̄

(3.3.1)

of cocommutative coalgebras for every x ∈ X .

Although the coalgebra morphisms f̄′(x) and f̄′′(x) in Definition 3.3.6 were
only required to exist, they are in fact uniquely determined by f̄(x) due to the
injectivity of ı̄ and the surjectivity of π̄. We observe in particular that f̄′′(x) =
( j∞x f0)mor because f was required to be holonomic.

We will call a family f: X → L(
⊙

(V ), W ) of plurilinear maps fibre preserving if it
lifts to a fibre-preserving family f̄mor of coalgebra morphisms. This definition can
also be applied to morphisms of holonomic families of curved L∞-algebras.

Definition 3.3.7.
Let l: X → L(

⊙

(V ), V ) and l′ : Y → L(
⊙

(W ), W ) be holonomic families of
curved L∞-algebras of Fréchet type. A morphism f: X → L(

⊙

(V ), W ) from l to
l′ is fibre preserving if f̄mor is a fibre-preserving family of coalgebra morphisms.

It should be noted that the maps in diagram (3.3.1) are in general not morphisms
of curved L∞-algebras and that this would not be a meaningful requirement. The
problem is the fact that the spaces V 6=0 and V 0 do not generally come with a L∞-
algebra structure that is compatible with the inclusion map ı̄:

⊙

(V 6=0)→
⊙

(V )
and the projection map π̄:

⊙

(V )→
⊙

(V 0).

Fibre-preserving families of plurilinear maps that are also holonomic can be
characterised more conveniently.

Proposition 3.3.8.
Let V and W be Z-graded vector spaces of Fréchet type, let X ⊆ V 0 be a Fréchet
domain and consider a holonomic family f: X → L(

⊙

(V ), W ) of plurilinear
maps of degree 0. The following statements are equivalent:

(i) f̄mor is fibre preserving, as defined in Definition 3.3.6;
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(ii) there exists a (unique) smooth map g: X → L
�
⊙

(V 6=0), W 6=0
�

of degree 0
such that f= j∞(f0 + g), i.e.

f(x)( ẋ{1,...,q} � v{1,...,p}) =

¨

Dqf0(x)( ẋ{1,...,q}) if p = 0

Dqg(x)( ẋ{1,...,q})(v{1,...,p}) if p ≥ 1

for every x ∈ X and all ẋ1, ẋ2, . . . , ẋq ∈ V 0 and v1, v2, . . . , vp ∈ V 6=0.

Proof: Because f is holonomic by assumption, there exists a unique smooth map
f̃: X → L(

⊙

(V 6=0), W ) such that f = j∞ f̃. Thus, f is equal to j∞(f0 + g) for a
unique map g: X → L(

⊙

(V 6=0), W ), which is given by g= f̃− f0. Condition (ii)
now holds precisely when f takes values in the subspace W 6=0 ⊆W .

If g does take values in W 6=0, then one can readily verify that the diagram (3.3.6)
commutes if f̄′ = g(x)mor and f̄′′ = ( j∞x f0). This tells us that f is fibre preserving
in this case.

Conversely, if a map f̄′ :
⊙

(V 6=0)→
⊙

(W 6=0) as in equation (3.3.1) exists, then
it is equal to f(x)mor|⊙(V 6=0) = ḡ. This then implies that g takes values in W 6=0. �

We can consider an even more restrictive type of morphisms.

Definition 3.3.9.
Let V and W be Z-graded vector space of Fréchet and let X ⊆ V 0 be a Fréchet
domain. A holonomic family f̄: X → L(

⊙

(V ),
⊙

(W )) of coalgebra morphisms
is fibrewise-linear if f̄(x) is part of a commuting diagram

�
⊙

(V 6=0),∆
� �

⊙

(V ),∆
� �

⊙

(V 0),∆
�

�
⊙

(W 6=0),∆
� �

⊙

(W ),∆
� �

⊙

(W 0),∆
�

.

f̄′(x) f̄(x) f̄′′(x)

ı̄

ı̄

π̄

π̄

(3.3.2)

of cocommutative coalgebras for every x ∈ X and f̄′(x):
⊙

(V 6=0)→
⊙

(W 6=0)
is linear in the sense that its only non-trivial component is f̄′(x)1 : V →W .

We will call a holonomic family f: X → L(
⊙

(V ), W ) of plurilinear maps fibrewise
linear if it lifts to a fibrewise linear family f̄mor of coalgebra morphisms.
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Proposition 3.3.10.
Let V and W be Z-graded vector spaces of Fréchet type, let X ⊆ V 0 be a Fréchet
domain and consider a holonomic family f: X → L(

⊙

(V ), W ) of plurilinear
maps of degree 0. The following statements are equivalent:

(i) f̄mor is fibrewise linear, as defined in Definition 3.3.9;

(ii) there exists a (unique) homogeneous smooth map g: X → L
�

V , W 6=0
�

of
degree 0 such that f= j∞(f0 + g), i.e.

f(x)( ẋ{1,...,q} � v{1,...,p}) =







Dqf0(x)( ẋ{1,...,q}) if p = 0

Dqg(x)( ẋ{1,...,q})(v1) if p = 1

0 if p ≥ 2

for every x ∈ X and all ẋ1, ẋ2, . . . , ẋq ∈ V 0 and v1, v2, . . . , vp ∈ V 6=0;

Proof: This proposition is a simple adaptation of Proposition 3.3.8. �

Remark 3.3.11.
Holonomic families of curved L∞-algebras can be glued together over a man-
ifold using any of the three types of morphisms described above. Suppose
we are given a Z-graded vector space V of Fréchet type and a smooth Fré-
chet manifold M modelled on V 0 endowed with an atlas (Ui ,κi)i∈I consisting
of open subsets Ui ⊆ M and charts κi : Ui → V 0. A holonomic family of
L∞-algebras over M could be described as a collection (l(i))i∈I of holonomic
families l(i) : κi(Ui)→ L(

⊙

(V ), V ) of curved L∞-algebras along with a collec-
tion (f( j,i))i, j∈I of isomorphisms f( j,i) from l(i) to l( j). These morphisms should
satisfy three conditions:

1. f
( j,i)
0 ◦κ(i)|Ui∩U j

= κ( j)|Ui∩U j
for all i, j ∈ I ;

2. f̄(i,i)(x) = id⊙(V ) for all i ∈ I and all x ∈ κi(Ui);

3. f̄(k, j) ◦ f̄( j,i)|Ui∩U j∩Uk
= f̄(k,i)|Ui∩U j∩Uk

for all i, j, k ∈ I .

We say that the resulting object is of fibre bundle type if each of the morphisms
f ji is fibre preserving, and that it is of vector bundle type if each of these
morphisms is fibrewise linear. Morphisms between these objects are collections
of morphisms of the relevant type that agree on intersections.

Holonomic families of curved L∞-algebras of vector bundle type over a smooth
manifold are essentially equivalent to curved split L∞-algebroids, which are
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defined in Definition 4.3.1. Holonomic families of curved L∞-algebras of gen-
eral type are essentially the same thing as differential graded manifolds, which
will not be discussed here. 4
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CHAPTER 4.

L∞-algebroids

The aim of this chapter is to define curved L∞-algebroids of Fréchet type. This
concept is central to this thesis, as it allows us to bridge the gap between equi-
variant deformation problems and L∞-algebras. As we will see in section 5.2,
L∞-algebroids can be used to repackage (nearly) all of the information con-
tained in an equivariant deformation problem, and give rise to equivalence
classes of L∞-algebras that can be said to formally control deformations of the
corresponding structures.

Curved L∞-algebroids of Fréchet type are Z-graded vector bundles of Fréchet
type whose spaces of sections come with curved L∞-algebra structures that con-
sist of smooth multiderivations. Before we can properly state this definition,
however, we will need to set up a theory of smooth derivations and multideriva-
tions on such bundles. We will therefore start this chapter by discussing locally
convex vector bundles over Fréchet manifolds, as well as their morphisms and
sheaves of sections, in section 4.1. We then provide an appropriate definition
for smooth derivations and multiderivations in 4.2, which also deals with lin-
ear connections and Lie algebroids on vector bundles of Fréchet type. Curved
L∞-algebroids will finally be introduced in section 4.3.

This chapter builds on material that is covered in the appendices and chapter 3
and will use of a lot of the notation and conventions introduced there. This
in particular applies to choices of topology for the space L(V, W ) of continuous
linear maps between two vector space V and W , and the space C∞(X , V ) of
smooth maps from a Fréchet domain X ⊆ T to a locally convex vector space V .
More specifically, L(V, W ) comes with the topology of precompact convergence
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from Definition A.2.20, and C∞(X , V ) shall be endowed with the compact-open
C∞-topology from Definition B.2.2.

4.1. Locally convex vector bundles

Before we can talk about L∞-algebroids in an infinite-dimensional context,
infinite-dimensional vector bundles need to be discussed. For vector bundles
whose base and fibres are both Fréchet manifolds, most of the usual definitions
from the finite-dimensional setting just work and are equivalent to most reas-
onable alternatives one might come up with. Most of the vector bundles we
consider are of this type, but for those that are not a few choices will need to be
made.

An overview of the theory of Fréchet manifolds can for instance be found in
[Ham82], and manifolds modelled on arbitrary locally convex are for instance
considered in [Mil84], [Glö02] and [Nee06]. A definition can also be found
in appendix B.1.1 of this document. While the definitions provided here are
equivalent to those in all four references for bundles of Fréchet type, they are
distinct for bundles modelled on arbitrary locally convex vector spaces.

We will provide a definition of a locally convex vector bundle over a Fréchet man-
ifold that is equivalent to the usual definition whenever the fibres are Fréchet
as well. Afterwards we will topologise the corresponding sheaves of sections, as
well as the sheaves of base-preserves morphisms between such vector bundles,
and we will finally describe what modifications need to be made to these defin-
itions in the Z-graded case. Many of the statements in section 4.1 are simple
corollaries to similar statements in section 3.1.

4.1.1. Vector bundles

We define a discrete bundle of locally convex vector spaces as a disjoint union
E =

∐

x∈M Ex of locally convex vector spaces endowed with the canonical pro-
jection map π: E → M for which π(Ex) = {x}. We shall assume that M is a
smooth Fréchet manifold and will define a concept of smoothness for sections
of this bundle without imposing a manifold structure its total space.
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4.1. Locally convex vector bundles

A local trivialisation on E → M is a function Φ̃: U →
∐

x∈U L(Ex , V ) for some
locally convex vector space an open subset U ⊆ M , such that Φ̃(x) is an invertible
element of L(Ex , V ) for every x ∈ U . We declare two such trivialisations Φ̃: U →
∐

x∈U L(Ex , V ) and Φ̃: U ′→
∐

x∈U ′ L(Ex , W ) smoothly compatible whenever the
transition functions

Ψ̃ ◦ Φ̃−1 : U ∩ U ′ −→ L(V, W ), and Φ̃ ◦ Ψ̃−1 : U ∩ U ′ −→ L(W, V ),

are both smooth. We shall often identify a trivialisation Φ̃: U →
∐

x∈U L(Ex , V )
with the corresponding map of total spaces

Φ̌: E|U = π
−1(U) −→ V × U given by Φ̌(ex) = (Φ̃(x)(ex), x)

for ex ∈ Ex with x ∈ U .

We shall refer to a collection (Φ̃λ)λ∈Λ of local trivialisations as a smooth triviali-
sation atlas whenever its elements are mutually compatible in the above sense.
A trivialisation atlas is then called smooth with respect to this atlas whenever it
is compatible with each of its elements, and two smooth trivialisation atlases are
considered equivalent whenever all elements of the first are mutually compatible
with all elements of the second. That this is indeed an equivalence relation can
easily be verified: reflexivity and symmetry are trivial and transitivity follows
from Proposition 3.1.8.

Definition 4.1.1.
A smooth (or analytic) locally convex vector bundle over a smooth (resp. ana-
lytic) Fréchet manifold M is a discrete locally convex vector bundle E → M
endowed with an equivalence class of smooth (resp. analytic) trivialisation
atlases.

A section e: M → E of E→ M is smooth (resp. analytic) when the composition
Φ̃ ◦ e: M → V is smooth (resp. analytic) for every trivialisation chart Φ̃ that is
an element of a member of this equivalence class of trivialisation atlases.

It follows from Corollary 3.1.9 that for a given trivialisation Φ̃: E|U → V , smooth-
ness of a local section e: U → E|U defined on U is equivalent to smoothness of
Φ̃◦e: U → V , and that smoothness is in fact a local property. The same holds for
analyticity, but Corollary 3.1.16 should then be used instead of Corollary 3.1.9.

Definition 4.1.2.
A morphism of smooth (or analytic) locally convex vector bundles from E→
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M to F → N is a pair α = (α̃, f ) consisting of a smooth (resp. analytic)
map f : M → N and a function α̃: M →

∐

x∈M L(Ex , F f (x)) such that α̃(x) ∈
L(Ex , F f (x)) for every x ∈ M and such that the composition

Ψ̃ ◦ α̃ ◦ Φ̃−1 : U ∩ f −1(U ′) −→ L(V, W ), x 7→ Ψ̃ f (x) ◦αx ◦ (Φ̃x)
−1

is smooth (resp. analytic) for any pair (Φ̃, Ψ̃) of smooth (resp. analytic) trivia-
lisations Φ̃: U →

∐

x∈M L(Ex , V ) and Ψ̃ : U ′→
∐

y∈N L(Fy , W ).

Like with sections, it is sufficient to verify smoothness of vector bundle morph-
isms locally, and smoothness of the restriction α̃|U for a sufficiently small neigh-
bourhood can be verified using just a single pair of trivialisations. This follows
from Corollary 3.1.10. The analytic case is again analogous and uses Corol-
lary 3.1.17 instead.

As we had done for trivialisations, we will often identify a vector bundle morph-
ism α: M →

∐

x∈M L(Ex , F f (x)) with the corresponding map of total spaces

α̌: E −→ F given by α̌(ex) = α(x)(ex)

for ex ∈ Ex with x ∈ M .

We define a trivialisation chart for E → M as a vector bundle isomorphism
of the restriction E|U to an open subset U ⊆ M onto a trivial vector bundle
V × X → X over a Fréchet domain X ⊆ T . In other words, it is a local vector
bundle isomorphisms of the form (Φ̃,φ) for some chart φ : U ∼→ X ⊆ T and a
trivialisation Φ̃: U →

∐

x∈M L(Ex , V ).

A smooth Fréchet vector bundle is traditionally defined as a smooth map π: E→
M of Fréchet manifolds whose fibres come with a linear structure and which
admits an atlas of smooth vector bundle charts. A smooth vector bundle chart
for E→ M is a chart Φ̌: E|U = π

−1(U)→ V × T that takes values in the product
V × T of two Fréchet spaces V and T and is such that pr2 ◦ Φ̌= φ ◦π for some
chart φ : U → T for M and the restriction Φ̌|Ex

: Ex → V × {φ(x)} is a linear
isomorphism for every x ∈ U .

Proposition 4.1.3 (Vector bundles of Fréchet type).
Let E→ M be a smooth (or analytic) locally convex vector bundle over a Fréchet
manifold M whose fibres are Fréchet spaces. The total space E admits a smooth
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(resp. analytic) manifold structure with a smooth atlas that consists of charts of
the form

Φ̌: E|U −→ V × T, ex ∈ Ex 7→ (Φ̃(x)(ex),φ(x)),

whereφ : U ⊆ M → T is a chart for the base manifold and Φ̃: U →
∐

x∈U L(Ex , V )
is a trivialisation of E|U . This gives E→ M the structure of a smooth (resp. ana-
lytic) Fréchet vector bundle in the traditional sense.

For any smooth vector bundle morphism (α, f ) between two such vector bundles
E → M and F → N, the induced map α̌: E → F is a smooth map of Fréchet
manifolds and is consequently a morphism of Fréchet vector bundles.

Every Fréchet vector bundle in the traditional sense and every morphism between
such bundles can be obtained in this way.

Proof: Given an atlas (φλ)λ∈Λ and an atlas (Φ̃λ)λ∈Λ of trivialisations with match-
ing domains, it is clear that the corresponding charts (Φ̌λ)λ∈Λ cover E. Smooth-
ness of the transition functions Φ̌λ ◦ Φ̌κ is a consequence of Proposition 3.1.6,
which can in fact be used to deduce the converse claim as well. The resulting
space is Hausdorff because both its base and its fibres are. For the analytic case,
Proposition 3.1.14 can be used instead of Proposition 3.1.6.

Whether or not a fibrewise linear function α̌: E→ F describes a vector bundle
in either sense can be verified locally, on the domain of a trivialisation chart.
Proposition 3.1.6 therefore tells us that α̌ is a smooth map of Fréchet manifolds
if and only if (α, f ) is a vector bundle morphism in the sense of Definition 4.1.2.
The analytic case is again analogous.

�

In addition to consistency with the theory from section 3.1, one of the advant-
ages of choosing Definition 4.1.1 over the traditional definition is that products,
locally convex direct sums and tensor products of locally convex vector bundles
are locally convex vector bundles as well. The same is true for the topological
dual if barrelledness of the fibres is assumed. The category of vector bundles of
Fréchet type is not closed under these operations.

Proposition 4.1.4.
Let E1, E2, . . . , Ep → M be smooth (or analytic) locally convex vector bundles
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over a Fréchet manifold M. The tensor product

⊗p
i=1 Ei =

∐

x∈M

⊗p
i=1 Ei,x −→ M

admits a unique smooth (resp. analytic) locally convex vector bundle structure
which is determined by trivialisations of the form

⊗p
i=1 Φ̃i : U −→ L

�
⊗p

i=1 Ei,x ,
⊗p

i=1 Vi,x

�

for smooth (resp. analytic) trivialisations Φ̃i : U →
∐

x∈U L(Ei,x , Vi) with a com-
mon domain for i = 1, 2, . . . , p.

Proof: This follows from Proposition 3.1.11 and Proposition 3.1.18. �

Proposition 4.1.5.
Let (Ei)i∈I be a collection of smooth (or analytic) locally convex vector bundles
over a Fréchet manifold M. If M admits an open cover (Uλ)λ∈Λ such that Ei |Uλ
is trivialisable for every i ∈ I , then the locally convex direct sum

⊕

i∈I

Eλ =
∐

x∈M

⊕

i∈I

Ei,x −→ M

admits a unique smooth (resp. analytic) locally convex vector bundle structure
which it determined by trivialisations of the form

∑

i∈I

Φ̃i : U −→ L
�
⊕

i∈I Ei,x ,
⊕

i∈I Vi

�

for smooth (resp. analytic) trivialisations Φ̃i : U →
∐

x∈U L(Ei,x , Vi) with a com-
mon domain for every i ∈ I .

For any other locally convex vector bundle F → M, the assignment α 7→ (α|Ei
)i∈I

describes a one-to-one correspondence between vector bundle morphisms from E
to F and collections (αi)i∈I of vector bundle morphisms αi : Ei → F.

Proof: This follows from Proposition 3.1.12 and Proposition 3.1.19. The exist-
ence of neighbourhoods on which the bundles Ei → M for i ∈ I are simultan-
eously trivialisable is necessary to be able to define trivialisations of the form
described in this proposition.
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4.1. Locally convex vector bundles

We know from Proposition A.2.25 that there exists a canonical isomorphism
between the locally convex vector spaces L

�
⊕

i∈I Vi , W
�

and
∏

i∈I L
�

Vi , W
�

. This
tells us that vector bundle morphisms on E to F can locally be described as
collections of vector bundle morphisms defined from Ei to F indexed by i ∈ I ,
which in turn implies global equivalence of these descriptions. �

Proposition 4.1.6.
Let E → M be smooth (or analytic) locally convex vector bundle over a Fréchet
manifold M with barrelled fibres. The topological dual Ě =

∐

x∈M Ěx admits a
unique smooth (resp. analytic) locally convex vector bundle structure which it
determined by trivialisations of the form ˇ̃Φ : U →

∐

x∈U L
�

Ěx , ˇV
�

for a smooth
(resp. analytic) trivialisation Φ̃: U →

∐

x∈U L(Ex , V ).

Proof: This follows from Proposition 3.1.13 and Proposition 3.1.20. �

The usual sum, product and chain rules for vector bundles are all valid in the
present context.

Proposition 4.1.7.
If α and β are both assumed smooth (resp. analytic), then the following hold:

(i) given locally convex vector bundles E → M and F → M and two morphisms
α,β : E → F , the sum α+ β is smooth (resp. analytic) as a vector bundle
morphism from E→ M of F → M;

(ii) given locally convex vector bundles Eλ → M and Fλ → M for λ ∈ Λ and
morphisms αλ, Eλ→ Fλ, the direct sum

⊕

λ∈Λαλ is smooth (resp. analytic)
as a vector bundle morphism from

⊕

λ∈Λ Eλ→ M of
⊕

λ∈Λ Fλ→ M;

(iii) given locally convex vector bundles Ei → M and Fi → M for i = 1,2 and
morphisms α: E1→ F1 and β : E2→ F2, the product β⊗α is smooth (resp.
analytic) as a vector bundle morphism from E1⊗ E2→ M to F1⊗ F2→ N;

(iv) given three locally convex vector bundles Ei → Mi for i = 1,2,3 and
morphisms α: E1→ E2 and β : E2→ E3, the composition β ◦α is smooth
(resp. analytic) as a vector bundle morphism from E1→ M1 to E3→ M3;

(v) given a morphism α: E→ F of locally convex vector bundles from E→ M
to F → M of with barrelled fibres, the transpose α̌ is smooth (resp. analytic)
as a vector bundle morphism from F̌ → M to Ě → M.
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Proof: These are all simple consequences of similar statements in section 3.1.2
and section 3.1.3. �

4.1.2. Sheaves of sections and morphisms

From this point onward, whenever we have a vector bundle that is denoted by
a (possibly decorated) capital letter, the corresponding (similarly decorated)
calligraphic letter will denote its sheaf of sections. Thus,A , E and E i shall for
instance denote the sheaves of sections of the vector bundles A→ M , E → M
and E i → M respectively. More concretely, if we are given a smooth vector
bundle π: E→ M , then E will thus denote the sheaf that assigns the space

E (U) = Γ (U; E|U)

to an open subset U ⊆ M . It comes with the restriction maps rU ′,U : E (U) →
E (U ′) for every inclusion U ′ ⊆ U of open subsets of M that map e ∈ E (U) to e|U ′ .
We denote the sheaf of sections of the trivial bundle RM → M by C∞M (or CωM
in the analytic case) and the sheaf of vector fields, which we define as smooth
(resp. analytic) sections of the tangent bundle TM → M , by TM .

We will view the sheaf E associated to a locally convex vector bundle E → M
as a sheaf of locally convex C∞M -modules by endowing it with the topology
described in the following proposition.

Proposition 4.1.8.
For any locally convex vector bundle E → M over a Fréchet manifold M, the
spaces E (U) for U ⊆ M open admit unique locally convex topologies such that
E is a sheaf of locally convex C∞M -modules and every trivialisation chart Φ =
(Φ̃,φ): E|U → V × T induces an isomorphism

Φ∗ : E (U
′) −→ C∞(φ(U ′), V ), e 7→ Φ̃ ◦ e ◦φ−1

of topological vector spaces. If the bundle E → M is analytic, it restricts to an
isomorphism between the subspaces of analytic local sections and analytic maps
from φ(U ′) to V .

Because this proposition can be viewed as a special case of Proposition 4.1.13,
we shall postpone its proof.
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4.1. Locally convex vector bundles

Base-preserving morphisms between vector bundles of Fréchet type can be char-
acterised using their sheaves of sections and the topology described in Proposi-
tion 4.1.8.

Proposition 4.1.9.
Let M be a Fréchet manifold, let E→ M and F → M be vector bundles of Fréchet
type and let Ǎ: E → F be a function between their total spaces that covers idM
and is linear in the fibres of E (but not necessarily continuous). Then Ǎ is smooth
if and only if there exists a continuous linear operator

Â: E −→F , with Â(e)(x) = Ǎ(e(x)).

for every e ∈ E (U) with U ⊆ M open and x ∈ M. It is analytic if and only if it
maps analytic sections to analytic sections.

This describes a one-to-one correspondence between smooth vector bundle morph-
isms from E to F and morphisms Â: E → F of sheaves of locally convex C∞M -
modules with the property that Â(e)(x) = 0 whenever e(x) = 0.

Proof: If M is a Fréchet domain and E → M is trivialisable, then the first
assertion follows from Proposition 3.1.6 and the observation that continuity of Â
implies continuity of the restrictions Ǎ|Ex

for every x ∈ M . The analytic version
of the same statement uses Proposition 3.1.6 instead. For such bundles, the final
assertion then follows from Corollary B.2.7.

The general case, where M is a Fréchet manifold and E→ M is not trivialisable,
can be derived by using that E (U) and F (U) for U ⊆ M open are projective
limits of the spaces E (U ′) and F (U ′) for open subsets U ′ ⊆ U that are domains
of trivialisation charts. �

The requirement that Â(e)(x) = 0 whenever e(x) is essentially a reformulation
of the fact that the definition of Â is pointwise in nature, i.e. that it is induced
by a function from E to F . One might hope that this is already implied by
C∞M -linearity, but this is unfortunately not always the case. A counterexample
can be constructed by choosing locally convex vector spaces T and V for which
there exists a non-trivial continuous linear map α ∈ L(T, V ) for which α| ˇT⊗V = 0
and then defining Â: C∞(T, V ) → C∞(T, V ) by setting Â(e) = α ◦ De. This
map is both continuous and C∞(M)-linear, but it is clearly not a vector bundle
morphism since it depends on the derivative of e.
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The above counterexample cannot work if either T or V has the approximation
property from Definition A.2.40. A locally convex vector space V has this prop-
erty if the image of the inclusion map ˇV ⊗V ,→ L(V, V ) is dense (for the topology
of precompact convergence). This is the case for all Hilbert spaces, all Banach
spaces that admit a Schauder basis and all nuclear spaces. This includes the
space of smooth sections of a finite-dimensional vector bundle, if it is endowed
with the standard (nuclear) Fréchet topology.

The second half of the proof of Proposition 4.1.10, where the base is assumed
to possess the approximation property, is partially based on the proof of Theo-
rem 28.7 in [KM97b].

Proposition 4.1.10.
Let E → M and F → M be two locally convex vector bundles over a Fréchet
manifold M whose fibres are either barrelled or metrisable. Assume moreover
that either the fibres of E have the approximation property or that M is modelled
on a space with this property. A continuous linear operator α̂: E → F comes
from a vector bundle morphisms if and only if it is C∞M -linear.

Proof: Since this statement can be verified locally, we can assume without loss
of generality that the bundles E, F → M are trivial and that M is a Fréchet
domain. Assume therefore M = X is a connected open subset of the Fréchet
space T and that E = V × X → X and F =W × X → X are trivial bundles with
respective fibres V and W . We will first assume that V has the approximation
property, and then that T has this property. In both cases we will prove that the
value of α(e) at x ∈ X only depends on the value of e at this point.

First assume that V has the approximation property, i.e. that there exists a net
(Aλ)λ∈Λ of elements of V ⊗̌V ⊆ End(V ) that converges to the identity morphism
idV ∈ End(V ) for the topology of uniform convergence on precompact subsets.
For any λ ∈ Λ, we can write the endomorphism Aλ ∈ V ⊗̌ V as a linear combin-
ation

Aλ =
Nλ
∑

j=1

ξλ, j ⊗ vλ, j

of tensor products of forms ξλ,1,ξλ,2, . . . ,ξλ,Nλ
∈ Vˇand linearly independent

elements vλ,1, vλ,2, . . . , vλ,Nλ
∈ V with Nλ ∈ N0.
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4.1. Locally convex vector bundles

Now suppose we are given a local smooth section e ∈ E (U) that vanishes at a
given point x0 ∈ U . We will demonstrate that also α(e) vanishes at this point by
considering the sections

Aλ ◦ e =
Nλ
∑

j=1

ξλ, j(e)⊗ vλ, j ∈ C
∞
X (U)⊗ V ⊆ E (U).

for λ ∈ Λ. The fact that Aλ ◦ e(x0) = 0 for every λ ∈ Λ, together with the linear
independence of the elements vλ, j for j ∈ {1, 2, . . . , Nλ}, tells us that each of the
coefficients ξλ, j(e) ∈ C

∞
X (U) must vanish at x0. It follows that for any λ ∈ Λ,

α(Aλ ◦ e)(x0) =
Nλ
∑

j=1

ξλ, j(e)(x0)α(vλ, j) = 0,

because we had assumed C∞X -linearity of α.

Since (Aλ)λ∈Λ converges to idV and precomposition by e is a continuous oper-
ation, as we have seen in Proposition 3.1.8, the net (Aλ ◦ e)λ∈Λ converges in
E (U) to idV ◦ e = e and α(Aλ ◦ e) therefore converges to α(e). Continuity of the
evaluation map evx0

: E (U) → V subsequently tells us that also α(e)(x0) = 0.
From this, we deduce that for any local section e ∈ E (U), the value of α(e) at a
point x ∈ U only depends on the value of e at this point.

Now assume that T has the approximation property, i.e. that there exists a net
(Bλ)λ∈Λ in ˇT ⊗ T that converges to the identity morphism idT in L(T, T ). We
can write each morphism of Bλ as a linear combination

Bλ =
Nλ
∑

j=1

ηλ, j ⊗ ẋλ, j

of decomposable elements for ηλ,1,ηλ,2, . . . ,ηλ,Nλ
∈ ˇT and ẋλ,1, ẋλ,2, . . . , ẋλ,Nλ

∈
T with Nλ ∈ N0.

Let e ∈ E (U) be a local section defined on an open subset U ⊆ X such that
e(x0) = 0 at a point x0 ∈ U . Proposition B.1.9 tells us that we can choose a
smooth function ẽ: U → L(T, V ) such that e(x) = ẽ(x)(x − x0) for every x ∈ U .
Now consider the functions

eλ : X −→ V, x 7→ ẽ(Bλ(x − x0))
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for λ ∈ Λ, which Proposition 3.1.8 and Corollary 3.1.9 tell us is smooth since
both ẽ and x 7→ x − x0 are. Since Proposition 3.1.8 and Corollary 3.1.9 also
tell us that precomposition by ẽ and evaluation on x 7→ x − x0 are continuous
operations, we moreover deduce from these that the net (eλ)λ∈Λ converges to
e ∈ C∞(U , V ).

By using the decomposition of Bλ, we see that eλ can be expressed as

eλ(x) = ẽ(Bλ(x − x0)) =
Nλ
∑

j=1

ηλ, j(x − x0) ẽ(x)( ẋλ, j).

We observe that x 7→ ηλ, j(x − x0) is a smooth real function that vanishes at
x0 and that x 7→ ẽ(x)( ẋλ, j) is a smooth as well. It thus follows from the C∞M -
linearity of α that α(eλ)(x0) = 0. We again conclude that the value of α(e) at a
point x ∈ U only depends on the value of e at this point.

We see that in both cases there exists a function α̌: E → F between the total
spaces of E → X and F → X such that α(e)(x) = (α̌)(e(x)) for every x ∈ X
and every local section e ∈ E (U). Its restriction α̌|Ex

: Ex → Fx is continuous
because both the canonical inclusion map V ,→ C∞(X , V ) and the evaluation
map evx : C∞(X , W )→W are. That α is a vector bundle morphism now follows
from either Proposition 3.1.6 or Lemma 3.1.7, depending on whether the fibres
are assumed to be metrisable or barrelled. �

Although we did not state it, an analytic version of Proposition 4.1.10 holds and
can be proven similarly. The same is true for the following corollary.

Corollary 4.1.11.
Let E → M and F → M be vector bundles of Fréchet type over a Fréchet mani-
fold M and assume that either the fibres of E have the approximation property
or that M is modelled on a space with this property. There is a one-to-one
correspondence between base-preserving vector bundle morphisms from E to F
and continuous C∞M -linear operators from E to F that relates α: E → F to
α̂: E →F if α̂(e)(x) = αx(ex) for every e ∈ E (U) and every x ∈ U with U ⊆ M
open.

Proof: This follows from Proposition 4.1.10 and Proposition 4.1.9. �
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Proposition 4.1.10 allows us to think of vector bundles whose base or whose
fibres are modelled on Fréchet spaces with the approximation property purely
as sheaves of topological modules. It moreover simplifies the definition of a
smooth derivation on such bundles, as we will see in Proposition 4.2.10, and
has a few other consequences.

We can also consider multilinear vector bundle morphisms. Any of the charac-
terisations in the following proposition can be used to describe these.

Proposition 4.1.12.
Let M be a Fréchet manifold and let E1, E2, . . . , Ep → M and F → M be vector
bundles of Fréchet type. There are canonical one-to-one correspondences between
each following objects:

(i) smooth base-preserving maps

B: E1 ×M · · · ×M Ep −→ F

that are linear when restricted to any of the bundles Ei with i = 1, 2, . . . , p;

(ii) continuous multilinear operators

B̂: E1 × · · · × Ep −→F ,

that are such that B̂(e1, . . . , ep)(x) = 0 whenever ei(x) = 0 for some
i ∈ {1, 2, . . . , p};

(iii) smooth base-preserving vector bundle morphisms B⊗ :
⊗p

i=1 Ei to F.

These are related by the requirement that

B(e1(x), . . . , ep(x)) = B̂(e1, . . . , ep)(x) = B⊗(
⊗p

i=1 ei(x))

for all x ∈ U with U ⊆ M open and all local sections ei ∈ Ei(U) for i = 1, 2, . . . , p.
If each of the bundles Ei → M is analytic, then analyticity of B and analyticity
B⊗ are both equivalent to the condition that B̂ map analytic sections to analytic
sections.

Proof: This follows from an argument similar to that employed in Proposi-
tion 4.1.9, but it uses Lemma 3.1.21 instead of Proposition 3.1.6. �
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Given two vector bundles E → M and F → M of Fréchet type and an open
subset U ⊆ M , let LE,F (U) denote the set of all vector bundle morphisms from
E|U to F |U . These form a sheaf of C∞M -modules, which we would like to to-
pologise. To do this, we observe that any pair (Φ,Ψ) of trivialisation charts
Φ= (Φ̃,φ): E|U ′ → V × T and Ψ = (Ψ̃,φ): F |U ′ →W × T determines a map

Ψ∗Φ
∗ : LE,F (U) −→ C∞(φ(U ∩ U ′), L(V, W )),

which is given by

Ψ∗Φ
∗(α)(y)(v) = Ψ̃(α(Φ−1(v, y))),

for α ∈ LE,F (U) and (v, y) ∈ V × T . We wants these maps to be continuous for
every such pair, and to be topological isomorphisms whenever U = U ′.

Proposition 4.1.13.
Let E→ M and F → M be locally convex vector bundles over a Fréchet manifold
M. The spacesLE,F (U), for U ⊆ M open, admit unique locally convex topologies
such that LE,F is a sheaf of locally convex C∞M -modules and the map

Ψ∗Φ
∗ : LE,F (U) −→ C∞(φ(U), L(V, W )),

is a topological isomorphism for any two trivialisation charts Φ: E|U → V × T
and Ψ : F |U → W × T defined on U. If both E → M and F → M are analytic,
it restricts to an isomorphism between the subspaces of analytic vector bundle
morphisms and analytic maps from φ(U) to L(V, W ).

Proof: Uniqueness of the described topologies is guaranteed because any open
subset of M can be covered by domains of pairs of trivialisation charts and LE,F
is required to be sheaf of locally convex vector spaces. More specifically, these
two facts together imply that the space LE,F (U) for an arbitrary open subset
U ⊆ M carries the coarsest locally convex topology for which the map

LE,F (U) −→
∏

U ′⊆U

LE,F (U
′), α 7→

�

α|U ′
�

U ′

is continuous, where U ′ ranges over all open subsets of U that are the domain
of a pair of trivialisation charts on E and F .

We shall need to verify that this is consistent with the requirement that Ψ∗Φ
∗ is

a topological isomorphism whenever U itself is the domain of a pair (Φ,Ψ) of
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trivialisation charts. This amounts to showing any two such pairs of trivialisation
charts defined over the same domain U ⊆ M induce the same topology on the
spaceLE,F (U), and that restriction to a subset U ′ ⊆ U is a continuous operation.

Suppose therefore that we are given two pairs (Φ,Ψ) and (Φ′,Ψ ′) of trivialisation
charts defined over a common domain U ⊆ M . We can then consider the map

(Ψ ′∗Φ
′∗) ◦ (Ψ∗Φ

∗)−1 : C∞(φ(U ′′), L(V, W )) −→ C∞(φ′(U ′′), L(V ′, W ′)),

which can also be expressed as (Ψ ′ ◦Ψ−1)∗(Φ
′ ◦ Φ−1)∗. Continuity of this map

now follows from Proposition 3.1.8 since both (Ψ ′ ◦ Ψ−1) and (Φ′ ◦ Φ−1) are
smooth vector bundle morphisms. By repeating this argument with the roles
of (Φ,Ψ) and (Φ′,Ψ ′) interchanged we deduce that (Ψ ′∗Φ

′∗) ◦ (Ψ∗Φ
∗)−1 is an

isomorphism of topological vector spaces. Every pair of trivialisation charts over
U consequently induces the same topology on LE,F (U).

Continuity of the restriction map rU ′,U : LE,F (U)→ LE,F (U
′) follows from the

fact that the canonical maps C∞(φ(U), L(V, W )) to C∞(φ(U ′), L(V, W )) are
continuous (which is easy to verify), along with the fact that the restrictions
Φ|U ′ and Ψ|U ′ are also trivialisation charts.

If U ⊆ M is the domain of a trivialisation chart, then continuity of the C∞M (U)-
module structure on LE,F (U) is a consequence of Corollary B.2.7. For an arbit-
rary open subset U ′ ⊆ M , it follows from the fact that the topologies on C∞M (U

′)
and LE,F (U

′) are projective limits.

The analytic case is completely analogous and can be proven using results from
section 3.1.3 and appendix B.1.3. �

4.1.3. Graded vector bundles

Many of the smooth vector bundles discussed in this chapter come with a Z-
grading. A locally convex Z-graded vector bundle is almost, but not quite, the
same thing as a collection (En)n∈Z of ordinary vector bundles indexed by Z.

Definition 4.1.14.
A smooth Z-graded locally convex vector bundle over a Fréchet manifold M is
a locally convex vector bundle E =

⊕

n∈Z En→ M whose fibres are Z-graded
locally convex vector spaces and which admits an open cover (Uλ)λ∈Λ and
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trivialisations of the form Φλ : EUλ
→ V ×Uλ for some locally convex Z-graded

vector space V =
⊕

n∈Z V n such that Φλ(EUλ
) ⊆ V × Uλ for every λ ∈ Λ.

We say that the vector bundle E =
⊕

n∈Z En→ M is of Fréchet type, Banach type
or finite-dimensional type whenever its fibres are Z-graded vector spaces of that
type. Analytic locally convex vector bundles can be defined analogously.

If E =
⊕

n∈Z En → M is a Z-graded locally convex vector bundle, then the
homogeneous components En→ M are of course locally convex vector bundles
as well. Conversely, the following proposition allows us to construct a Z-graded
vector bundle from a collection of ordinary vector bundles of Fréchet type.

Proposition 4.1.15.
Let (En)n∈Z be a sequence of smooth (or analytic) locally convex vector bundles
over a Fréchet manifold M and assume that there exists an open cover (Uλ)λ∈Λ
such that En|Uλ is trivial for every λ ∈ Λ and every n ∈ Z. There exists a smooth
(resp. analytic) Z-graded locally convex vector bundle E → M that has En for
n ∈ Z as its homogeneous components.

Proof: This follows directly from Proposition 4.1.5, since the trivialisations
constructed in that proposition are of the required type.

To demonstrate this assertion we need to construct trivialisations Φλ for E → M
that restrict to (Φn

λ)λ∈Λ for every n ∈ Z. These trivialisations are necessarily
given by Φλ(

∑

n∈A vn) =
∑

n∈AΦn
λ(vn)

, which means that we only need to prove
smoothness (resp. analyticity) of the map Φ̃λ,κ : U → L(V , V ) given by

Φ̃λ,κ(x)
�∑

n∈A vn

�

=
∑

n∈A

Φ̃λ(x , Φ̃κ(x , v))

for x ∈ U and vn ∈ V n for all n in a finite subset A⊆ Z

We observe that Φ̃λ,κ takes values in the subspace L(V , V )0 ⊆ L(V , V ) of de-
gree 0 endomorphisms of V and that this space isomorphic to the product
∏

n∈Z L(V n, V n) due to Proposition A.2.25. Smoothness of Φ̃λ,κ is thus equi-
valent to smoothness of Φ̃n

λ,κ for all n ∈ Z. �

The requirement that the bundles En→ M for n ∈ Z admit local trivialisations
with common domains is a bit of a technicality that is unlikely to come up in
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practice. It is not relevant for finite-dimensional smooth vector bundles, since
these can be trivialised over any contractible neighbourhood, nor for infinite-
dimensional vector bundles that arise as spaces of sections of finite-dimensional
bundles.

Definition 4.1.16.
A homogeneous morphism from E =

⊕

n∈Z En → M to F =
⊕

n∈Z F n → N of
degree d ∈ Z is a vector bundle morphism α: E → F such that α(En) ⊆ F n+d

for every n ∈ Z.

Homogeneous morphisms of locally convex Z-graded vector bundles of a given
degree d ∈ Z can equivalently be characterised as sequences (αn)n∈Z of morph-
isms αn : En → F n+d between their homogeneous components. This is a con-
sequence of Proposition 4.1.5.

We define the sheaf E of sections of a Z-graded vector bundle E =
⊕

n∈Z En→ M
as the sheaf of Z-graded locally convex vector spaces given by

E (U) =
⊕

n∈Z

E n(U).

for any open subset U ⊆ M , where E n denotes the sheaf of sections of the homo-
geneous component En → M . This is not a sheaf of ungraded locally convex
vector spaces because a section that locally has finitely many homogeneous com-
ponents might not globally have this property. It is, however, a sheaf of locally
convex Z-graded C∞M -modules.

We similarly refer to the sheaf LE ,F given by

LE ,F (U) =
⊕

d∈Z

L d
E ,F (U) with LE ,F (U)

d =
∏

n∈Z

LEn,F n+d (U)

as the sheaf of morphisms from E → M to F → M . It is a sheaf of locally convex
Z-gradedC∞M -modules, but it is not generally the sheaf of sections of a Z-graded
vector bundle in the sense of Definition 4.1.1.

We can now make sense of the graded symmetric (co)algebra of any Z-graded
vector bundle.
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Proposition 4.1.17.
Let E =

⊕

n∈Z En be a Z-graded locally convex vector bundle with a trivialisation
atlas (Φλ)λ∈Λ and let

⊙

(E) =
∐

x∈M

⊕

n∈Z

⊙

(Ex)
n −→ M ,

denote its bundle of graded symmetric (co)algebras. It is a Z-graded locally convex
vector bundle with trivialisations

⊕

p∈N0

⊕

n1≤...≤np

⊙p
i=1Φ

ni

λ
:
⊙

(E)|Uλ −→
⊙

(V )

for λ ∈ Λ.

Proof: This proposition is essentially a combination of Proposition 4.1.4 and
Proposition 4.1.5. It moreover uses that the graded symmetric tensor product
⊙p

i=1 V ni is a direct summand of
⊗p

i=1 V ni for any sequence n1, n2, . . . , np ∈ Z
of degrees. �

We can also consider the topological dual of a Z-graded vector bundle, provided
its fibres are barrelled. Although the dual of a locally convex direct sum is a
product, we shall view it as another locally convex direct sum to ensure that the
fibres are still Z-graded.

Definition 4.1.18.
Let E =

⊕

n∈Z→ M be a Z-graded vector bundle of barrelled type. Its dual is
the Z-graded locally convex vector bundle Ě =

⊕

n∈Z ˇ(En) → M .

If E → M is a Z-graded locally convex vector bundle of Fréchet type, then
the corresponding bundle

⊙

(E) → M of graded symmetric (co)algebras has
barrelled fibres. Its dual, ˇ(

⊙

(E)) → M , is therefore well-defined as a locally
convex vector bundle. We denote its sheaf of sections by ΩE and refer to it as
the sheaf of graded symmetric forms on E → M . It can be identified with the
sheaf of degree zero vector bundle morphisms from

⊙

(E)→ M to the trivial
bundle RM → M (which is concentrated in degree 0).

We can in particular apply these construction to the desuspension T[1]M → M
of the tangent bundle of M . We denote the resulting sheaf by ΩM = ΩT[1]M and

136



4.2. Multiderivations

refer to its sections as differential forms on M . A homogeneous differential form
α ∈ Ωd

M (M) of degree d ∈ N0 can equivalently be described as a degree 0 multi-
linear vector bundle morphism from TM to RM of arity d which is symmetric if
d is even and skew symmetric if d is odd.

4.2. Multiderivations

Now that infinite-dimensional vector bundles and their sheaves of sections have
been explored in section 4.1, we can talk about smooth derivations and multide-
rivations. These are the objects that make up a curved L∞-algebroid structure.
The usual (finite-dimensional) definitions are modified slightly to suit our pur-
poses, and a number of assertions that would normally be considered standard
are reproven. We apply these definitions to describe linear connections and Lie
algebroids in the context of Fréchet manifolds.

4.2.1. Derivations

A derivation on a smooth finite dimensional vector bundle E → M is usually
defined as a linear map δ: Γ (M ; E)→ Γ (M ; E) for which there exists a vector
field X ∈ X(M) such that the Leibniz rule

δ( f e) = f δ(e) + (LX f ) e (4.2.1)

holds for every section e ∈ Γ (M ; E) and any function f ∈ C∞(M).

Although this definition is still meaningful in an infinite-dimensional context, it
has several shortcomings that make it unsuitable for our purposes. We would
expect δ to be a local operator (a morphism of sheaves), we would expect it to
be a first order differential operator that has X ⊗ idE as its principal symbol, and
we would expect δ to somehow respect the topology on the fibres of E. Because
none of these properties follow from equation (4.2.1) in the general case, they
will need to be imposed by hand.

In the definition below, Tv
x e: Tx M → Ex denotes the vertical derivative of a local

section e ∈ E (U) at a point x ∈ U where e(x) = 0. This is the vertical component
of the derivative Tx e: Tx M → Tx E ' Tx M ⊕ T0Ex , viewed as a linear map from
Tx M to Ex through the canonical identification T0Ex ' Ex .
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Definition 4.2.1.
A smooth derivation on a vector bundle E → M of Fréchet type consists of
a morphism δ: E → E of sheaves of topological vector spaces, along with a
vector field X ∈ X(M) such that

δ(e)x = Tv
x e(X (x)), (4.2.2)

for any local section e ∈ E (U) and any point x ∈ U where e(x) = 0.

Equation (4.2.1) and the linearity of δ can be used to show that for any two
local sections e1, e2 ∈ E (U) and any point x ∈ M where e1(x) = e2(x),

δ(e1)(x)−δ(e2)(x) = (Tx e1 − Tx e2)(Xδ(x)).

It thus tells us that the value of δ(e) at x only depends on the value and the
derivative of e at x , and that the latter part of this dependence is described by
the vector field X . We call X the principal symbol of the derivation and say that
δ covers X .

While one can easily verify that any smooth derivation in the sense of Defini-
tion 4.2.1 satisfies the Leibniz rule (4.2.1), the converse implication only holds
if further conditions are imposed on the topology of the fibres of E→ M . This
is explored in Proposition 4.2.10 below.

Given a non-zero vector field X ∈ X(M) and a point x ∈ M such that X (x) 6= 0,
one can always find a local section e ∈ E (U) that vanishes at x and is such
that Tv

x e(X (x)) 6= 0 (by using the Hahn–Banach theorem), provided that E 6=
0. Unless E = 0, the vector field X in Definition 4.2.1 is therefore uniquely
determined by the operator δ: E → E through equation (4.2.2). If E = 0, on
the other hand, then a smooth derivation on E → M is fully described by the
underlying vector field, and the operator on the (trivial) sheaf E carries no
information.

Anticipating the concept of a multiderivation, which will be discussed in sec-
tion 4.2.3 below, we shall denote the space of derivations on a vector bundle
E→ M by Der1(E). One can readily verify that smooth derivations form a sheaf
of C∞M -modules, which we choose to denote by D1

E : U 7→ Der1(E|U).

Lemma 4.2.2.
Let E → M be a smooth vector bundle of Fréchet type and let A: E → E be a
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4.2. Multiderivations

smooth vector bundle endomorphism. The associated operator

Â: E −→ E , e 7→ A◦ e,

is a smooth derivation covering the trivial vector field 0 ∈ X(M).

Proof: Continuity of Â(U): E (U)→ E (U) for U ⊆ M open is demonstrated in
Proposition 4.1.9, and the condition that Â(e)(x) = 0 whenever e(x) = 0 holds
by construction. �

Unless the distinction is important, we will implicitly identify the vector bundle
morphism A and the associated morphism of sheaves, denoting the latter by A
rather than Â.

Given a local trivialisation Φ: E|U → V×U of E→ M and a vector field X ∈ X(U)
on its domain, we can use the associated isomorphism Φ∗ : E (U)

∼→ C∞(U , V )
to define a linear map

L ΦX := (Φ∗)
−1 ◦LX ◦Φ∗ : E (U) −→ E (U)

that associates to a local section of E its derivative along X with respect to the
trivialisation Φ. Here, LX : C∞(U , V )→ C∞(U , V ) describes differentiation of
V -valued functions on U by X , so that LX v(x) = Dv(x)(X (x)) for every x ∈ U .
The next proposition shows that any smooth derivation can locally be expressed
as the sum of a vector bundle morphism and an operator of this type.

Proposition 4.2.3.
Let E → M be a vector bundle of Fréchet type and let Φ: E|U → V × U be a
local trivialisation. For any smooth vector field X ∈ X(U) and any vector bundle
morphism A: E|U → E|U , the operator δ =L ΦX +A is a smooth derivation on E|U .
Given Φ, any smooth derivation on E|U can be uniquely written in this form.

Proof: Let X ∈ X(U) be a vector field on U and let A: E|U → E|U be a vector
bundle morphism. The Lie derivative LX can be written as a composition of
two maps:

LX : C∞(U , V ) C∞(U , L(T, V )) C∞(U , V ).
D evX
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The first map map assigns to v ∈ C∞(U , V ) its derivative Dv ∈ C∞(U , L(T, V ))
and it is continuous due to Proposition B.2.5. The second map assigns to B ∈
C∞(U , L(T, V )) the composition B ◦ X : x 7→ B(x)(X (x)) and its continuity is a
consequence of Corollary 3.1.9. Continuity of LX , and thus of L ΦX , follows.

If e ∈ E (U) and x ∈ U are such that e(x) = 0, then L ΦX e(x) = D(Φ∗e)(x)(X (x))
coincides with the vertical derivative Tv

x e(X (x)). We thus deduce that L ΦX is in
fact a smooth derivation covering X . For any vector bundle morphism A: E|U →
E|U , L ΦX + A is a smooth derivation covering the same vector field because the
operator A: E|U →E|U is a smooth derivation covering 0 ∈ X(U).

To prove the converse statement, let δ: E|U → E|U be a derivation covering
X ∈ X(U) and consider the derivativeL ΦX : E|U →E|U . Since both δ andL ΦX are
smooth derivations covering X , their difference, Â := δ−L ΦX , is a derivation that
covers the trivial vector field 0 ∈ X(U). Equation (4.2.2) now implies that for any
x ∈ U , the value of Â(e) at x is completely determined by the value of e ∈ E (U)
at x , i.e. that there exists a map of sets A: E|U → E|U such that Â(e)(x) = A(e(x))
for every x ∈ U . It subsequently follows from Proposition 4.1.9 that A is in fact a
smooth vector bundle morphism, which proves that δ =L ΦX + Â is of the desired
form �

We recover the identity δ( f e) = f δ(e) + Xδ( f ) e for e ∈ Γ (M ; E) and f ∈
C∞(M) from Proposition 4.2.3 because the derivative LX is a derivation in this
sense and A is C∞(M)-linear. The proposition moreover implies the following.

Corollary 4.2.4.
The natural inclusion map from the sheaf LE,E of endomorphisms of E into the
sheafD1

E of derivations on E and the function that maps a derivation to its symbol
together form an exact sequence

0 −→LE,E −→D
1
E −→ TM −→ 0 (4.2.3)

of sheaves of C∞M -modules.

The sequence (4.2.3) can locally be split using a trivialisation Φ: E|U → V × U
and the corresponding operator X 7→ L ΦX from TM |U to D1

E |U . This can be used
to topologise the sheaf D1

E in such a way that it is exact as a sequence of sheaves
of locally convex C∞M -modules. A global splitting can be obtained if E → M
(globally) admits a smooth connection.
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If the fibres of E are finite-dimensional, then the sequence from Corollary 4.2.4
comes from a corresponding exact sequence of vector bundles

0 −→ End(E) −→ D(E) −→ TM −→ 0

where D(E) → M is a vector bundle whose space of sections is canonically
isomorphic to Der(E). This is also more or less true in the general case, but
the total spaces End(E) and D(E) do not generally carry a smooth manifold
structure.

The following lemma shows that the exact sequence from Corollary 4.2.4 can
also be viewed as an exact sequence of sheaves of Lie algebras.

Lemma 4.2.5.
Let E → M be a vector bundle of Fréchet type and let δ1 and δ2 be smooth
derivations on E covering X1 and X2 respectively. The commutator [δ1,δ2] is a
smooth derivation that covers [X1, X2] ∈ X(M).

Proof: Since the statement that [δ1,δ2] is a derivation can be verified locally, we
can restrict ourselves to the domain of a trivialisation chart Φ: E|U → ϕ(U)× V
covering a chart ϕ: U → T . For notational convenience, we will freely identify
the spaces E (U) and C∞(U , V ), as well as the spaces X(U) and C∞(U , T ). Due
to Proposition 4.2.3, we can now write the two derivations as δi = LX i

+ Ai ,
with i = 1,2, for two smooth maps A1, A2 : U → L(V, V ).

We can work out the composition δ1 ◦δ2 using Proposition 3.1.8, which tells us
that

(δ1 ◦δ2)(e)(x) =LX1

�

LX2
e+ A2 ◦ e

�

(x) + A1(x)(LX2
e+ A2 ◦ e(x))

= D2e(x)(X1(x), X2(x)) +De(x)(DX1(x)(X2(x)))

+ (DA2(x)(X1(x)))(e(x)) + A2(x)(De(x)(X1(x)))

+ A1(x)(De(x)(X2(x))) + A1(x) ◦ A2(x) ◦ e(x)
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for any smooth map e: U → V and any x ∈ ϕ(U). By subtracting the same
expression with δ1 and δ2 interchanged we obtain

[δ1,δ2](e)(x) = De(x)(DX1(x)(X2(x))−DX2(x)(X1(x)))

+ (DA2(x)(X1(x)))(e(x))− (DB2(x)(X1(x)))(e(x))

+ A1(x) ◦ A2(x) ◦ e(x)− B1(x) ◦ B2(x) ◦ e(x)

=L[X1,X2]
e(x) + [A1(x), A2(x)](e(x))

+ (LX1
A2)(x)(e(x))− (LX2

A1)(x)(e(x)).

We observe that [δ1,δ2] is of the form described in Proposition 4.2.3 for X =
[X1, X2] and A = [A1, A2] +L

Φ
X1

A2 − L
Φ
X2

A1 and that it is therefore a smooth
derivation covering [X1, X2]. �

The proof of Lemma 4.2.5 is rather explicit because it uses the local descrip-
tion from Proposition 4.2.3. A significantly shorter argument is available when
derivations can be defined using just the Leibniz rule (4.2.1).

Smooth derivations on a vector bundle E
π
−→ M of Fréchet type can also be

characterised as linear vector fields on its total space. A vector field X̃ ∈ X(E)
is called linear if there exists a vector field X ∈ X(M) on the base for which the
diagram

E TE

M TM

π Tπ

X

X̃

commutes and X is a vector bundle morphism from E→ M to TE→ TM .

Proposition 4.2.6.
Let E→ M be a vector bundle of Fréchet type let X̃ be a linear vector field on E
covering X ∈ X(M). The operator δX̃ : E → E given by

δX̃ (e)(x) = Tx e(X (x))− X̃ (e(x)) ∈ Te(x)Ex ' Ex

for e ∈ E (U) is a smooth derivation on E → M covering X . Every smooth
derivation on this vector bundle is of this form.
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Proof: We can assume without loss of generality that the bundle E → M is
trivial with fibre V and that M is an open subset of a Fréchet space T . We
will moreover implicitly identify elements of the spaces E (U) and C∞(U , V ) for
any open subset U ⊆ M , and will similarly write the vector field X̃ as a sum
X̃ = X + X̃ of the vector field X ∈ X(M)' C∞(U , T ) on the base and a vertical
vector field X̃ ∈ Xv(E) ' C∞(V × U , V ). This vertical component is linear on
the fibres and thus corresponds to a vector bundle endomorphism on E→ M .

In terms of this description, Tx e(X (x)) =LX (x)e+ X (x) and X E(e(x)) = X (x) +
X̃ (x , e(x)) for every x ∈ M , and thus

δX̃ (e)(x) =LX (x)e− X̃ (x , e(x)),

for any local section e ∈ E (U) ' C∞(U , V ). We conclude that it is a smooth
derivation because δX̃ is thus precisely of the form described in Proposition 4.2.3.
This argument can be reversed to construct a linear vector field from any smooth
derivation. �

Although one can show that the commutator [δX̃ ,δỸ ] of the derivations corres-
ponding to linear vector fields X̃ and Ỹ is given by δ[X̃ ,Ỹ ], we will not perform
the required computation here.

Example 4.2.7 (Lie group actions).
Let G be a Fréchet Lie group, let E→ M be a vector bundle of Fréchet type and
assume we are provided a smooth right action αE : E × G → E which covers
an action α: M ×G→ M and is linear on the fibres of E. Differentiation of αE

at the identity element eG ∈ G yields the infinitesimal action

αE
∗ : Lie(G)' TeG

G −→ X(E), αE
∗ (a)(ex) = T(e(x),eG)

α(a),

which one can readily verify produces linear vector fields. The derivation
δαE

∗ (a)
associated to a Lie algebra elements a ∈ Lie(G) is given by

δαE
∗ (X )
(e)(x) = Tx e(T(x ,eG)

α(X ))− T(e(x),eG)
αE(X ) ∈ Te(x)Ex ' Ex

for e ∈ E (U) and x ∈ U with U ⊆ M open. Moreover, the map X 7→ δαE
∗ (X )

from g to Der1(E) is a (continuous) Lie algebra morphism. ◊

Derivations on a graded vector bundle can be defined analogously.
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Definition 4.2.8.
Let E =

⊕

n∈Z En → M of Fréchet type which is non-zero. A homogeneous
smooth derivation of degree d on E → M is a homogeneous morphism δ: E →
E of sheaves of topological graded vector spaces that of degree d for which
there exists a vector field X ∈ X(M) such that δ(e)x = Tv

x e(X (x)) for any
homogeneous local section e ∈ E n(U) of degree n and any point x ∈ U where
e(x) = 0.

A homogeneous derivation δ of degree 0 on a Z-graded bundle E → M is thus
equivalent to a collection of derivations δn : E n → E n on the bundles En → M
that cover the same vector field. Similarly, a derivation of degree d 6= 0 is
equivalent to a collection of vector bundle morphisms δn : En → En+d . We
denote the space of homogeneous smooth derivations of degree d ∈ Z on E → M
by Der1(E)d , and shall refer to the direct sum

Der1(E) :=
⊕

d∈Z

Der1(E)d

as the space of smooth derivations on E → M . Note that if we forgot about the
grading on E → M , and viewed it as an ungraded locally convex vector bundle,
this would be a product rather than a direct sum. The following lemma tells
us that, because we chose to define it as a direct sum, this space comes with a
graded Lie algebra structure.

Lemma 4.2.9.
Let δ1 and δ2 be homogeneous smooth derivations on a Z-graded vector bundle
E → M of Fréchet type covering X1 and X2 respectively. The graded commutator
[δ1,δ2] = δ1 ◦δ2−(−1)|δ1||δ2|δ2 ◦δ1 is a smooth derivation of degree |δ1|+ |δ2|
covering [X1, X2].

Apart from the fact that one has to take grading into account, the proof of this
lemma is identical to that of Lemma 4.2.5, so we will not repeat it.

We conclude this section by briefly discussing when the Leibniz rule can be
used to characterise smooth derivations. We recall from Definition A.2.40 that
a locally convex vector space V has the approximation whenever the image of
the inclusion map ˇV ⊗ V ,→ L(V, V ) is dense (for the topology of precompact
convergence). It is possessed by many classes of commonly encountered loc-
ally convex vector spaces, which includes the space of smooth sections of any
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finite-dimensional vector bundle, if it is endowed with the standard Fréchet
topology.

Proposition 4.2.10.
Let E → M be a vector bundle of Fréchet type and assume that either its fibres
or its base is modelled on a space with the approximation property. Then a
morphism δ: E → E of sheaves of locally convex vector spaces is a smooth de-
rivation covering the vector field X ∈ X(M) if and only if it satisfies the Leibniz
rule (4.2.1).

Proof: Since both conditions are local in nature, we may assume without loss
of generality that the bundle is trivial. Assume therefore that E = V ×M → M
is the trivial bundle over M with fibre V .

If a continuous operator δ: E → E is such that the Leibniz rule (4.2.1) holds
for a vector field X ∈ X(M), then δ − LX : E → E is both continuous and
C∞M -linear. Proposition 4.1.10 therefore tells us that this operator is in fact a
vector bundle morphism, from which we deduce through Proposition 4.2.3 that
δ =LX + (δ−LX ) is a smooth derivation. �

4.2.2. Connections

We will make frequent use of linear connections when describing and comparing
smooth multiderivations. The following definition is just one of several possible
characterisations of such connections.

Definition 4.2.11.
A smooth linear connection on a Z-graded vector bundle E → M of Fréchet
type is a morphism of sheaves of locally convex graded vector spaces,

∇: E −→ Ω1(E), e 7→ ∇e,

of degree 1 such that (∇e)x = Tv
x e ∈ L(Tx[1]M , Ex) for any homogeneous local

section e ∈ E (U) and any point x ∈ U where e(x) = 0.

For any given open subset U ⊆ M , a smooth connection ∇: E → Ω1(E ) on the
bundle E → M induces a bilinear map

∇: TM (U)×E (U) −→ E (U), (X , e) 7→ ∇X e := (∇e) ◦ X .
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This map is continuous in its first argument since∇e is a vector bundle morphism
for any local section e ∈ E (U), and we will see in Lemma 4.2.12 that it is
continuous in its second argument as well. Despite this, it is not generally
(jointly) continuous as a bilinear map.

Lemma 4.2.12.
Let E → M be a Z-graded vector bundle of Fréchet type and let ∇: E → Ω1(E)
be a smooth linear connection. For any local vector field X ∈ T (U), the operator

∇X : E |U −→ E |U , e 7→ ∇X e :=∇e ◦ X

is a smooth derivation covering X .

Proof: Let X ∈ T (U) be a local vector field defined on U ⊆ M . The fact that∇ is
a linear connection directly tells us that it has the property that (∇X e)x = (T

v
x e)◦↑

for any local section e ∈ E (U ′) with U ′ ⊆ U . To show that ∇X is a smooth
derivation covering X , we thus only need to demonstrate that∇X is a continuous
operator. Since E is a sheaf of locally convex vector spaces, it is sufficient to
verify this property locally.

If U ′ is the domain of a trivialisation chart, then Corollary 3.1.9 tells us that
evaluation on X is describes a continuous operator evX : Ω1(E)(U ′) → E (U ′).
Because∇ is continuous by assumption, continuity of∇X =∇◦evX follows. We
conclude that ∇X is a smooth derivation covering X because every open subset
of M is covered by neighbourhoods of this type. �

Linear connections can be described more explicitly on the domain of a triviali-
sation chart using the following analogue of Proposition 4.2.3.

Proposition 4.2.13.
Let E → M be a vector bundle of Fréchet type and let Φ: E |U → V × U be a local
trivialisation. For any vector bundle morphism A: T[1]M |U ⊗ E |U → E |U , the
operator

∇Φ,A =L Φ + A: E |U −→ Ω
1(E)|U , ∇Φ,A

X e =L ΦX e+ A◦ (X ⊗ e)

is a smooth connection on E |U , and every connection on E |U is of this form.

146



4.2. Multiderivations

Proof: Both L Φ and A are local operators and the condition that their sum is a
smooth connection can be verified locally. We will therefore assume without loss
of generality that the base is a Fréchet domain M ⊆ T and that E → M is the
trivial bundle V ×M → M , and we will freely use the canonical identifications
E (U)' C∞(U , V ) and TM (U)' C∞(U , T ) for any open subset U ⊆ M .

A vector bundle morphism A: TU ⊗ E |U → E |U now corresponds to a smooth
map A: U → L(T ⊗ V, V ), in terms of which ∇Φ,A is given by

(∇Φ,A
X e)(x) = De(x)(X (x)) + A(x)(X (x)⊗ e(x))

for every X ∈ TM (U
′), every e ∈ E (U ′) and every x ∈ U ′ with U ′ ⊆ U open.

As discussed in Proposition B.2.5, differentiation describes a continuous lin-
ear map D: C∞(U ′, V ) → C∞(U ′, L(T, V )). Since the spaces L(T ⊗ V , V ) and
L(V , L(T, V )) are canonically isomorphic, Proposition 3.1.6 tells us that A also
induces a continuous map Â from C∞(U ′, V ) to C∞(U , L(T, V )). Consequently,
∇Φ,A =L Φ + Â is continuous as well.

In terms of the identification E (U ′) ' C∞(T, V ), the vertical derivative of a
local section e ∈ E (U ′) that vanishes at x ∈ U ′ is given by Tv

x e = De(x), which
coincides withL Φ,0e(x). We deduce that also∇Φ,Ae(x) = Tv

x e at this point since
Â(e) vanishes at any point where e has a zero. We deduce that ∇Φ,A is a smooth
linear connection.

To show that any smooth connection on E |U is of this form, assume we are given
a connection ∇ on E and consider the operator Â= ∇−L Φ : E |U → Ω

1(E)|U .
It is continuous and has the property that Â(e)(x) = 0 whenever e vanishes at
x because ∇e(x) and L Φe(x) coincide at such points. This tells us that there
exists a function A: TU ⊗ E |U → E |U such that Â(e)(X )(x) = A(X (x)⊗ e(x)) for
all e ∈ E (U ′), X ∈ TM (U

′) with U ′ ⊆ M open and any x ∈ U ′. Proposition 4.1.9
tells us that A is a vector bundle morphism and, consequently, that ∇ is of the
desired form.

We conclude that smooth connections on E |U are precisely those operators that
are of the form L Φ + Â for some vector bundle morphism A: T[1]U ⊗ E |U →
E |U . �

Note that Proposition 4.2.13 in particular tells us that the operator L Φ is itself
a connection on E |U and that the difference between any two connection on

147



Chapter 4. L∞-algebroids

E → M is a vector bundle morphism from TM⊗E to E . From this we deduce that
if E → M admits a global connection, then the set of connections on E → M
is an affine space over the space of vector bundle morphisms from TM ⊗ E
to E . Unlike in the finite-dimensional case, however, the existence of a global
connection on a given vector bundle E → M of Fréchet type is not guaranteed.

As in the finite-dimensional case, vector bundle connections can be pulled
back along smooth maps to obtain connections on the corresponding pullback
bundle.

Proposition 4.2.14 (Pullback connection).
Let∇: TM⊗E → E be a smooth connection on a vector bundle E → M of Fréchet
type. For any smooth map f : N → M from another Fréchet manifold N to M,
the pullback bundle f ∗E → N admits a unique connection f ∗∇ such that

( f ∗∇) ẏ( f
∗e) =∇T f ( ẏ)e

for every local section e ∈ E (U) with U ⊆ M open, and every tangent vector
ẏ ∈ Ty N for y ∈ f −1(U).

Proof: Since the condition on f ∗∇ is local in nature, we can assume without
loss of generality that E → M is trivialisable. LetΦ: E → V×M be a trivialisation
of and let f ∗Φ: f ∗E → N × V denote the induced trivialisation on f ∗E → N .

Proposition 4.2.13 now tells us that there exists a unique vector bundle morph-
isms A: TM ⊗ E → E such that ∇=L Φ + A. We claim that the pullback of ∇ is
given by f ∗∇ = L f ∗Φ + f ∗A, where f ∗A: TN ⊗ f ∗E → f ∗E denotes the vector
bundle morphism that is given by

( f ∗A)y( ẏ , e) = A f (y)(Ty f ( ẏ), e) ∈ ( f ∗E)y ' E f (y)

for y ∈ N , ẏ ∈ Ty N and e ∈ ( f ∗E)y ' E f (y).

Let ∇′ = L f ∗Φ + B denote an arbitrary connection on f ∗E and U ⊆ M be an
open subset, then

∇′ẏ( f
∗e) =L Φẏ ( f

∗e) + B( ẏ , e(y)) =L ΦT f ( ẏ)e+ B( ẏ , e(y))

for every section e ∈ E (U) and every tangent vector ẏ ∈ Ty U at a point y ∈ U ,
while

∇T f ( ẏ)e =L
Φ
T f ( ẏ)e+ A(T f ( ẏ), e(y)).
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If U is sufficiently small, these two expressions coincide for every e ∈ E (U)
and all ẏ ∈ TU if and only if B = f ∗A. This tells us that L f ∗Φ + f ∗A satisfies
the defining equation for the pull-back connection f ∗∇ and that it is uniquely
determined by this property. �

Remark 4.2.15.
To any smooth linear connection ∇: E → Ω1(E) on a vector bundle E → M of
Fréchet type we can associate a sequence of continuous degree 1 operators

E = Ω1(E)
d∇
−→ Ω2(E)

d∇
−→ Ω3(E)

d∇
−→ Ω4(E)

d∇
−→ · · ·

on the sheaves of E -valued forms. The (p+1)-st of these operators is given by

(d∇α)( ẋ{1,...,p}) =
∑

{i}tJ={1,...,p}

εi,J (∇ ẋ i
α)( ẋJ )

−
∑

{i}t{ j}tK={1,...,p}

1
2 εi, j,Kα([ ẋ i , ẋ j], ẋK).

for any form α ∈ Ωp(E)(U) defined on a neighbourhood U ⊆ M of x ∈ M
and tangent vectors ẋ0, ẋ1, . . . , ẋp ∈ Tx[1]M . Existence and continuity of these
operators can be verified by working out what they look like on a trivial bundle
and subsequently applying the theory from section 3.1.2.

The operator F∇ = d∇ ◦ d∇ : E → Ω2(E) is the curvature of ∇, and it can be
interpreted as vector bundle morphism from

⊙2(T[1]M)⊗ E to E . This is a
special case of Corollary 4.2.25. 4

4.2.3. Multiderivations of a given arity

Given a Z-graded vector bundle E → M of Fréchet type, we can consider homo-
geneous graded symmetric multilinear operators on its sheaf of sections. We are
interested in operators that are smooth derivations in each of their arguments.

Definition 4.2.16.
A homogeneous multiderivation of arity p ∈ N0 and degree d ∈ Z on a Z-graded
vector bundle E → M of Fréchet type consists of a morphism of presheaves
and a graded symmetric multilinear vector bundle morphism,

θ :
⊙p(E ) −→ E and ρθ :

⊙p−1(E) −→ TM ,
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both homogeneous of degree d, such that for any open subset U ⊆ M and any
sequence e1, e2, . . . , ep−1 ∈ E (U) of local sections,

θ (e1 � · · · � ep−1 � �): E |U −→ E |U

is a smooth derivation on E |U covering ρθ (e1 � · · · � ep−1) ∈ T (U).

The vector bundle morphism ρθ is called the principal symbol or the anchor of
the multiderivation. It is completely determined by the operator θ except when
E = 0 and (p, d) = (1,0), in which case θ = 0 and the pair (θ ,ρθ ) carries the
same information as the vector field ρθ (1) ∈ X(M). One can show that the
condition that ρ is a multilinear graded vector bundle morphism is redundant
if E → M is of finite-dimensional type and E has rank at least 2.

For p ∈ N and d ∈ Z, we denote the space of multiderivations of arity p and
degree d on E by Derp(E)d . Together, these form a bigraded vector space

Der(E) :=
⊕

(p,d)∈N0×Z

Derp(E)d

indexed by arity p ∈ N0 and degree d ∈ Z.

Since
⊙−1(E) = 0 and

⊙0(E )' RM , a multiderivation of arity 0 and degree d
is equivalent to a global section of Ed . A multiderivation of arity 1 and degree d
on E is a derivation on this graded vector bundle of the same degree, as defined
in Definition 4.2.8: it is a (derivation) covering the vector field ρθ (1) ∈ X(M)
on each of the bundles En for n ∈ Z if d = 0, and a degree d graded vector
bundle morphism from E to itself if d 6= 0.

Note that the requirement that θ(e1 � · · · � ep−1 � �) is a smooth derivation in
particular implies that the operators

θ (U): E n1(U)× · · · × E np(U) −→ E n1+···+np+d(U)

for n1, n2, . . . , np ∈ Z are continuous in each of their arguments separately. Al-
though this implies joint continuity of θ(U) if E → M is of finite-dimensional
type, this is not the case in general.

Locally, connections can be used to describe multiderivation more explicitly.
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Proposition 4.2.17.
Let E → M be a Z-graded vector bundle of Fréchet type let ∇: TU ⊗E |U →E |U
be a local connection. Given p ∈ N0, d ∈ Z and two vector bundle morphisms of
degree d,

A:
⊙p(E)|U −→ E |U and ρ:

⊙p−1(E)|U −→ TM |U ,

the presheaf morphism θ =∇ρ + A:
⊙p(E |U)→E |U given by

θ (e1 � · · · � ep) =
∑

It{ j}={1,...,p}

εI ,{ j}∇ρ(eI )
e j + A(e1 � . . .� ep),

for e1, e2, . . . , ep ∈ E (U
′) with U ′ ⊆ U open, is a multiderivation of arity p and

degree d with anchor ρ. Conversely, any homogeneous multiderivation of a given
arity on E |U is of this form.

Proof: Let A:
⊙p(E)|U → E |U and ρ:

⊙p−1(E)|U → TM |U be smooth vector
bundle morphisms of degree d and let θ = ∇ρ + A be defined as above. We
need to show that θ (e{1,...,p−1} � �): E |U →E |U is a smooth derivation covering
ρ{e1,...,ep}

∈ TM (U) for an arbitrary sequence of homogeneous local sections
e1, e2, . . . , ep−1 ∈ E (U

′) with U ′ ⊆ U open.

Given such a sequence, we can write θ (e{1,...,p−1} � �) as ∇X + B in terms of the
vector field X = ρ{e1,...,ep}

and another operator B: E |U ′ → E |U ′ , which is given
by

B(e) =
∑

It{ j}={1,...,p−1}

(−1)|e j ||e|εI ,{ j}∇ρ(eI�e)e j + A(e{1,...,p−1} � e),

for e ∈ E (U ′) homogeneous with U ′′ ⊆ U ′ open.

We now observe that ∇ρ(eI� �)e j = ∇e j ◦ ρ ◦ (eI � �) for j = 1, . . . , p − 1 and
A(e{1,...,p−1}� �) = a◦(e{1,...,p−1}� �) are smooth graded vector bundle morphisms
since they can be expressed as compositions of such morphisms. Consequently,
B is a smooth graded vector bundle morphism as well and Proposition 4.2.3
tells us that θ(e{1,...,p−1} � �) =∇X + B is a smooth derivation covering X . This
allows us to conclude that θ = ∇ρ + A is a smooth multiderivation that has ρ
as its anchor.

For the converse statement, assume that we are given a smooth multiderivation
θ :

⊙p(E ) → E of arity p and degree d covering ρ:
⊙p−1(E) → TM . Since
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both θ and ∇ρ are multiderivations covering ρ, their difference A= θ −∇ρ is
a multiderivation covering the trivial anchor 0:

⊙p−1(E)→ TM . We conclude,
through Proposition 4.1.12, that A is a vector bundle morphism and that θ =
∇ρ + A is consequently of the prescribed form. �

We obtain an exact sequence similar to the one described in Corollary 4.2.4.

Corollary 4.2.18.
The natural inclusion map from the sheaf LE,E of p-linear vector bundle morph-
isms from E to itself into Dp

E and the anchor map ρ: θ 7→ ρθ together form an
exact sequence

0 −→L⊙p(E),E −→D
p
E −→L⊙p−1(E),TM −→ 0

of sheaves of C∞M -modules.

Given a local connection ∇: TU ⊗ E |U → E |U , Proposition 4.2.17 allows us to
write Dp

E (U) as a direct sumL⊙p(E),E(U)⊕L⊙p−1(E),TM (U). This provides a local
splitting

0 L⊙p(E),E |U Dp
E |U L⊙p−1(E),TM |U 0

∇

for the sequence from Corollary 4.2.18. In the finite-dimensional case, we can
use this to interpret Dp

E as the sheaf of sections of another vector bundle over
M .

We will define the graded commutator of two homogeneous multiderivations
θ :

⊙p(E )→E and θ :
⊙q(E )→E of arity p and q respectively as the presheaf

morphism [θ ,η]:
⊙r(E )→E for r = p+ q− 1, given by

[θ ,η](e1, e2, . . . , er) =
∑

ItJ={1,...,r}

εI ,J

�

θ (η(eI )� eJ )− (−1)|θ ||η|η(θ (eI )� eJ )
�

,

for homogeneous e1, e2, . . . , er ∈ E (U) with U ⊆ M open.

Proposition 4.2.19.
Let E → M be a graded vector bundle of Fréchet type and let θ :

⊙p(E )→ E
and η:

⊙q(E ) → E be homogeneous smooth multiderivations of arity p and
q respectively. The graded commutator [θ ,η]:

⊙r(E )→ E is a homogeneous
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multiderivation of arity r = p+ q−1 and degree |θ |+ |η| whose anchor is given
by

ρ[θ ,η] = [ρθ ,ρη] +ρθ �η− (−1)|θ ||η|ρη � θ .

Here [ρθ ,ρη]:
⊙r(E )→E is defined by the equation

[ρθ ,ρη](e{1,...,r}) =
∑

ItJ={1,...,r}

(−1)|eI ||η|εI ,J [ρθ (eI ),ρη(eJ )],

ρθ �η:
⊙r(E )→E is given by

(ρθ �η)(e{1,...,r}) =
∑

ItJ={1,...,r}

εI ,J ρθ (η(eI )� eJ )

and ρη � θ is defined similarly.

Proof: We can show that [θ ,η] is a smooth multiderivation by repeatedly apply-
ing Lemma 4.2.5. Given a subset I ⊆ {1, 2, . . . , r}, let θeI

: E → E andηeI
: E → E

be the operators given by θeI
(e j) = θ(eI � e j) and ηeI

(e j) = η(eI � e j). These
are derivations covering ρθ (eI ) and ρη(eI ) respectively.

To show that the graded commutator [θ ,η] is a derivation in its last argument,
we write out [θ ,η](e{1,...,r}) as

∑

ItJ={1,...,r−1}

εI ,{r},J

�

θ (η(eI � er)� eJ )− (−1)|θ ||η|η(θ (eI � er)� eJ )
�

+ εI ,J

�

θ (η(eI )� eJ � er)− (−1)|θ ||η|η(θ (eI )� eJ � er)
�

.
(4.2.4)

If we first investigate the first line, we see that can be rewritten as

εI ,{r},Jθ (η(eI � er)� eJ )− (−1)|θ ||η|η(θ (eJ � er)� eI )

= (−1)|η||eJ |εJ ,I

�

θeJ
◦ηeI

− (−1)|θeJ
||ηeI
|
ηeI
◦ θeJ

�

(er)

= (−1)|η||eJ |εJ ,I [θeJ
,ηeI
](er).

Since both θeJ
and ηeI

are smooth derivations, Lemma 4.2.5 tells us that this is
a smooth derivation in er covering the vector field (−1)|η||eJ |εJ ,I [ρθ (eJ ),ρη(eI )].

The expressions on the second line of equation (4.2.4) are given by

θ (η(eI )� eJ � er) = θη(eI )�eJ
(er)
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and

η(θ (eI )� eJ � er) = ηθ (eI )�eJ
(er)

respectively. These are smooth derivations in er covering ρ(η(eI ) � eJ ) and
ρ(θ (eJ )� eI ) respectively.

By combining these observations, we can conclude that [θ ,η](e{1,...,r−1} � �) is
a smooth derivation covering ρ[θ ,η](e{1,...,r−1}), with ρ[θ ,η] as described in the
statement of this proposition.

What remains to be shown is that ρ[θ ,η] :
⊙r−1(E ) → E is a vector bundle

morphism. By explicitly working out this operator on the domain of a trivialisa-
tion chart Φ: E |U → V × U using Proposition 4.2.17, we obtain the identity

ρ[θ ,η](e{1,...,p}) =
∑

ItJ={1,...,p}

εI ,J

�

(L Φρθ (eI )
ρη)(eJ ) +ρθ (A(eI )� eJ )

− (L Φρη(eI )
ρθ )(eJ )−ρη(A(eI )� eJ )

�

for e1, e2, . . . , ep ∈ E (U). Since every term in this sum is a smooth vector bundle
morphism in each of the arguments e1, e2, . . . , ep, the operator ρ[θ ,ρ] is as well.

�

With respect to the bigrading on the space Der(E) =
⊕

(p,d)∈N0×Z Derp(E)d of
multiderivations on E , the graded Lie bracket described in Proposition 4.2.19
has degree (−1, 0): it is degree-preserving, but decreases arity by 1.

4.2.4. Lie algebroids

We can define Lie algebroid structures on vector bundles of Fréchet type by
taking the usual definition for finite-dimensional vector bundles and replacing
the Leibniz identity by the condition that the Lie bracket is a smooth derivation
in the sense of Definition 4.2.1 in both of its arguments.

Definition 4.2.20.
Let M be a Fréchet manifold. A Lie algebroid (A,¹ � , �º,ρ) of Fréchet type over
M consists of:

1. a vector bundle A → M of Fréchet type whose sheaf of sections we
denote byA ,
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2. a morphism of presheaves

¹

� , �º:A ⊗A −→A

such that (A (U),¹ � , �º) is a Lie algebra for every open subset U ⊆ M ,
and

3. a vector bundle morphism ρ: A→ TM , called the anchor map, such that

¹a, �º:A|U −→A|U

is a smooth derivation covering ρ(a) for any local section a ∈A .

Given a Lie algebroid (A,¹ � , �º,ρ) of Fréchet type over M we can consider the
Z-graded vector bundle A[1]→ M which is obtained from A→ M by shifting
all degrees down by 1. This bundle is concentrated in degree −1 and is given
by A[1]−1 = A. It can be endowed with a canonical binary multiderivation θ by
setting

θ (↓a,↓b) = ↓¹a, bº

for a, b ∈ A (U) with U ⊆ M open, where ↓a denotes the local section of
A[1] corresponding to a and ↓b is defined similarly. This multiderivation is
homogeneous of degree 1 and it is self-commuting since

1
2 [θ ,θ](e{1,2,3}) = θ (θ (e1, e2), e3) + θ (θ (e2, e3), e1) + θ (θ (e3, e1), e2)

is the Jacobiator of θ and thus vanishes by assumption. A binary multiderivation
on A[1] whose Jacobiator does not vanish but which does satisfy ρJac(θ ) = 0
similarly corresponds to a pre-Lie algebroid.

Example 4.2.21 (Lie algebras).
A Fréchet Lie algebra is a Fréchet space g endowed with a continuous Lie
bracket [ � , �]: g × g → g. It can be viewed as a Fréchet Lie algebroid over
a point. Conversely, any Fréchet Lie algebroid over a point is of this form,
even though continuity of the Lie bracket was not explicitly imposed in Defin-
ition 4.2.23. ◊

Example 4.2.22 (Action algebroids).
An infinitesimal action of a Fréchet Lie algebra (g, [ � , �]) on a Fréchet manifold
M is a continuous Lie algebra morphism α∗ : g → X(M) to the Lie algebra
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X(M) = TM (M) of vector fields on M . This induces a smooth vector bundle
morphism

ρ: A−→ TM , (X , x) 7→ α∗(X x)(x)

from the trivial bundle A= g×M → M to the tangent bundle of M . Smooth-
ness of ρ can be derived from either Lemma 3.1.7 or from the proof of the
implication (iii)⇒ (ii) in Proposition 3.1.6.

The action algebroid (gn M ,ρ,¹ � , �º) corresponding to the aforementioned
is the trivial bundle A= g× M → M , endowed with the anchor ρ described
above and the Lie bracket ¹ � , �º given by

¹X , Yºx = [X x , Yx] +Lρ(X x )
Y −Lρ(Yx )

X

for X , Y ∈A (U)' C∞(U ,g)with U ⊆ M open. This is a smooth Lie algebroid
structure because it is of the form described in Proposition 4.2.17 for the trivial
connection on g × M → M , the anchor ρ and the constant bilinear vector
bundle morphism x 7→ [ � , �]. ◊

Definition 4.2.23.
Let A= (A,¹ � , �º,ρ)→ M be a Lie algebroid of Fréchet type and let E → M
be a vector bundle of Fréchet type. An A-connection on a E is a morphism

∇: E −→ Ω1
A(E), e 7→ ∇e

of sheaves of locally convex vector spaces such that ∇e(x) = Tv
x e ◦ρx for any

local section e ∈ E (U) and any x ∈ U where e(x) = 0. The curvature of ∇ is
the form F∇ ∈ Ω

2
A(End(E)) given by

F∇(a1 � a2)(e) = [∇a1
,∇a2

]e−∇
¹a1,a2º

e,

for a1, a2 ∈A (U) and e ∈ E (U) and (E,∇).
A representation of A is a vector bundle E→ M endowed with an A-connection
∇ whose curvature vanishes identically.

Proposition 4.2.24.
Let E → M be a graded vector bundle of Fréchet type concentrated in degrees
−1 and k for some k ∈ Z and let θ : E � E → E be a binary multiderivation on
E. Denoting the restrictions of θ to E−1 � E−1 and E−1 ⊗ E k by ¹ � , �º and ∇
respectively, we have

θ = ¹ � , �º+∇ and [θ ,θ] = Jac(¹ � , �º) + F∇,
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where F∇ is denotes the curvature from Definition 4.2.23 (which can be defined
even if Jac(¹ � , �º) 6= 0).

If k 6= −1, this describes a one-to-one correspondence between self-commuting
binary multiderivations on E = E−1⊕ Ek and pairs (¹ � , �º,∇) consisting of a Lie
algebroid structure on E−1 and an E−1-representation on Ek.

Verifying Proposition 4.2.24 amounts to checking that the components of a
binary multiderivation θ on A⊕ E are of the type described in Definition 4.2.23
working out the commutator [θ ,θ].

Although we had claimed in Definition 4.2.23 that the curvature F∇ is a smooth
form, we had not yet established that this is the case.

Corollary 4.2.25.
Let A= (A,¹ � , �º,ρ) be a Lie algebroid and let∇:A⊗E → E be an A-connection.
The curvature F∇ : A ⊗A ⊗ E → E of ∇ is a vector bundle morphism from
A⊗ A⊗ E to E.

Proof: If we pick some integer k ∈ Z \ {−1} and let E = E−1 ⊕ Ek be given by
E−1 = A and Ek = E, then Proposition 4.2.24 tells us that the curvature is given
by F∇ = [∇,∇]+2 [∇,¹ � , �º]. We know from Lemma 4.2.9 that this is a smooth
multiderivation, and since its anchor vanishes due to homogeneity it must be a
vector bundle morphism. �

Example 4.2.26 (Fibrewise linear Lie group actions).
Let α: M × G → M be a smooth right action of a Fréchet Lie group G on a
Fréchet manifold M , and let (A,ρ,¹ � , �º) be the associated action algebroid.
Suppose moreover that we are given a fibrewise linear action of G on a vector
bundle π: E → M that covers α, i.e. a smooth map αE : E × G→ E such that
αE |Ex×{g}

is a linear map from Ex to Eα(x ,g) for every x ∈ M and every g ∈ G.

We can associated a Lie algebroid representation to this action by endowing
E→ M with the A-connection

∇E : E −→ Ω1
A(E), ∇ae(x) = δαE

∗ (ax )
(e) = Tx e(ρ(ax))− T(e(x),eG)

αE(ax),

where δαE
∗ (ax )

is the derivation described in Example 4.2.7. That (a, e) 7→ ∇ae is
a smooth derivation in its first argument was essentially shown in this example.
One can show that it is a smooth vector bundle by working out what ∇E

a e
looks like on the domain of a trivialisation chart. The curvature of ∇ vanishes
because X 7→ δαE

∗ (X )
is a Lie algebra morphism, as noted in Example 4.2.7. ◊
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4.2.5. Pluriderivations

Although we have thus far only considered multiderivations of a definite arity, we
are also interested in formal linear combinations of multiderivations of different
arities. To clearly distinguish the two concepts, we shall refer to such objects as
pluriderivations.

Definition 4.2.27.
A homogeneous pluriderivation of degree d on a Z-graded vector bundle E →
M of Fréchet type is a sequence (θ ,ρ) = (θp,ρp−1)p∈N0

of multiderivations of
degree d indexed by arity.

We can think of a homogeneous pluriderivation (θ ,ρ) as a pair consisting of a
presheaf morphism and a graded vector bundle morphism

θ :
⊙

(E ) −→ E , and ρ:
⊙

(E) −→ TM ,

which are such that θ |⊙p(E ) = θp ρ|⊙p(E ) = ρp for all p ∈ N0 (note that ρ−1 = 0
by definition). They form a Z-graded vector space

Derb (E) =
⊕

d∈Z

Derb (E)d with Derb (E)d =
∏

p∈N0

Derp(E)d ,

which contains the space Der(E) from section 4.2.3 since this space is defined
similarly, but uses a direct sum rather than a direct product.

Proposition 4.2.28.
Let E → M be a Z-graded vector bundle of Fréchet type let ∇: TU ⊗E |U →E |U
be a local connection. Given p ∈ N0, d ∈ Z and two vector bundle morphisms of
degree d,

A:
⊙

(E)|U −→ E |U and ρ:
⊙

(E)|U −→ TM |U ,

the presheaf morphism θ =∇ρ + A:
⊙

(E |U)→E |U given by

θ (e1 � · · · � ep) =
∑

It{ j}={1,...,p}

εI ,{ j}∇ρ(eI )
e j + A(e1 � . . .� ep),

for e1, e2, . . . , ep ∈ E (U
′) with U ′ ⊆ U open, is a homogeneous pluriderivation

with anchor ρ. Every homogeneous pluriderivation on E |U is of this form.
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Proof: This is an immediate corollary to Proposition 4.2.17. �

The space Derb (E) of smooth pluriderivations on E → M carries a natural graded
Lie algebra structure. The graded commutator of two homogeneous plurideriv-
ations θ = (θp)p∈N0

∈ Derb and η= (ηq)q∈N0
is given by

[θ ,η] =
�

[θ ,η]r
�

r∈N0
with [θ ,η]r =

∑

p+q=r+1

[θp,ηq].

in terms of the graded Lie algebra structure on Der(E). It is also characterised
by the identity

[θ ,η](e1 � · · · � ep) =
∑

ItJ={1,...,p}

εI ,J

�

θ (η(eI )� eJ )− (−1)|θ ||η|η(θ (eI )� eJ )
�

for homogeneous e1, e2, . . . , ep ∈ E (U) with U ⊆ M open.

The following proposition is a plurilinear analogue of Proposition 4.2.29.

Proposition 4.2.29.
Let E → M be a graded vector bundle of Fréchet type and let θ :

⊙

(E ) →
E and η:

⊙

(E ) → E be homogeneous smooth pluriderivations. The graded
commutator [θ ,η]:

⊙

(E ) → E is a homogeneous pluriderivation of degree
|θ |+ |η| whose anchor is given by

ρ[θ ,η] = [ρθ ,ρη] +ρθ �η− (−1)|θ ||η|ρη � θ .

Here [ρθ ,ρη]:
⊙r(E )→E is defined by the equation

[ρθ ,ρη](e{1,...,r}) =
∑

ItJ={1,...,r}

(−1)|eI ||η|εI ,J [ρθ (eI ),ρη(eJ )],

ρθ �η:
⊙r(E )→E is given by

(ρθ �η)(e{1,...,r}) =
∑

ItJ={1,...,r}

εI ,J ρθ (η(eI )� eJ )

and ρη � θ is defined similarly.

Proof: This follows from Proposition 4.2.29 because the arity r component of
[θ ,η] is the finite sum of the graded commutators [θp,ηq] for p, q ∈ N0 with
p+ q = r. �

159



Chapter 4. L∞-algebroids

4.3. L∞-algebroids of Fréchet type

In this section, curved L∞-algebroids of Fréchet type are finally introduced.
Because we have taken some effort to first develop the theory of smooth mul-
tiderivations in section 4.2, their definition becomes rather straightforward: a
curved split curved L∞-algebroids is a Z-graded vector bundles whose spaces of
sections come with curved L∞-algebra structures that consists of smooth mul-
tiderivations. As in the finite-dimensional case, the definition of a morphism of
curved L∞-algebroids is a little more involved, as these are best characterised
in terms of the dual description of the L∞-algebroid structure as an (algebraic)
derivation on the sheaf of graded symmetric multilinear forms on the underlying
bundle.

Finite-dimensional L∞-algebroids have been studied before and can be found
in the literature under several different names. They initially only appeared
in their dual description, as differential graded manifolds, in e.g. [Vor10] (as
“non-linear” or “higher” Lie algebroids), [SSS12] and [Bru11] (in a Z2-graded
setting). Lie n-algebroids, which are L∞-algebroids whose underlying vector
bundles are concentrated in degrees between −n and −1, are studied in detail
in [SZ17] and [BP13]. L∞-algebroids have appeared in many other publications
since then, such as [Lav16; LLS17], [PS18] and [Vit14]. The underlying vector
bundle is usually assumed to be concentrated in negative degrees, and the term
Lie∞-algebroid is often used to refer to L∞-algebroids with this property.

4.3.1. Split L∞-algebroids of Fréchet type

Now that we have introduced smooth multiderivations and pluriderivations
on graded vector bundles of Fréchet type, we can provide the definition of a
curved split L∞-algebroid. It is essentially a curved L∞-algebra structure on the
sheaf of sections of a Z-graded vector bundle whose brackets are all smooth
multiderivations.

Definition 4.3.1.
A curved split L∞-algebroid of Fréchet type over a Fréchet manifold M is a
Z-graded vector bundle E → M of Fréchet type endowed with a degree 1
pluriderivation (θ ,ρ) ∈ Derb (E) such that [θ ,θ] = 0.
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4.3. L∞-algebroids of Fréchet type

Curved split L∞-algebroid structures on E are thus precisely the Maurer–Cartan
elements for the graded Lie algebra (Derb (E), [ � , �]). The word “split” in Defini-
tion 4.3.1 refers to either of the equivalent splittings

⊙

(E) =
⊕

p∈N0

⊙p(E) and
⊙

(E ) =
⊕

p∈N0

⊙p(E ),

of the bundle
⊙

(E)→ M and its sheaf of sections. This splitting is considered
part of the structure.

Reformulated slightly, Definition 4.3.1 states that a curved split L∞-algebroid
structure consists of sequences (θp)p∈N0

and (ρp)p∈N0
of graded symmetric brack-

ets and anchors,

θp :
⊙p(E ) −→ E and ρp :

⊙

(E) −→ TM

which are both homogeneous of degree 1. These are required to be such that
θp(v1, . . . , vp−1) is a smooth derivation covering ρp−1(v1, . . . , vp−1) for all local
sections v1, v2, . . . , vp−1 ∈ E (U), and they should satisfy the Jacobi identities

∑

ItJ={1,...,p}

εI ,Jθ#J+1(θ#I (vI )� vJ ) = 0

for v1, v2, . . . , vp ∈ E (U) with U ⊆ M open. The zeroth bracket, θ0 : R→ E 1, is
identified with the global section θ0(1) ∈ E

1(M) and is called the curvature of
(E ,θ ,ρ). A split L∞-algebroid is a curved split L∞-algebroid for which θ0 = 0.

Even though the requirement that θp is a smooth multiderivation implies con-
tinuity of the maps θp(U):

∏p E (U) → E (U) for p ∈ N0 in each of their ar-
guments separately, these maps need not be jointly continuous if M is infinite
dimensional. Consequently, (E (U),θ (U)) will not generally be a locally convex
L∞-algebra in the sense of Definition 2.3.2. Since they are smooth plurideriva-
tions, curved split L∞-algebroid structures on a graded vector bundle of Fréchet
type can locally be described through an auxiliary connection.

Proposition 4.3.2.
Let E → M be a Z-graded vector bundle of Fréchet type and let ∇ be a linear
connection on E |U for some open subset U ⊆ M. Every curved split L∞-algebroid
(θ ,ρ) structure on E is of the form

∇ρ +Θ: (e1 � · · · � ep) 7→
∑

It{ j}={1,...,p}

εI ,{ j}∇ρ(eI )
e j +Θ(e1 � · · · � ep)
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for some graded vector bundle morphism Θ:
⊙

(E |U)→ E |U of degree 1.

Conversely, two homogeneous vector bundle morphisms Θ:
⊙

(E) → E and
ρ:

⊙

(E) → TM of degree 1 together determine a curved split L∞-algebroid
structure if and only if ρ �Θ+ T∇,ρ = 0 and

Jac(Θ) +∇ρΘ+
1
2 F∇ ◦ (ρ ⊗ρ) = 0, (4.3.1)

where Jac(Θ) is the Jacobiator of Θ, which can be defined pointwise, and the
tensors T∇,ρ, ∇ρΘ and F∇ ◦ (ρ ⊗ρ) are given by

T∇,ρ =
∑

It{ j}tK

εI ,{ j},K ρ(∇ρ(eI )
e j � eK)−

∑

ItJ

εI ,J
1
2 [ρ(eI ),ρ(eJ )]

∇ρΘ(e{1,...,p}) = −
∑

ItJ

εI ,J∇ρ(eI )
Θ(eJ ) +

∑

It{ j}tK

εI ,{ j},KΘ(∇ρ(eI )
e j � eK)

and

(F∇ ◦ (ρ ⊗ρ))(e{1,...,p}) = −
∑

ItJt{k}

εI ,J ,{k} F∇(ρ(eI ),ρ(eJ ))(ek)

respectively, for homogeneous e1, e2, . . . , ep ∈ E (U) with U ⊆ M open.

Proof: Since (θ ,ρ) is a smooth pluriderivation, the first part of this proposition
is a special case of Proposition 4.2.28.

Given a vector bundle morphism Θ as described above, the pluriderivation
∇ρ + Θ defines a curved L∞-algebroid structure if and only if its Jacobiator
vanishes. The second assertion can thus be demonstrated by working out this
Jacobiator (which is a pluriderivation), as well as its anchor. We can read off
from Proposition 4.2.19 that the anchor is given by

ρJac(∇ρ+Θ)
= ρ � (∇ρ +Θ) +

1
2 [ρ,ρ] = ρ �Θ+ T∇,ρ,

and it necessarily vanishes when∇ρ+Θ is a curved L∞-algebroid structure. The
Jacobiator Jac(∇ρ +Θ) itself is given by Jac(Θ) + [∇ρ,Θ] + 1

2 [∇ρ,∇ρ], where

[∇ρ,Θ](e{1,...,p}) =
∑

ItJt{k}

εI ,J ,{k}∇ρ(Θ(eI )�eJ )
ek −

∑

ItJ

εI ,J∇ρ(eI )
(Θ(eJ ))

+
∑

It{ j}tK

εI ,{ j},K Θ(∇ρ(eI )
e j � eK)
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and
1
2 [∇ρ,∇ρ](e{1,...,p}) =

∑

It{ j}tJt{k}

εI ,{ j},K ,{l}∇ρ(∇ρ(eI )
e j�eK )el

−
∑

ItJtk

εI ,J ,{k}∇ρ(eI )
(∇ρ(eJ )

ek),

for homogeneous local sections e1, e2, . . . , ep ∈ E (U) with U ⊆ M open. If we
assume that ρ � Θ + T∇,ρ = 0, then the identity Jac(∇ρ + Θ) = 0 reduces to
equation (4.3.1). We conclude that ∇ρ +Θ is a curved L∞-algebroid structure
if and only if this equation holds and ρ �Θ+ T∇,ρ = 0. �

We conclude this section by discussing a few simple examples of curved split
L∞-algebroids.

Example 4.3.3 (L∞-algebras).
Any curved split L∞-algebra structure `:

⊙

(V ) → V on a Z-graded vector
space V of Fréchet type also describes a curved split L∞-algebroid structure
on the bundle V → {∗}, and every curved split L∞-algebroid over a point is of
this form. ◊

Example 4.3.4 (Lie algebroids).
We had seen in Section 4.2.4 that any Lie algebroid structure (¹ � , �º,ρ) on a
vector bundle A→ M of Fréchet type can be viewed as a binary multiderivation
of degree 1 on the graded vector bundle A[1]→ M , which is concentrated in
degree −1. The pluriderivation θ on E given by θ2 = ↓¹↑ � ,↑ �º and θp = 0 for
p 6= 2 is a curved split L∞-algebroid structure since the only component of its
Jacobiator that does not vanish due to homogeneity is the ternary component,

Jac(θ )3 :
⊙3(E ) −→ E , e1 � e2 � e3 7→

∑

It{ j}={1,2,3}

εI , jθ (θ (eI )� e j),

whose vanishing is expressed by the ordinary Jacobi identity for ¹ � , �º. Every
curved split L∞-algebroid (E ,θ ,ρ) which is concentrated in degree −1 is of
this form. ◊

Example 4.3.5 (Lie algebroid representations).
Let (A,¹ � , �º,ρ) be a Lie algebroid of Fréchet type over M , let E → M be
a Z-graded vector bundle and let ∇: TM ⊗ E → E be a flat Lie algebroid
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connection on E . We can define a smooth binary multiderivation θ2 on the
Z-graded vector bundle F = A[1]⊕ E → M by setting

θ2(a, b) = ¹a, bº, θ2(a, e1) =∇ae1, and θ2(e1 � e2) = 0

for a, b ∈A (U) and e1, e2 ∈ E (U)with U ⊆ M open. The only potentially non-
zero component of the Jacobiator Jac(θ2) is the ternary component, which is
given by Jac3(θ) = Jac(¹ � , �º) + F∇. It vanishes precisely because ¹ � , �º is a
Lie bracket and the connection ∇ is flat. ◊

Example 4.3.6 (Equivariant families of L∞-algebras).
One can add additional structure to the equivariant vector bundle E → M
from Example 4.3.5 in the form of a homogeneous plurilinear vector bundle
morphism α:

⊙

(E)→ E of degree 1. We may then consider the plurilinear
operator θ = ¹ � , �º+∇+α whose non-trivial components are given by

θ2(a, b) = ¹a, bº, θ2(a, e1) =∇ae1, and θ2(e{1,...,p}) = α(e{1,...,p})

for a, b ∈ A (U) and e1, e2, . . . , ep ∈ E (U) with U ⊆ M . This defines a curved
split L∞-algebroid structure on F = A⊕ E if and only if (Ex ,αx) is a curved
L∞-algebra for every x ∈ M , and α is equivariant in the sense that

∇aα(e{1,...,p}) =
p
∑

i=1

α
�
⊙

j<i e j � (∇aei)�
⊙

j>i e j

�

for a ∈A (U) and e1, e2, . . . , ep ∈ E (U) with U ⊆ M open. ◊

Example 4.3.7 (Representations up to homotopy).
A more interesting class of examples is provided by representation up to ho-
motopy. These were introduced in [Aba08; AC12] to study the cohomology of
classifying spaces of Lie groupoids and to make sense of the adjoint representa-
tion of a Lie algebroid. We will not recall their definition here, but shall instead
focus on the equivalent characterisation as a sequence (∂ ,∇,ω2,ω3, . . . ) of
multilinear operator, which can be found in Proposition 2.3.2 of [Aba08] or
Proposition 3.2 of [AC12].
Let (A,¹ � , �º,ρ) be a Lie algebroid over M and let E → M be a Z-graded vector
bundle, but of Fréchet type. A representation up to homotopy of (A,¹ � , �º,ρ)
on E can be described as a sequence (∂ ,∇,ω2,ω3, . . . ) consisting of the fol-
lowing objects:
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4.3. L∞-algebroids of Fréchet type

• a graded vector bundle morphism ∂ : E → E of degree 1 such that ∂ ◦∂ =
0;

• a Lie algebroid connection ∇:A ⊗E → E such that ∇∂ = 0;
• a vector bundle morphism ω2 ∈

⊙2(A[1])⊗ E → E of degree 1 such
that

∂ω2(a, b, e) +ω2(a, b,∂ e) + F∇(a, b)(e) = 0

for any two three local sections a, b ∈A (U) and e ∈ E (U); and
• a sequence (ωp)p≥3 of vector bundle morphismsωp ∈

⊙p(A[1])⊗E → E
of degree 1 satisfying a further equation,

∂ (ωp) + d∇ωp−1 +ω2 ◦ωp−2 +ω3 ◦ωp−3 + · · ·+ωp−2 ◦ω2 = 0,

whose terms we will not define here.

These objects can be combined to form an operator θ = ¹

� , �º + ∂ + ∇ +
∑

p≥2ωp from
⊙

(A [1]⊕E ) toA [1]⊕E similar to the operator θ from Ex-
ample 4.3.6. This produces a curved L∞-algebroid structure on A[1]⊕ E → M
since each of the identities listed above corresponds to one of the compon-
ents of the Jacobiator of θ , and every potentially non-trivial component is
represented. ◊

When L∞-algebroids are studied, it is often assumed that the underlying vector
bundle E → M is finite-dimensional and negatively graded. A curved split L∞-
algebroid which on a Z-graded vector bundle E → M which is concentrated in
the negative degrees −1 up to −n for some n ∈ N is called a Lie-n algebroid.
Such L∞-algebroids can be conveniently described as (positively graded) differ-
ential graded manifolds, as demonstrated in [SZ17] and [BP13]. Even though
Definition 4.3.1 is meaningful for arbitrary Z-graded vector bundles, we will
often restrict our attention to bundles E =

⊕

n∈Z En→ M for which E0 = 0.

4.3.2. The Maurer–Cartan locus

Since we mean to use curved L∞-algebroids to describe deformation problems,
we should describe how they might do so. In this section we will therefore
describe analogues of the Maurer–Cartan locus and the concept of gauge equi-
valence from section 2.4 and introduce the deformation complex corresponding
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to a Maurer–Cartan element. How these are related to similar concepts for equi-
variant deformation problems and curved L∞-algebras will be made explicit in
chapter 5.

In this section, as well as in chapter 5, we will only consider smooth curved L∞-
algebroids (E ,θ ,ρ) that are concentrated away from degree 0, i.e. for which
E0 = 0. This restriction does not apply to any of the curved L∞-algebroids
considered in section 4.3.3 and section 4.3.4.

The role of the Maurer–Cartan map for an equivariant deformation problem and
the Maurer–Cartan map of a convergent curved L∞-algebra will be fulfilled by
the curvature θ0 ∈ E

1(M). This leads to the following definition.

Definition 4.3.8.
The Maurer–Cartan locus of a curved L∞-algebroid (E ,θ ,ρ) of Fréchet type
over a Fréchet manifold M is the zero locus

MC(E ,θ ,ρ) =
�

x ∈ M
�

� θ0(x) = 0
	

of the curvature θ0 ∈ E
1(M). It’s elements are called Maurer–Cartan elements.

Gauge equivalence can also be defined in a way that is reminiscent of both
Definition 2.4.6 and the notion of an A-path for a Lie algebroid (A,¹ � , �º,ρ).

Definition 4.3.9.
A homotopy of Maurer–Cartan elements for a curved L∞-algebroid (E ,θ ,ρ) of
Fréchet type concentrated away from degree 0 is a smooth path Γ : [0, 1]→ E−1

which covers a path γ= π◦Γ : [0, 1]→MC(E ,θ ,ρ) and solves the differential
equation

γ′(t) = ρ ◦ Γ (t) (4.3.2)

for t ∈ [0,1]. We say that two Maurer–Cartan elements x0, x1 ∈MC(E ,θ ,ρ)
are gauge equivalent whenever there exists a homotopy (Γ ,γ) with endpoints
γ(0) = x0 and γ(1) = x1.

We note that the requirement that γ([0, 1]) ⊆MC(E ,θ ,ρ) is somewhat redund-
ant in a finite-dimensional context, since this implied by equation (4.3.2) when-
ever γ(0) ∈ MC(V ,θ ,ρ) in that case (but not in general). Moreover, if (θ ,ρ)
restricts to a Lie algebroid structure (θ2,ρ1) on A= E−1, then the homotopies
defined in Definition 4.3.9 are precisely the A-paths for this Lie algebroid that
cover a path in MC(E ,θ ,ρ).
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As was the case for convergent L∞-algebras, these homotopies can be repara-
metrised. Given a curve Γ : [a, b] → E−1 and a function f : [c, d] → [a, b],
both smooth, with a < b and c < d, the curve t 7→ f ′(t) Γ ( f (t)) solves equa-
tion (4.3.2) for all t ∈ [c, d] if and only Γ does for all t ∈ f ([a, b]) ⊆ [c, d]. This
makes it possible to reverse and concatenate homotopies. With this in mind,
it becomes clear that gauge equivalence describes an equivalence relation on
the Maurer–Cartan locus MC(E ,θ ,ρ). We shall refer to the equivalence classes
for this relation as the (gauge) orbits of this L∞-algebroid and denote the orbit
that contains a particular point x ∈MC(E ,θ ,ρ) by [x]. Given an open subset
U ⊆ M , we denote the orbits of (E |U ,θ |U ,ρ|U) containing x ∈ MC(E ,θ ,ρ) by
[x]U .

One can readily verify that the structure maps of (E ,θ ,ρ) satisfy two additional
identities,

ρ1 ◦ θ1|E−2 = 0 and Tvθ0 ◦ρ1

at any point x ∈ M where θ0 vanishes. Here Tv
xθ0 : Tx M → E1

x denotes the
vertical component of the derivative of θ0 at x . The first identity follows from
Proposition 4.2.29, and the second can be read off from Proposition 4.3.2 be-
cause the linear connection ∇ is by definition such that ∇θ0(x) = Tvθ0(x)
whenever θ0(x). These allow us to associate a differential complex to every
Maurer–Cartan element.

Definition 4.3.10.
Let (E ,θ ,ρ) be a curved L∞-algebroid (E ,θ ,ρ) of Fréchet type over M for
which E0 = 0. The deformation complex corresponding to a Maurer–Cartan
element x ∈MC(E ,θ ,ρ) is the differential complex

· · ·
d−3

x =θ1−−−−−→ V−2
x

d−2
x =θ1−−−−−→ V−1

x

d−1
x =ρ1−−−−−→ V 0 d0

x=Tv
xθ0−−−−−→ V 1

x

d1
x=θ1−−−−−→ V 2

x

d2
x=θ1−−−−−→ · · ·

with V 0
x = Tx M and V n

x = En
x for n ∈ Z \ {0}.

A potentially more insightful way to think about gauge equivalence is in terms of
the singular distribution determined by the images ρ1(E

−1
x ) ⊆ Tx M of the linear

components of the anchor ρ:
⊙

(E)→ TM . Its restriction to the Maurer–Cartan
locus MC(E ,θ ,ρ) can be made involutive in a precise sense.

Proposition 4.3.11.
Let (E ,θ ,ρ) be curved L∞-algebroid of Fréchet type and consider the subsheaf
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Fθ ≤ TM of the sheaf of vector fields on M which consist of all vector fields that
are locally of the form

X = ρ1 ◦ e+ A◦ θ0

for a local section e ∈ E−1(U) and a local vector bundle morphism A∈ LE1,TM (U)
with U ⊆ M open. This sheaf is involutive in the sense that [X , Y ] ∈ F (U) for
all X , Y ∈ Fθ (U) with U ⊆ M open.

Proof: We need to verify that the commutator of two vector fields X and Y
of the described form is again of this form. Since this is a local property, we
can assume without loss of generality that E → M admits a global trivialisation
chart Φ: E → V × T and use the associated flat linear connection ∇=L Φ on E
to write θ as θ =∇ρ +Θ for some vector bundle morphism Θ:

⊙

(E)→ E .

We have three cases to consider:

1. If X = ρ1 ◦ e and Y = ρ1 ◦ e′ for two local sections e, e′ ∈ E−1(U), then
Lemma 4.3.25 tells us that that

[X , Y ] = ρ1(θ2(e, e′)) +ρ2(θ1(e), e′)−ρ2(θ1(e
′), e) +ρ3(θ0, e, e′)

The two middle terms drop out because we had assumed that E0 = 0,
which leaves us with [X , Y ] = ρ1(θ (e, e′))+ρ3(θ0, e, e′). This vector field
is of the prescribed form.

2. If X = A◦ θ0 and Y = B ◦ θ0 for A, B ∈ LE,TM (U), then

[X , Y ] =
�

∇(B ◦ θ0)
�

◦ρ1 ◦ A◦ θ0 −
�

∇(A◦ θ0)
�

◦ρ1 ◦ B ◦ θ0,

which is an element F (U).

3. If X = ρ1 ◦ e and Y = A◦ θ0 for e ∈ E−1(U) and A∈ L (E, TM)(U), then

[X , Y ] =
�

∇ρ1(e)
A
�

◦ θ0 + A◦∇ρ1(e)
θ0 −∇(ρ1 ◦ e) ◦ρ1 ◦ A◦ θ0.

This vector field does not appear to be of the required form at first glance
because of the term A ◦ ∇ρ1(e)

θ0. Since θ = ∇ρ + Θ, we can however
rewrite this term as

∇ρ1(e)
θ0 = −θ2(θ0, e) +Θ2(θ0, e) = Θ2(θ0, e)
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by using the Jacobi identity θ1 ◦θ1+θ2(θ0, �) = 0 and the fact that E0 = 0.
Also this commutator is consequently of the form C ◦ θ0 for some local
vector bundle morphism C ∈ LE,TM (U).

Since the commutator [X , Y ] is a section ofF in all three cases, the same is true
for the commutator of two arbitrary sections. �

If the curved L∞-algebroid (E ,θ ,ρ) is of finite-dimensional type and satisfies
E0 = 0, then Proposition 4.3.11 can be used to show that the singular distribu-
tion ∆ ⊆ TM spanned by Fθ is integrable. The fibres of this distribution are
given by

∆x =

¨

ρ1(E
−1
x ) if θ0(x) = 0,

Tx M if θ0(x) 6= 0

and each of its leaves is either an orbit for (E ,θ ,ρ) or a connected component
of the complement of MC(E ,θ ,ρ) ⊆ M . We can go a little bit further than this,
however, and state an analogue of Proposition 1.3.5 for curved L∞-algebroids
of finite-dimensional type.

Theorem 4.3.12.
Let (E ,θ ,ρ) be a curved L∞-algebroid of finite-dimensional type over a finite-
dimensional manifold M for which E0 = 0 and let (Vx0

, dx0
) be the deformation

complex associated to a Maurer–Cartan element x0 ∈MC(E ,θ ,ρ). There exist
a decomposition V 0

x0
= B ⊕H ⊕ B′ with B = im(d−1

x0
) and B ⊕H = ker(d0

x0
) and

a smooth chart
ψ: U ⊆ M −→ V 0

x0
= B ⊕H ⊕ B′,

defined on a neighbourhood U ⊆ M of x0, for which the following hold.

0. The derivative Tψ(x0) of ψ at x0 is the identity map on V 0
x0

.

1. The Maurer–Cartan locus of (E |U ,θ |U ,ρ|U) is given by

MC(E ,θ ,ρ)∩ U =ψ−1
�

B × K × {0}
�

for some subset K ⊆ H ' H0(Vx0
, dx0
). This subset contains 0, and it is a

zero neighbourhood if H1(Vx0
, dx0
) = 0.

2. Each orbit of (E |U ,θ |U ,ρ|U) is of the form

[x] =ψ−1
�

B × Ax × {0}
�
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for some immersed submanifold Ax ⊆ H. Specifically, Ax0
= {0}, and if

H−1(Vx0
, dx0
) = 0 then the neighbourhood U can be chosen such that Ax

consists of a single point for every x ∈MC(E ,θ ,ρ)∩ U.

Proof: The subsheaf Fθ ⊆ TM is locally finitely generated by construction and
its involutivity is demonstrated in Proposition 4.3.11. Integrability of the sin-
gular distribution that it spans therefore follows from Theorem 2.2 in [Her62],
which tells us that the orbits of (E ,θ ,ρ) are submanifolds that are tangent to
this distribution. A local model for the corresponding foliation is provided by
e.g. Theorem 1 in [Ste74b] or Corollary 3.14 in [BLM16]. These both provide a
chart

φ : U ⊆ M −→ B ⊕ (H ⊕ B′)

such that each leaf is of the form φ−1(B × Ã) with Ã⊆ H ⊕ B′ and Tφ(x0) = id.

We can locally decompose the vector bundle E1→ M as a direct sum F1⊕F2⊕F3
of three vector bundles such that F1,x0

= B, F2,x0
= H and F3,x0

= B′, and such
that ker(θ1,x) ≤ F1,x ⊕ F2,x for every x near x0. Let πF1

denote the projection
onto F1 and consider the section πF1

◦ θ0 of F1|φ−1(H⊕B′). Since this section is
transverse at x0, its zero locus is a smooth submanifold with tangent space
H ⊕ B′ ∩ ker(d0

x0
) = H at x0. By straightening this submanifold we can obtain a

new chart
ψ: U ′ ⊆ U ⊆ M −→ B ⊕H ⊕ B′

such that (πF1
◦ θ0)

−1(0) ∩ φ−1(H ⊕ B′) = ψ−1(H), the leaves are still of the
aforementioned form and Tψ(x0) = id. It follows that MC(E ,θ ,ρ) ∩ U ′ is of
the form ψ−1(B× K ×{0}) since this set is a union of leaves and is contained in
the zero locus of πF1

◦ θ0.

Since they consist of Maurer–Cartan elements, the orbits of (E |U ′ ,θ |U ′ ,ρ|U ′) are
each of the form ψ−1(B × A× {0}) with A ⊆ H0(Vx0

, dx0
). Because the leaves

themselves are immersed submanifolds, these subsets are as well. The orbit
through x0 corresponds to Ax0

= {0} because the tangent space of this orbit at
x0 is equal to B.

Every element x of ψ−1(H) satisfies θ0(x) ∈ F2,x ⊕ F3,x by construction and,
since θ1 ◦ θ0 = 0 and ker(θ1) ≤ F1 ⊕ F2, it is also such that θ0(x) ∈ F1,x ⊕ F2,x
for all x close to x0. Consequently, θ0(x) ∈ F2,x ' H1(Vx0

, dx0
) for such x . It

follows that if H1(Vx0
, dx0
) = 0, every x ∈ ψ−1(H) close to x0 is automatically

Maurer–Cartan and that K ⊆ H0(Vx0
, dx0
) is thus a zero neighbourhood.
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Because d−2
x : E−2

X → E−1
x and d−1

x : E−2
X → E−1

x both vary smoothly with the base
point x ∈ M , there exists a neighbourhood U ′′ ⊆ M of x0 such that

dim
�

im(d−2
x0
)
�

≤ dim
�

im(d−2
x )
�

and dim
�

ker(d−1
x )
�

≤ dim
�

ker(d−1
x0
)
�

for all x ∈ U ′′. If x ∈MC(E ,θ ,ρ)∩ U ′′, this in fact becomes a fourfold equality

dim
�

ker(d−2
x0
)
�

= dim
�

ker(d−2
x )
�

= dim
�

ker(d−1
x )
�

= dim
�

ker(d−1
x0
)
�

because dim
�

ker(d−2
x0
)
�

= dim
�

im(d−1
x0
)
�

and im
�

d−2
x

�

⊆ ker
�

d−1
x

�

for such x .
This also implies that the dimension of the image im(d−1

x ) is equal to that of B =
im(d−1

x0
) for all such x . Since the leaf through x has im(d−1

x ) as its tangent space,
we deduce that Ax must be zero-dimensional for every x ∈MC(E ,θ ,ρ)∩U ′′. �

Remark 4.3.13.
The addition of vector fields of the form A◦θ0 in Proposition 4.3.11 may seem
a bit arbitrary at first glance. To make sense of it, we should think of the
Maurer–Cartan locus as the C∞-scheme cut out by θ0. The following is only
meaningful in a finite-dimensional context, but also serves as a motivation for
the general case.

We can declare that the space of “smooth functions” on MC(E ,θ ,ρ) should
consist of equivalence classes of functions on M , where two functions are
identified whenever their difference is an element of the ideal of functions of
the form A◦θ0 for a linear form ξ: E1→ RM . Derivations of such functions can
then be described as elements of the quotient of the space vector fields on M
that preserve this ideal by the submodule which consist of those vector fields
that are of the form A ◦ θ0 for a vector bundle morphism : E1 → TM . Now,
Proposition 4.3.11 simply states that vector field that can be represented as
ρ1◦e for some smooth section e ∈ E−1(M) form an involutive submodule. 4

Remark 4.3.14.
Theorem 4.3.12 also holds for curved L∞-algebroids of Banach type if one
assumes that the kernels ker(dn

x0
) ⊆ V n and the images im(dn−1

x0
) ⊆ ker(dn

x0
)

are (closed) complemented subspaces for n = −1,0,1. The proof becomes
significantly more involved, however, because being locally finitely generated
is no longer a viable condition for integrability. One will instead have to use an
alternative characterisation of integrability, such as Theorem 1 from [CS76].
We can verify that the conditions of this theorem are met by (1) describing
the curved L∞-algebroids as a holonomic family of curved L∞-algebras using
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Theorem 5.1.1, then (2) integrating homotopies to isomorphisms between the
corresponding L∞-algebras, (3) showing that these isomorphism describe the
flow of vector fields that are tangent to the distribution. 4

4.3.3. The Chevalley–Eilenberg algebra

Given a curved L∞-algebroid (E ,θ ,ρ) of Fréchet type over M , we can con-
sider the corresponding sheaf of graded symmetric multilinear forms on the
underlying Z-graded vector bundle E → M . This sheaf carries a natural graded
commutative algebra structure, as well as a differential that is induced by the
L∞-algebroid structure (θ ,ρ). It is referred to as the Chevalley–Eilenberg alge-
bra of the curved L∞-algebroid, since its definition is analogous to that of the
Chevalley–Eilenberg algebra of a Lie algebra (or Lie algebroid). The Chevalley–
Eilenberg algebra is closely related to the interpretation of a curved L∞-algebroid
as a differential graded manifold, which we have alluded to before.

For finite-dimensional L∞-algebroids whose underlying graded vector bundle is
concentrated in negative degrees, the relation between the definition in terms
of brackets and the description as a differential graded manifold is discussed in
varying levels of detail in [SZ17], [Bru11], [BP13] and [Lav16]. The Z-graded
case is discussed in [Vit14] as a special case of the more general notion of a
strong homotopy Lie-Rinehart algebra.

A graded symmetric p-form of degree d on the graded vector bundle E →
M of Fréchet type is a graded symmetric multilinear vector bundle morphism
ϕ:

⊙p(E)→ RM of degree d from E to the trivial line bundle over M (which is
concentrated in degree 0). A 0-form of degree 0 is thus just a smooth function
on M and a 1-form of degree d is simply a vector bundle morphism from E−d to
RM . A general p-form of a given degree d ∈ Z can be described as a collection
of vector bundle morphisms

ϕn1,...,np :
⊙p

i=1 Eni −→ RM

indexed by (non-decreasing) sequences of degrees n1 ≤ n2 ≤ · · · ≤ np ∈ Z with
the property that

∑p
i=1 ni = −d. We denote the sheaf of such forms by Ωd

E ,p.

A homogeneous plurilinear form on E can similarly be defined as either a homo-
geneous vector bundle morphism from

⊙

(E) to RM or as a sequence (ϕp)p∈N0

of graded symmetric forms ϕp :
⊙p(E)→ RM of the same degree indexed by
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arity. The sheaf of such forms is given by ΩE =
⊕

d∈ZΩ
d
E with Ωd

E =
∏

p∈N0
Ωd

E ,p.
This sheaf comes with a canonical graded commutative algebra structure, as the
following lemma shows.

Lemma 4.3.15.
For any Z-graded vector bundle E → M of Fréchet type and any open subset
U ⊆ M, the locally convex vector space ΩE (U) admits a topological graded com-
mutative unital algebra structure which is given by ϕ ·ψ= (ϕ ⊗ψ) ◦∆, or

(ϕ ·ψ)(x)(e{1,...,p}) =
∑

ItJ={1,...,p}

(−1)|ψ||eI |εI ,J ϕ(x)(eI )ψ(x)(eJ )

at a point x ∈ M for any two homogeneous forms ϕ,ψ ∈ ΩE (U) defined on a
neighbourhood U of x, and arbitrary homogeneous elements e1, e2, . . . , ep ∈ Ex
of the corresponding fibre.

Proof: Since ΩE is a sheaf of locally convex vector spaces, it is sufficient to
demonstrate these properties on arbitrarily small neighbourhoods. We shall
therefore assume that M is an open subset of a Fréchet space T and that E → M
is the trivial bundle with fibre V . Then ΩE (U) for U ⊆ M open is isomorphic to
the product

∏

n1≤···≤np

C∞
�

U , ˇ
�
⊙p

i=1 Eni ,R
��

over non-decreasing sequences of integers n1, n2, . . . , np ∈ Z. Since this is a
product, it is sufficient to demonstrate continuity of the composition of the mul-
tiplication map with the projection onto C∞(U , L(

⊙p
i=1 Eni ,R)) for an arbitrary

such sequence.

The multiplication map described in this lemma is defined pointwise. Its restric-
tion to L

�
⊙p

i=1 V ni
�

and L
�
⊙r

i=p+1 V ni
�

factors as

ˇ(
⊙p

i=1 V ni ) × ˇ
�
⊙r

i=p+1 V ni
� χ
−→ ˇ

�
⊙p

i=1 V ni ⊗
⊙r

i=p+1 V ni
� ∆̌
−→ ˇ

�
⊙r

i=1 V ni
�

,

where χ is the tensor product map from Definition A.2.35 and ∆̌ is the transpose
of the coalgebra structure∆ on

⊙

(V ). The first map is continuous by definition,
and continuity of the second follows from Proposition A.2.30. It now follows
from Proposition A.2.18 that the operation described above defines a continuous
map from ˇ

⊙

(V )× ˇ
⊙

(V ) to ˇ
⊙

(V ) , and Lemma B.2.4 subsequently tells us that
it is also continuous as bilinear map from C∞(U , ˇ

⊙

(V )) to itself. �
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We observe that for any open subset U ⊆ M , the smooth functions on U with
values in R form a unital subalgebra C∞M (U) ≤ ΩE (U). The induced C∞M -
module structure onΩE is, as one might expect, such that ( f ·ψ)(x) = f (x)ψ(x)
for any x ∈ X and any two sections f ∈ C∞M (U) and ψ ∈ ΩE (U) defined on a
neighbourhood U ⊆ M of x . We can thus view ΩE as a sheaf of locally convex
C∞M -algebras.

Definition 4.3.16.
A derivation on ΩE of degree d is a continuous operator Q: ΩE → ΩE which
is homogeneous of degree d and is such that

Q(ϕ ·ψ) =Q(ϕ) ·ψ+ (−1)|Q||ϕ|ϕ ·Q(ψ)

for any two homogeneous forms ϕ,ψ ∈ ΩE (U) with U ⊆ M open.

Even though we refer to such operators as derivations, they need not necessarily
be smooth derivations in the sense of Definition 4.2.1. One can readily verify
that the graded commutator [Q,Q′] =Q◦Q′−(−1)|Q||Q

′|Q′◦Q of two derivations
on ΩE is again a derivation, which means that the space of all such derivations
is a graded Lie algebra.

Proposition 4.3.17.
Given a Z-graded vector bundle E → M of Fréchet type and let (θ ,ρθ ) ∈ Derb (E)
be a smooth homogeneous pluriderivation on E, then the operator Qθ : ΩE → ΩE
given by

(−1)|θ ||ϕ|〈Qθ (ϕ), e{1,...,p}〉=
∑

ItJ={1,...,p}

εI ,JLρ(eI )
〈ϕ, eJ 〉 − 〈ϕ, θ̄ (e{1,...,p})〉,

(4.3.3)
for ϕ ∈ ΩE (U) with U ⊆ M open and homogeneous e1, e2, . . . , ep ∈ E (U), is a
derivation on ΩE of degree |θ |.
The map the map θ 7→ Qθ that assigns the operator Qθ to a homogeneous
pluriderivation θ ∈ Derb (E) is an injective graded Lie algebra morphism from
Derb (E) to the graded Lie algebra of homogeneous derivations on ΩE in the sense
of Definition 4.3.16.

Proof: Let (θ ,ρ) be a smooth homogeneous pluriderivation on the graded vec-
tor bundle E → M . We first need to show that the operator Qθ described in
this proposition is well-defined, since this is a priori unclear from its implicit
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definition. To do this, we can assume without loss of generality that the bundle
E → M is trivial and that θ = ∇triv

ρ + A for some vector bundle morphism
A:
⊙

(E)→ E . All terms involving derivatives of the sections on the right-hand
side of the defining equation for Qθ now cancel out, and we are left with

(−1)|θ ||ϕ|



Qθ (ϕ), e{1,...,p}

�

=
∑

ItJ={1,...,p}

εI ,J

�

〈L Φρ(eI )
ϕ, eJ 〉 − 〈ϕ, A(eI )� eJ 〉

�

.

At a point x ∈ U , this only depends on the values ei(x) for i = 1,2, . . . , p,
and it describes a smooth function for every sequence e1, e2, . . . , ep ∈ E (U) of
homogeneous sections. Proposition 3.2.1 consequently tells us that Qθ (ϕ) is a
smooth graded symmetric plurilinear vector bundle morphism from E to RM .

To prove that Qθ is a derivation, we can apply Qθ (ϕ ·ψ) to homogeneous local
sections of E and expand the resulting expression. We thus obtain

(−1)|θ |(|ϕ|+|ψ|)



Qθ (ϕ ·ψ), e{1,...,p}

�

=
∑

ItJ={1,...,p}

εI ,JLρ(eI )
〈ϕ ·ψ, eJ 〉 −




ϕ ·ψ, θ̄ (e{1,...,p})
�

=
∑

ItJtK={1,...,p}

(−1)|ψ||eI |εI ,J ,K

�

�

Lρ(eI )
〈ϕ, eJ 〉

�

〈ψ, eK〉

+ 〈ϕ, eJ 〉
�

Lρ(eI )
〈ψ, eK〉

�

�

−
∑

ItJ={1,...,p}

εI ,J

�

(−1)|ψ|(|eI |+|θ |)〈ϕ, θ̄ (eI )〉 〈ψ, eJ 〉

+ (−1)(|ψ|+|θ |)|eI |〈ϕ, eI 〉 〈ψ, θ̄ (eJ )〉
�

=
∑

ItJ={1,...,p}

εI ,J (−1)(|ψ|+|θ |)|eI |+|ψ|〈ϕ, eI 〉 〈Qθ (ψ), eJ 〉

+ (−1)|ϕ|+|ψ|(|eI |+|θ |)〈Qθ (ϕ), eI 〉 〈ψ, eJ 〉

= (−1)|θ |(|ϕ|+|ψ|)



Qθ (ϕ) ·ψ+ (−1)|θ ||ϕ|ϕ ·Qθ (ψ), e{1,...,p}

�

for arbitrary homogeneous local sections e1, e2, . . . , ep ∈ E (U) with U ⊆ M open.

To show that θ 7→Qθ is a graded Lie algebra morphism, we can similarly work
out and compare [Qθ ,Qη] and Q[θ ,η] for two homogeneous pluriderivations
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(θ ,ρθ ) and (η,ρη) ∈ Derb (E). The former is given by

±



[Qθ ,Qη](ϕ), e{1,...,p}

�

=
∑

ItJtK

εI ,J ,K [Lρθ (eI )
,Lρη(eJ )

]〈ϕ, eK〉

−
∑

ItJ

εI ,J

�

Lρη(θ̄ (eI ))
− (−1)|θ ||η|Lρθ (η̄(eI ))

�

〈ϕ, eJ 〉

+
∑

ItJ

εI ,J 〈ϕ, [η,θ](eI )� eJ 〉,

where ± denotes the sign (−1)|η||ϕ|+(|ϕ|+|η|)|θ |, and the latter is given by

(−1)|[θ ,η]||ϕ|〈Q[θ ,η](ϕ), e{1,...,p}〉=
∑

ItJ

εI ,JLρ[θ ,η](eI )
〈ϕ, eJ 〉

− 〈ϕ, [θ ,η]mor(e{1,...,p})〉

for a homogeneous form ϕ ∈ ΩE (U) and homogeneous e1, e2, . . . , ep ∈ E (U)
with U ⊆ M open. The anchor ρ[θ ,η] was worked out in Proposition 4.2.19. By
comparing these two expressions, we deduce that [Qθ ,Qη] and Q[θ ,η] are in fact
equal.

To show that the assignment θ 7→Qθ is injective, suppose that (θ ,ρ) is a homo-
geneous smooth pluriderivation with the property that Qθ = 0. By applying Qθ
to a rank 0 form f ∈ C∞M (U) ⊆ ΩE (U) with U ⊆ M open, we find that

Lρ(e{1,...,p})
f = 〈Qθ ( f ), e{1,...,p}〉= 0

for all sections e1, e2, . . . , ep ∈ E (U). Since this holds for any smooth function
f ∈ C∞M (U), it follows that the anchor ρ is necessarily trivial. Using this, we
can derive that

〈ϕ,θ (e{1,...,p})〉= −(−1)|θ ||ϕ|〈Qθ (ϕ), e{1,...,p}〉= 0

for any homogeneous rank 1 form ϕ ∈ ΩE ,1(U) and e1, e2, . . . , ep ∈ E (U). We
therefore conclude that θ = 0 whenever Qθ = 0, and that the map θ 7→ Qθ is
thus indeed injective. �

Proposition 4.3.17 tells us that every smooth pluriderivation on a Z-graded vec-
tor bundle E → M of Fréchet type is uniquely determined by the corresponding
derivation Qθ : ΩE → ΩE . It also leads to the following observation.
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Corollary 4.3.18.
A degree 1 pluriderivation (θ ,ρ) on a Z-graded vector bundle E → M is a curved
L∞-algebroid structure if and only if Qθ ◦Qθ = 0.

Proof: Proposition 4.3.17 tells us that Qθ ◦Qθ =
1
2 [Qθ ,Qθ ] is equal to 1

2Q[θ ,θ],
which vanishes if and only if [θ ,θ] = 0 due to the injectivity of the assigment
θ ′ 7→Qθ ′ . Consequently, Qθ squares to zero precisely when θ satisfies the Jacobi
identities. �

If (E ,θ ,ρ) is a curved split L∞-algebroid of Fréchet type, then (ΩE ,Qθ ) is a
differential graded commutative algebra called the Chevalley–Eilenberg algebra.
The differential Qθ is referred to as the Chevalley–Eilenberg differential.

Example 4.3.19 (Manifolds).
Any smooth manifold M can be viewed as a curved L∞-algebroid by endowing
it with the trivial vector bundle E = 0. Its Chevalley–Eilenberg algebra is
simply the sheaf ΩE =C

∞
M of smooth functions on M , which is concentrated

in degree 0. It is endowed with the usual commutative unital algebra structure
and the trivial differential Q = 0. ◊

Example 4.3.20 (The tangent bundle).
If E = T[1]M → M is the tangent bundle of M , shifted down so that it is
concentrated in degree−1, thenΩT[1]M = ΩM (R) is just the sheaf of differential
forms on M . The algebra structures on (ΩT[1]M , ·) and (ΩM (R),∧) are opposite
in the sense that ϕ · ψ = ψ ∧ ϕ for any two homogeneous forms ϕ,ψ ∈
ΩT[1]M (U) with a common domain U ⊆ M . Also the differential on ΩT[1]M
differs from the usual exterior derivative on ΩM by a sign: it is given by
Q[ � , �](ϕ) = (−1)|ϕ|dϕ.

Despite this discrepancy in signs, the differential graded commutative alge-
bras (ΩM ,∧, d) and (ΩT[1]M , ·,Q[ � , �]) are isomorphic. An explicit isomorphism
between the two is given by the operator

ΩT[1]M −→ ΩM (R), ϕ 7→ (−1)
1
2 |ϕ|(|ϕ|−1)ϕ,

which sends a product ϕ1ϕ2 · · ·ϕp of rank 1 forms ϕ1,ϕ2, . . . ,ϕp ∈ ΩT[1]M ,1

to the opposite product ϕpϕp−1 · · ·ϕ1 = (−1)
1
2 |ϕ|(|ϕ|−1)ϕ1ϕ2 · · ·ϕp. ◊
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Example 4.3.21 (Lie algebroids).
Given a Lie algebroid (A,¹ � , �º,ρ), we can consider the associated split L∞-
algebroid (A[1],↓◦¹↑ � ,↑ �º,ρ◦↑) from Example 4.3.4. Its Chevalley–Eilenberg
algebra, as we have just defined it, is canonically isomorphic to the usual
Chevalley–Eilenberg algebra for Lie algebroids. The isomorphism is similar to
the morphism described in Example 4.3.20. ◊

The following proposition shows that graded symmetric multilinear vector bundle
morphisms induce morphisms between the associated sheaves of algebras.

Proposition 4.3.22.
Let E → M and F → N be two Z-graded vector bundles of Fréchet type and let
(α,φ):

⊙

(E)→ F be a morphism of graded vector bundles of degree 0 such that
α(1) = 0. The operator α∗ : ΩF → ΩE given by α∗ϕ = ϕ �α, or

〈α∗(ϕ), e{1,...,p}〉(x) =
∑

I1,...,Im

εI1,...,Im




ϕ( f (x)),
⊙m

j=1α(eI j
(x))

�

for ϕ ∈ ΩF (U), homogeneous e1, e2, . . . , ep ∈ E (U) with U ⊆ M open and x ∈ U,
is a morphism of graded commutative algebras.

Proof: Smoothness of the composition ϕ �α was shown in Proposition 3.2.11.
That α∗ is an algebra morphism follows from the fact that ϕ ·ψ= (ϕ ⊗ψ) ◦∆,
since this tells us that

α∗(ϕ ·ψ) = (ϕ ⊗ψ) ◦∆ ◦ ᾱmor

and

(α∗ϕ) · (α∗ψ) = (ϕ ⊗ψ) ◦ (ᾱmor ⊗ ᾱmor) ◦∆

for any two forms ϕ,ψ ∈ ΩE (U) with U ⊆ M open. These two expressions
coincide because ᾱmor is a coalgebra morphism. �

Remark 4.3.23.
A finite-dimensional graded manifold is a locally ringed space (M ,O ) which
is locally isomorphic to (U ,ΩE ) for some domain U ⊆ Rn with n ∈ N0 and a
(trivial) Z-graded vector bundle E → M of finite-dimensional type for which
E0 = 0. A homogeneous derivation Q: O → O is called a homological vector
field if [Q,Q] = 0, and a graded manifold endowed with a homological vector
field of degree 1 is called a differential graded manifold.
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It follows from the preceding discussion that the triple (M ,ΩE ,Qθ ) associated
to any curved L∞-algebroid (E ,θ ,ρ) of finite-dimensional type over a manifold
M is a differential graded manifold. Every non-negatively graded differential
graded manifold (by which we mean that O is non-negatively graded) is in fact
of this form for some negatively graded curved L∞-algebroid (E ,θ ,ρ). This is
known as Batchelor’s theorem, and it was first proven for Z2-graded manifolds
in [Bat79]. A proof for positively graded differential graded manifolds can for
instance be found in [BP13], but its Z-graded analogue does not hold.

4

4.3.4. Morphisms of L∞-algebroids

Before discussing general morphism, we will first describe morphisms between
curved L∞-algebroids over a fixed base manifold that cover the identity map on
that manifold. These are relatively easy to define and help motivate the general
definition. We then describe morphisms that cover arbitrary maps and conclude
by defining what it means for a morphisms to be splitting preserving.

Base-preserving L∞-algebroid morphisms

Base-preserving morphisms are relatively simple to describe, since they are
simply plurilinear maps of vector bundles that are compatible with the curved
L∞-algebra structure their spaces of sections.

Definition 4.3.24.
Let (E ,θ ,ρ) and (E ′,θ ′,ρ′) be two curved split L∞-algebroids of Fréchet type
over the same base manifold M . A base preserving morphism from (E ,θ ,ρ) to
(E ′,θ ′,ρ′) is a base-preserving graded vector bundle morphismα:

⊙

(E)→ E ′

of degree 0 such that α(1) = 0 with the following properties:

1. compatibility with the brackets: it satisfies θ ′ �α= α � θ , i.e.
∑

I1,...,Im

εI1,...,Im

1
m! θ

′�⊙m
j=1α(eI j

)
�

=
∑

ItJ={1,...,p}

εI ,J α(θ (eI )� eJ )

for all homogeneous e1, e2, . . . , ep ∈ E (U) with U ⊆ M open;
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2. compatibility with the anchors: it satisfies ρ′ �α= ρ, i.e.
∑

I1,...,Im

εI1,...,Im

1
m! ρ

′�⊙m
j=1α(eI j

)
�

= ρ(e{1,...,p})

for all homogeneous e1, e2, . . . , ep ∈ E (U) with U ⊆ M open.

Given two base-preserving curved split L∞-algebroids α: (E ,θ ,ρ)→ (E ′,θ ′,ρ′)
and β : (E ′,θ ′,ρ′) → (E ′′,θ ′′,ρ′′) with a common base M , one can readily
verify that also the composition β � α: E → E is a morphism of curved split
L∞-algebroids from (E ,θ ,ρ) to (E ′′,θ ′′,ρ′′).

If we recall the definition of a curved L∞-algebra morphism, Definition 2.2.8,
we see that the first property in Definition 4.3.24 simply states that the induced
map

α∗ :
⊙

(E (U)) −→F (U), e{1,...,p} 7→ α ◦ e{1,...,p}

is a morphism of curved L∞-algebras from (E (U),θ) to (F (U),θ ′) for every
open subset U ⊆ M . The second property is automatically satisfied at every point
where the linear component α1 : E → E ′ is non-trivial, which is in particular
true whenever α is invertible.

Lemma 4.3.25.
For any curved split L∞-algebroid (E ,θ ,ρ) of Fréchet type with base M, the map
↓ρ:

⊙

(E)→ T[1]M is a base-preserving morphism of curved L∞-algebroids to
the shifted tangent bundle (T[1]M , [ � , �],↑).

Proof: The first condition in Definition 4.3.24 follows from Proposition 4.2.19.
Since [θ ,θ] = 0, this proposition tells us that ρ[θ ,θ] = [ρθ ,ρθ ] + 2ρθ � θ
vanishes, and that therefore

∑

ItJ={1,...,p}

εI ,J 2ρ(θ (eI )� eJ ) =
∑

ItJ={1,...,p}

εI ,J [ρ(eI ),ρ(eJ )]

for homogeneous e1, e2, . . . , ep ∈ E (U). Compatibility of ↓ρ with the anchors ρ
and idTM is tautological, as it is expressed by the equation idTM ◦ρ = ρ. �

180



4.3. L∞-algebroids of Fréchet type

Given any base-preserving morphism α of curved L∞-algebroids from (E ,θ ,ρ)
to (E ′,θ ′,ρ′), Lemma 4.3.25 provides a diagram of curved L∞-algebroid morph-
isms,

(E ,θ ,ρ) (E ′,θ ′,ρ′)

(T[1]M , [ � , �], idTM ).

α

↓ρ ↓ρ′

Commutativity of this diagram is precisely the second property from Defini-
tion 4.3.24.

Definition 4.3.24 can be reformulated rather concisely in terms of the dual
description of a curved L∞-algebroid through its Chevalley–Eilenberg algebra.
We note that every homogeneous graded vector bundle morphismα:

⊙

(E)→ F
induces a morphism

α∗ : ΩF −→ ΩE , ϕ 7→ ϕ �α

between the corresponding sheaves of plurilinear forms. It is not difficult to
see that this operator is in fact a morphism of sheaves of associative algebras,
since

α∗(ϕ ·ψ) = (ϕ ⊗ψ) ◦∆ ◦ ᾱmor = (ϕ ⊗ψ) ◦ (ᾱmor ⊗ ᾱmor) ◦∆= α
∗ϕ ·α∗ψ

for any two forms ϕ,ψ ∈ ΩF (U) defined on an open subset U ⊆ N .

Proposition 4.3.26.
Let (E ,θ ,ρ) and (F ,θ ′,ρ′) be two curved split L∞-algebroids over M and let
α:
⊙

(E)→ F be a degree 0 graded vector bundle morphism covering idM . Then
α is a morphism of curved L∞-algebroids if and only if α∗ ◦Qθ ′ =Qθ ◦α

∗.

Proof: Let ϕ ∈ ΩF (U) be a homogeneous plurilinear form defined on U ⊆ M
and let e1, e2, . . . , ep ∈ E (U) denote homogeneous local sections with the same
domain. If we apply α∗ ◦Qθ ′ and Qθ ◦α

∗ to these, we obtain the expressions

(−1)|ϕ|〈α∗ ◦Qθ ′(ϕ), e{1,...,p}〉=
∑

ItJ={1,...,p}

εI ,JLρ′(ᾱmor(eI ))
〈ϕ, ᾱmor(eJ )〉,

+ 〈ϕ, θ̄ ′cod ◦ ᾱmor(e{1,...,p})〉
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and

(−1)|ϕ|〈Qθ ◦α
∗(ϕ), e{1,...,p}〉=

∑

ItJ={1,...,p}

εI ,JLρ(eI )
〈ϕ, ᾱmor(eJ )〉

+ 〈ϕ, ᾱmor ◦ θ̄cod(e{1,...,p})〉

respectively. For ϕ ∈ C∞(U) ⊆ ΩF (U), the identity α∗ ◦Qθ ′(ϕ) =Qθ ◦α
∗(ϕ) is

thus equivalent to the equation

Lρ′(ᾱmor(e{1,...,p}))
ϕ =Lρ(e{1,...,p})

ϕ.

Since a tangent vector is determined by the corresponding derivation, this holds
for all ϕ ∈ C∞(U) with U ⊆ M open if and only if ρ′(x) � α(x) = ρ(x) for all
x ∈ U .

Once we know that ρ′ �α= ρ, the identity Qθ ′ ◦α
∗ = α∗ ◦Qθ reduces to

〈ϕ, θ̄ ′cod ◦ ᾱmor(e{1,...,p})〉= 〈ϕ, ᾱmor ◦ θ̄cod(e{1,...,p})〉

for ϕ ∈ ΩF (U) and e1, e2, . . . , ep ∈ E (U)with U ⊆ M open. We conclude that the
identity α∗ ◦Qθ ′ =Qθ ◦α

∗ holds if and only if both of the equations ρ′ �α= ρ
and α � θ = θ ′ �α are satisfied. �

This equivalent characterisation of curved L∞-algebroid morphisms will be the
basis for the general definition.

Morphisms covering smooth maps

While Definition 4.3.24 works well for morphisms of curved split L∞-algebroids
covering diffeomorphisms, it cannot easily be adapted to describe curved split
L∞-algebroid morphisms that cover a general smooth map. The problem is
that a general vector bundle morphism from

⊙

(E) → M to F → N does not
necessarily induce a map between the corresponding spaces of sections, which
makes compatibility with the brackets difficult to state.

A simple way to circumvent this problem is by using the dual characterisation
of curved split L∞-algebroid morphisms from Proposition 4.3.26. This leads us
to the following definition.
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Definition 4.3.27.
Let (E ,θ ,ρ) and (F ,θ ′,ρ′) be two curved split L∞-algebroids of Fréchet type
over M and N respectively and let f : M → N be a smooth map. A morphism of
curved L∞-algebroids from (E ,θ ,ρ) to (F ,θ ′,ρ′) covering f is a graded vector
bundle morphism (α, f ):

⊙

(E)→ F of degree 0 such that α∗ ◦Qθ ′ =Qθ ◦α
∗.

Given two morphisms (α, f ): (E ,θ ,ρ) → (F ,θ ′,ρ′) and (β , g): (F ,θ ′,ρ′) →
(G ,θ ′′,ρ′′) between curved split L∞-algebroids, we define their composition as
the vector bundle morphism (β �α, g ◦ f ):

⊙

(E)→ G that covers g ◦ f and is
given by (β �α)x = β f (x) �αx for x ∈ M . In other words, it is such that

(β �α)x(e1, . . . , ep) =
∑

I1,...,Im

εI1,...,Im

1
m! β f (x)

�
⊙m

j=1αx(eI j
)
�

∈ Gg( f (x))

for all x ∈ M and all homogeneous e1, e2, . . . , em ∈ Ex . This composition is
also characterised by the property that (β � α)∗ = α∗ ◦ β∗, and it is thus itself
a morphism of curved L∞-algebroids from (E ,θ ,ρ) to (G ,θ ′′,ρ′′). That Defin-
ition 4.3.27 and Definition 4.3.24 agree for morphisms that cover the identity
map idM on a manifold M was demonstrated in Proposition 4.3.26 above.

We will see two equivalent formulations of this definition in Proposition 4.3.30
and Corollary 4.3.32 below. Before we get to those, however, we shall verify
that any morphism of curved L∞-algebroids is compatible with the associated
anchor maps.

Lemma 4.3.28.
Let (E ,θ ,ρ) and (F ,θ ′,ρ′) be two curved split L∞-algebroids of Fréchet type
over M and N respectively. The identity ρ′�α= T f ◦ρ holds for every morphism
(α, f ) of curved L∞-algebroids from (E ,θ ,ρ) to (F ,θ ′,ρ′).

Proof: Let U ′ ⊆ N be an open subset and let ϕ ∈ C∞(U ′) ⊆ ΩF (U
′) be a smooth

function on U ′. We will show that ρ′ �α= T f ◦ρ by applying both sides of the
equation Qθ ◦α

∗(ϕ) = α∗ ◦Qθ ′(ϕ) to a sequence of homogeneous local sections
e1, e2, . . . , ep ∈ E (U) with U ⊆ f −1(U ′) and comparing the resulting expressions.

183



Chapter 4. L∞-algebroids

For the left-hand side of this equation, inserting e1, e2, . . . , ep ∈ E (U) produces
the expression.

〈Qθ ◦α
∗(ϕ), e{1,...,p}〉=

∑

ItJ={1,...,p}

εI ,JLρ(eI )
〈α∗ϕ, eJ 〉 − 〈α

∗ϕ, θ̄cod(e{1,...,p})〉

=
∑

ItJ={1,...,p}

εI ,JLρ(eI )
〈 f ∗ϕ, ᾱ!

mor(eJ )〉 − 〈 f
∗ϕ, ᾱ!

mor ◦ θ̄cod(e{1,...,p})〉

=Lρ(e{1,...,p})
f ∗ϕ =LT f ◦ρ(e{1,...,p})

ϕ,

where α! denotes the canonical vector bundle morphism from
⊙

(E) to the
pullback bundle f ∗F associated with α.

If we similarly apply α∗ ◦Qθ ′(ϕ) to these local sections, we obtain

〈α∗(ϕ) ◦Qθ ′(ϕ), e{1,...,p}〉=



f ∗Qθ ′(ϕ), ᾱ
!
mor(e{1,...,p})

�

=Lρ′(ᾱmor(e{1,...,p}))
ϕ.

To obtain this last expression, we have used that Qθ ′ is, more or less by definition,
such that Qθ ′(ϕ) = dϕ ◦ρ′ for ϕ ∈ C∞(U ′). Since the function ϕ and the local
sections e1, e2, . . . , ep were arbitrary, we may now conclude that T f ◦ρ = ρ′ �α
whenever Qθ ◦α

∗ = α∗ ◦Qθ ′ . �

We infer from Lemma 4.3.28 that every morphism (α, f ): (E ,θ ,ρ)→ (F ,θ ′,ρ′)
of curved split L∞-algebroids is part of a commutative diagram of morphisms

(E ,θ ,ρθ ) (T[1]M , [ � , �], idTM ) (M , 0, 0)

(F ,θ ′,ρθ ′) (T[1]N , [ � , �], idTN ) (N , 0, 0)

(α, f ) (T f , f )

(ρθ ,idM )

(ρθ ′,idN )

(0, f )

(0,idM )

(0,idN )

of curved split L∞-algebroids. Here (M , 0, 0) and (M , 0, 0) denote the trivial
L∞-algebroid structures on the trivial vector bundles M → M and N → N of
rank 0. The duals of the vector bundle morphism α and the anchors ρ and ρ′

are similarly part of a commutative diagram of morphisms of differential graded

184



4.3. L∞-algebroids of Fréchet type

commutative unital algebras,

(ΩE (U),Qθ ) (ΩT[1]M (U),Q[ � , �]) (C∞M (U), 0),

(ΩF (U
′),Qθ ′) (ΩT[1]N (U

′),Q[ � , �]) (C∞N (U
′), 0)

α∗ T f ∗ f ∗

ρ∗
θ
′

ρ∗θ

for any two open subsets U ′ ⊆ N and U ⊆ f −1(U ′).

Example 4.3.29 (Lie algebroid morphisms).
Morphisms of Lie algebroids can be defined in several equivalent ways. One
possible definition states that a morphism from (A,¹ � , �º,ρ) to (A′,¹ � , �º′,ρ′)
is as a vector bundle morphism (α, f ) from A to A′ with the property that
induces map α∗ : ΩA′ → ΩA on the sheaves of alternating forms on A and A′

commutes with the Chevalley–Eilenberg differentials dA and dA′ .

Despite the discrepancy in sign conventions, this definition is equivalent to
Definition 4.3.27 if one interprets these Lie algebroids as curved split L∞-
algebroids as described Example 4.3.4 and uses the isomorphism from Ex-
ample 4.3.21 to relate the usual Chevalley–Eilenberg algebras to those defined
in section 4.3.3. Note that any morphism of curved L∞-algebroids between
curved split L∞-algebroids concentrated in degree −1 necessarily only has a
linear component due to homogeneity. ◊

While Definition 4.3.27 is certainly clean, it may not always be practical to work
with. We would like to state that a plurilinear graded vector bundle morph-
ism α:

⊙

(E) → F is a morphism of curved L∞-algebroids from (E ,θ ,ρ) to
(E ′,θ ′,ρ′) whenever α � θ = θ ′ �α, but the right-hand side of this equation is
not generally well-defined because α does not map sections of

⊙

(E)→ M to
local sections of F → N unless f is a local diffeomorphism.

The plurilinear vector bundle morphism α:
⊙

(E) → F does factor through
the pull-back bundle f ∗F → M . By this we mean that there exists a unique
base preserving graded vector bundle morphism α! :

⊙

(E)→ F for which the
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diagram

⊙

(E) f ∗F F

M M N

α

α! idF

idM f

is commutative, and that therefore (α, f ) = (idF , f ) ◦ (α!, idM ). If a smooth
pluriderivation θ ′ ∈ Derb (F ) is expressed as θ ′ =∇ρ′ + A′ in terms of a smooth
connection ∇ on F and a form A′ :

⊙

(F ) → F , both A′ and ∇ can be pulled
back to f ∗F separately.

Proposition 4.3.30.
Let (E ,θρ) and (F ,θ ′,ρ′) be curved split L∞-algebroids of Fréchet type over
M and N respectively and let (α, f ):

⊙

(E) → F be a smooth vector bundle
morphism of degree 0. Given an open subset U ′ ⊆ N and a connection ∇ on
F |U ′ such that θ ′ = ∇ρ′ + A′, the restriction α| f −1(U ′) is a morphism of curved
L∞-algebroids if and only if ρ′ �α|U = T f ◦ρ|U and

�

α! � θ − ( f ∗A′) �α!
�

(e{1,...,p}) =
∑

ItJ={1,...,p}

εI ,J( f
∗∇)ρ(eI )

�

α!(eJ )
�

(4.3.4)

for all local sections e1, e2, . . . , ep ∈ E (U) with U ⊆ f −1(U ′) open.

Proof: Since the proposed conditions are local in nature, we can assume without
loss of generality that N is a Fréchet domain and that the bundle F → N is trivial.
Let F therefore be of the form F =W ×N → N for some Z-graded Fréchet space
W and some Fréchet domain N . We will freely identify the spaces F (U ′) and
C∞(U ′, W ) for any open subset U ′ ⊆ N . We shall moreover assume that the
condition ρ′ �α= T f ◦ρ is satisfied since it is part of the description proposed
in this proposition and Lemma 4.3.28 tells us that it also holds whenever (α, f )
is a morphism of curved L∞-algebroids.

Now (α, f ) is a morphism of curved L∞-algebroids if and only ifα∗◦Qθ ′ =Qθ ◦α
∗,

or

(−1)|ϕ|〈Qθ ◦α
∗(ϕ), e{1,...,p}〉(x) = (−1)|ϕ|〈α∗ ◦Qθ ′(ϕ), e{1,...,p}〉(x) (4.3.5)

for every form α ∈ ΩF (U
′), all homogeneous sections e1, e2, . . . , ep ∈ E (U) and

every point x ∈ U with U ′ ⊆ N and U ⊆ f −1(U ′) open. The global factor
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(−1)|ϕ| has been included for convenience. To compare this condition to equa-
tion (4.3.4), we will first work out both sides of this equation separately.

If we work out the left-hand side of equation (4.3.5), we see that it is given by
∑

ItJ={1,...,p}

εI ,JLρ(eI )(x)
〈 f ∗ϕ, ᾱ!

moreJ 〉 − 〈ϕ( f (x)), ᾱmor(x) ◦ θ̄cod(e{1,...,p})(x)〉,

which can be worked out further using Lemma 4.3.31 below and a few results
from section 3.1.2 to obtain the expression

∑

ItJ={1,...,p}

εI ,J




LT f (x)ρ(eI )(x)
ϕ, ᾱmor(x)(eJ (x))

�

+
∑

ItJtK={1,...,p}

εI ,J ,K




ϕ( f (x)),Lρ(eI )(x)

�

α!(eJ )
�

� ᾱ(eK(x))
�

−



ϕ( f (x)), ᾱmor(x) ◦ θ̄cod(e{1,...,p})(x)
�

.

Since N is a Fréchet domain and F → N is trivial by assumption, we now express
the L∞-algebroid structure on this bundle as θ ′ = Lρ′ + A′ for some smooth
map A′ : N → L(

⊙

(W ), W ). By using this to work out the right-hand side of
equation (4.3.3) and employing a few results from section 3.1.2 we obtain

(−1)|ϕ
′|〈Qθ ′(ϕ

′), e′{1,...,p}〉= −
∑

It{ j}tK

εI ,{ j},K〈ϕ
′,Lρ(e′I )e

′
j � e′K〉

+
∑

ItJ

εI ,J

�

Lρ(e′I )〈ϕ
′, e′J 〉 − 〈ϕ

′, A′(e′I )� e′J 〉
�

=
∑

ItJ={1,...,p}

εI ,J

�

〈Lρ(e′I )ϕ, e′J 〉 − 〈ϕ, A′(e′I )� e′J 〉
�

for any homogeneous form ϕ′ ∈ ΩF (U
′) and e′1, e′2, . . . , e′p ∈ F (U

′) with U ′ ⊆ N
open. Consequently, the right-hand side of equation (4.3.5) is equal to

−
∑

ItJ={1,...,p}

εI ,J

�




ϕ( f (x)), A′( f (x))(ᾱmor(x)(eI (x)))� ᾱmor(x)(eJ (x))
�

+



Lρ′(ᾱmor(x)(eI (x)))
ϕ, ᾱmor(x)(eJ (x))

�

�

,

where we have used that ∆ ◦ ᾱmor = (ᾱmor ⊗ ᾱmor) ◦∆.
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If we compare this to the expression we had obtained for the left-hand side of
equation (4.3.5), we see that Qθ ◦α

∗ = α∗ ◦Qθ ′ if and only if

∑

ItJ={1,...,p}

εI ,Jα(x)
�

α(x)(eI (x))
�

� ᾱmor(x)(eJ (x))

=
∑

ItJtK={1,...,p}

εI ,J ,KLρ(eI )(x)

�

α!(eJ )
�

� ᾱ(eK(x))

+
∑

ItJ={1,...,p}

εI ,J A′( f (x))(ᾱmor(x)(eI (x)))� ᾱmor(x)(eJ (x))

for all e1, e2, . . . , ep ∈ E (U) and all x ∈ U with U ⊆ M open. This allows us to
conclude that (α, f ):

⊙

(E)→ F is a morphism of curved L∞-algebroids if and
only if equation (4.3.4) holds for the trivial connection ∇triv =L .

It is not difficult to show that the validity of equation (4.3.4) is independent of
the chosen connection, as both sides transform in the same way if a different
pair (∇, A′) is chosen. �

The difference between the left- and right-hand side of equation (4.3.4) is a
vector bundle morphism

R(α, f ) = α
! � θ − f ∗A′∇′ �α

! − ( f ∗∇)ρ �α
! :
⊙

(E) −→ f ∗F ,

provided that T f ◦ ρ = ρ′ � α!. This tensor measures the failure of (α, f ) to
be a morphism of curved L∞-algebroids and it is independent of the chosen
connection. The value of R(α, f ) at x ∈ M can alternatively be expressed as

R(α, f )(x)(e1, . . . , ep) =
∑

ItJ={1,...,p}

εI ,J α(θ (eI )� eJ )(x)

−
∑

I1,...,Im

εI1,...,Im

1
m! θ

′�⊙m
j=1 aI j

�

(x)

−
∑

ItJ={1,...,p}

εI ,J Tv
x(α

!(eJ )− f ∗aJ )(ρ(eI ))

if e1, e2, . . . , ep ∈ E (U) are homogeneous local sections defined on an open
neighbourhood U ⊆ M of x and aI ∈ F (U

′) for I ⊆ {1, . . . , p} are arbitrary local
sections which are defined on an open subset U ′ ⊆ N that contains f (x) and
have the property that aI ( f (x)) = α(eI(x)). The final term accounts for the
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fact that the sections α!(eJ ) and f ∗aJ of f ∗F → M for J ⊆ {1, . . . , p} could have
different derivatives at x .

The following lemma was used in the proof of Proposition 4.3.30.

Lemma 4.3.31.
Let V g and W be Z-graded vector spaces of Fréchet type and let X ⊆ V 0 be a Fré-
chet domain. Given smooth maps α: X → L(

⊙

(V ), W ) and e1, e2, . . . , ep : X →
V , Given the hypotheses of Proposition 4.3.30,

L ẋ(ᾱmor(e{1,...,p})) =
∑

ItJ={1,...,p}

εI ,JL ẋα
!(eI )� ᾱ

!
mor(eJ ),

for any ẋ ∈ Tx M and homogeneous e1, e2, . . . , ep ∈ E (U) with U ⊆ M open.

Proof: Since ᾱmor is described as a sum of graded symmetric tensor products
in equation (3.2.6), we can use Proposition 3.1.11 to compute the derivative
L ẋ ᾱmor(e{1,...,p}). After some reordering of terms and indices, this yields

∑

I0,...,Im

1
(m+1)! εI0,...,Im

m
∑

i=0

⊙

j<i α(eI j
)�L ẋα(eIi

)�
⊙

j>i α(eI j
),

=
∑

I0,...,Im

1
m!εI0,...,Im

L ẋα(eI0
)�

⊙m
j 6=1α(eI j

), (4.3.6)

which is equal to the desired expression. �

We will need a slight reformulation of Proposition 4.3.30 that involves choosing
smooth connections on both the domain and the codomain of the curved L∞-
algebroid morphism.

Corollary 4.3.32.
Let (E ,θρ) and (F ,θ ′,ρ′) be curved split L∞-algebroids of Fréchet type over
M and N respectively and let (α, f ):

⊙

(E) → F be a smooth vector bundle
morphism of degree 0. Given open subsets U ′ ⊆ N and U ⊆ f −1(U ′) and two
connections ∇ and ∇′ on E |U and F |U ′ respectively such that θ |U =∇ρ + A and
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θ ′|U ′ = ∇
′
ρ′
+ A′, the restriction α|U is a morphism of curved L∞-algebroids if

and only if ρ′ �α|U = T f ◦ρ|U and

�

α! � A− ( f ∗A′) �α!
�

(e{1,...,p}) =
∑

ItJ={1,...,p}

εI ,J ( f
∗∇′)ρ(eI )

�

α!(eJ )
�

−
∑

It{ j}tK={1,...,p}

εI ,{ j},K α
!
�

∇ρ(eI )
e j � eK

�

for all local sections e1, e2, . . . , ep ∈ E (Ũ) with Ũ ⊆ U open.

Proof: This follows from Proposition 4.3.30 and the fact that

(α! � θ )(e{1,...,p}) = (α
! � A)(e{1,...,p}) +

∑

It{ j}tK={1,...,p}

εI ,{ j},K α
!
�

∇ρ(eI )
e j � eK

�

for all homogenoeus local sections e1, e2, . . . , ep ∈ E (Ũ). �

If E = V ×M → M and F =W ×N → N are both trivial vector bundles, then we
can identify the space of plurilinear graded vector bundle morphisms from the
former to the latter with the space C∞(M , L(

⊙

(V ), W ))×C∞(M , N). A pluri-
linear graded vector bundle morphism (α, f ):

⊙

(E)→ F is now a morphism
of curved L∞-algebroids from (E ,θ ,ρ) to (F ,θ ′,ρ′) if and only if

�

α! � A− ( f ∗A′) �α!
�

(e{1,...,p}) =
∑

ItJ={1,...,p}

εI ,J

�

Lρ(eI )
α
�

(eJ ),

for all homogeneous e1, e2, . . . , ep ∈ E (U) with U ⊆ M open. This follows from
Proposition 4.3.30 by choosing the trivial connection on both sides.

Remark 4.3.33.
We had seen in Remark 4.3.23 that (M ,ΩE ,Qθ ) is a differential graded man-
ifold whenever (E ,θ ,ρ) is a curved L∞-algebroid of finite-dimensional type.
If (α, f ):

⊙

(E)→ F is a morphism from (E ,θ ,ρ) to another such curved L∞-
algebroid (F ,θ ′,ρ′), then (α∗, f ) is a morphism of locally ringed spaces and
thus describes a morphism between the corresponding differential graded man-
ifolds. For finite-dimensional negatively graded L∞-algebroids every morph-
ism between the corresponding (non-negatively graded) differential graded
manifolds can be described in this way [BP13]. 4
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4.3. L∞-algebroids of Fréchet type

Splitting preserving morphisms

Up to this point, we have been careful to only talk about curved split L∞-alge-
broids, but we have referred to morphisms between them as morphisms of
curved L∞-algebroids without referencing the splitting. This is because curved
split L∞-algebroids, as they were defined in Definition 4.3.1, come with a split-
ting that is not preserved by these morphisms.

Given a Z-graded vector bundle E → M of Fréchet type, the corresponding
bundle

⊙

(E) → M of graded symmetric coalgebras comes with a canonical
increasing filtration

E =
⊙≤0(E) ⊆

⊙≤1(E) ⊆
⊙≤2(E) ⊆ · · · ⊆

⊙

(E) =
⋃

p∈Z

⊙≤p(E)

by subbundles
⊙≤p(E) =

⊕p
q=0

⊙p(E). This filtration is completely determined
by the canonical coalgebra structure on the fibres of

⊙

(E)→ M and it is pre-
served by plurilinear vector bundle morphisms in the sense that every such
morphism α:

⊙

(E)→ F satisfies ᾱmor(
⊙≤p(E)) ⊆

⊙≤q(F ) for all p ∈ N0.

The splitting that is implicitly referenced in Definition 4.3.1 is the decomposi-
tion

⊙

(E) =
⊕

p∈N0

⊙p(E),

which splits the aforementioned filtration. Unlike the filtration, it is not pre-
served by the family ᾱmor of coalgebra morphisms associated to a plurilinear
vector bundle morphism α unless the components αp for p 6= 1 all vanish, i.e.
if α is an ordinary morphism of Z-graded vector bundles. This leads to the
following definition.

Definition 4.3.34.
A splitting preserving morphism of curved split L∞-algebroids from (E ,θ ,ρ) to
(E ′,θ ′,ρ′) is a graded vector bundle morphism α: E → E ′ of degree 0 such
that α∗ ◦Qθ ′ =Qθ ◦α

∗.

The Chevalley–Eilenberg algebra (ΩE ,Qθ ) of a Z-graded vector bundle E → M
comes with a decreasing filtration

ΩE = ΩE ,≥0 ⊇ ΩE ,≥1 ⊇ ΩE ,≥2 ⊇ · · ·
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which is dual to the increasing filtration on
⊙

(E)→ M . This filtration is sim-
ilarly respected by the transpose α∗ of a plurilinear map α: E → F , while the
product decomposition

ΩE =
∏

p∈N0

ΩE ,p

is only preserved when α is linear.

Example 4.3.35.
If M and N are smooth Fréchet manifolds, then their tangent bundles carry
canonical Lie algebroid structures, which in turn give rise to canonical L∞-
algebroids (T[1]M ,↓[↑ � ,↑ �],↓) and (T[1]N ,↓[↑ � ,↑ �],↓). Any smooth map
f : M → N induces a splitting preserving morphism (T f , f ) from the former
to the latter. ◊

Example 4.3.36.
A morphism of Lie algebroids from (E ,¹ � , �º) to (F ,¹ � , �º) is often defined as a
vector bundle morphism α: E → F that induces a morphism between the cor-
responding Chevalley–Eilenberg algebras (ΩF ,∧, dF ) and (ΩE ,∧, dE ). These
consequently induce splitting preserving morphisms between the associated
L∞-algebroids.

Every curved L∞-algebroid morphism between L∞-algebroids of Fréchet type
that are concentrated in degree −1 is splitting preserving due to homogeneity,
so Lie algebroids in fact form a full subcategory of the category of curved split
L∞-algebroids. ◊

Example 4.3.37.
The homotopies from Definition 4.3.9 can be described as curved L∞-algebroid
morphisms. A homotopy Γ for a curved L∞-algebroid (E ,θ ,ρ) of Fréchet type
with E0 = 0 corresponds to a morphism (Γ dt ◦ ↑,γ) from the shifted tangent
bundle T[1]I of the unit interval [0,1], endowed with its canonical L∞-alge-
broid structure, to (E ,θ ,ρ). Any degree 0 plurilinear vector bundle morphism
from T[1]I to another Z-graded vector bundle E → M is automatically splitting
preserving, and one can show that it is a morphism of curved L∞-algebroids
if and only if γ′ = ρ ◦ Γ and θ0 ◦ γ= 0. ◊

Example 4.3.38.
One can subsequently define a homotopy between two homotopies (Γ0,γ0) and
(Γ1,γ1) of Maurer–Cartan elements as a curved L∞-algebroid morphisms (H,η)
from the shifted tangent bundle T[1]I2 of the unit square I2 = [0,1]× [0,1]
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4.3. L∞-algebroids of Fréchet type

to (E ,θ ,ρ). This morphism should additionally be such that s 7→ η(0, s) and
s 7→ η(1, s) are constant and Γs = H ◦ fs for s = 0, 1 if fs denotes the canonical
inclusion map I → I × {s} ⊆ I2. This describes an equivalence relation on the
set of homotopies of Maurer–Cartan elements.

Because homotopies that are related by reparametrisation are homotopic, con-
catenation of homotopies can be used to define a groupoid structure on the set
of equivalence classes of homotopies. If (E ,θ ,ρ) arises as the L∞-algebroid
of an finite-dimensional integrable Lie algebroid, this object is its integrating
Lie groupoid [CF03]. In general, however, this groupoid does not come with
a smooth structure. ◊
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Correspondences

From the start, our objective has been to demonstrate that every equivariant de-
formation problem of Fréchet type is controlled by an L∞-algebra. The principal
objects in this statement, equivariant deformation problems and topological
L∞-algebras, were presented in chapter 1 and chapter 2 respectively. We have
then introduced two intermediate objects: holonomic families of curved L∞-
algebras were defined in chapter 3, and curved L∞-algebroids were the subject
of chapter 4. Now that all of the pieces are in place, we are ready to demonstrate
how these classes of objects are related.

We will first of all demonstrate how any curved L∞-algebroid of Fréchet type
can locally be recast into a family of curved L∞-algebras of Fréchet type and,
conversely, how any such family gives rise to a curved L∞-algebroid structure.
Also morphisms will be discussed, as it turns out that morphisms of curved
L∞-algebroids correspond to fibre-preserving morphisms of the corresponding
holonomic families.

To relate equivariant deformation problems of Fréchet type to L∞-algebras, we
will show how such deformation problems can be interpreted as smooth curved
L∞-algebroids and then apply the aforementioned procedure. The resulting
curved L∞-algebras can to some extent be said to control the original deforma-
tion problem. In an analytic setting this means precisely that its Maurer–Cartan
elements correspond to integrable structures and gauge equivalence of these
elements implies equivalence of these structures. In general, the only thing we
can recover from these L∞-algebras is an algebraic description of formal families
of deformations up to formal gauge equivalence.
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Section 5.1 is dedicated to the relation between the categories of holonomic fam-
ilies of curved L∞-algebras and curved L∞-algebroids of Fréchet type. Equivar-
iant deformation problems, and their description in terms of the aforementioned
objects, are considered in section 5.2.

5.1. L∞-algebroids as holonomic families

The aim of this section is to demonstrate that locally, there is an equivalence
between curved L∞-algebroids of Fréchet type and holonomic families of curved
L∞-algebras of Fréchet type. To turn such L∞-algebroids into holonomic families,
we will need to choose a trivialisation chart and consider the formal power series
expansion of the relevant structure maps. Although this translation involves the
choice of a trivialisation chart on the underlying bundle, we will see that the
isomorphism class of the resulting family does not depend on this choice. We
will moreover see that morphisms of curved L∞-algebroids can similarly be
described as fibre-preserving morphisms of the corresponding families.

5.1.1. Infinite jets of curved L∞-algebroids

We recall from section 4.2.5 that a curved L∞-algebroid structure on a Z-graded
vector bundle E → M of Fréchet type for which E0 = 0 is a Maurer–Cartan
element for the graded Lie algebra Derb (E). Holonomic families of curved L∞-
algebras on a Z-graded vector space V of Fréchet type parametrised by a domain
X ⊆ V 0, on the other hand, are Maurer–Cartan elements of the graded Lie
algebra C∞hol

�

φ(U), L(
⊙

(V ), V )
�

from Proposition 3.3.3. To relate these two
notions we need to choose a local trivialisation for the vector bundle E → M .

Given a Z-graded vector bundle E → M of Fréchet type with E0 = 0 and a local
trivialisation chart Φ= (eΦ,φ): E |U → V 6=0×V 0, let ∇Φ =L Φ denote the associ-
ated flat connection. By Proposition 4.2.28, every homogeneous pluriderivation
on E |U → U is then of the form θ =∇Φρ+A for two homogeneous vector bundle
morphisms

ρ:
⊙

(E)|U −→ TU and A:
⊙

(E)|U −→ E |U

of the same degree.
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5.1. L∞-algebroids as holonomic families

Through the trivialisation chart Φ, these can be described as smooth maps, ρ̃Φ
and ÃΦ, from φ(U) to the subspaces L(

⊙

(V 6=0), V 0) and L(
⊙

(V 6=0), V 6=0) of
L(
⊙

(V 6=0), V ). We define these maps to be such that

eΦ ◦ Ax(e{1,...,p}) = ÃΦ(φ(x))
�
⊙p

i=1
eΦx(ei)

�

and

Dφ ◦ρx(e{1,...,p}) = ρ̃Φ(φ(x))
�
⊙p

i=1
eΦx(ei)

�

for every x ∈ U and all e1, e2 . . . , ep ∈ Ex . The infinite jets of A and ρ are similarly
represented by two maps, j∞Φ ρ and j∞Φ A, from φ(U) to L(

⊙

(V ), V ), which are
given by

j∞Φ ρ(u)(u̇{1,...,q} � v{1,...,p}) = Dq(ρ̃Φ)(u)(u̇{1,...,q})(v{1,...,p})

and

j∞Φ A(u)(u̇{1,...,q} � v{1,...,p}) = Dq(ÃΦ)(u)(u̇{1,...,q})(v{1,...,p})

for u ∈ φ(U), u̇1, u̇2, . . . , u̇q ∈ V 0 and v1, v2, . . . , vp ∈ V 6=0.

Theorem 5.1.1 (L∞-algebroids⇔ holonomic families of L∞-algebras).
Let E → M be a Z-graded vector bundle of Fréchet type for which E0 = 0 and let
Φ: E |U → V 6=0 × V 0 be a local trivialisation chart for this bundle. The map

j∞Φ : Derb (E |U) −→ C∞hol

�

φ(U), L(
⊙

(V ), V )
�

, ∇Φρ + A 7→ j∞Φ A− j∞Φ ρ

is an isomorphism of graded Lie algebras.

It restricts to a one-to-one correspondence between curved split L∞-algebroid
structures on E |U and holonomic families of curved L∞-algebra structures on V
parametrised by φ(U) ⊆ V 0.

While the relation described in Theorem 5.1.1 explicitly depends on the choice
of a trivialisation chart, we will see in Corollary 5.1.9 that the isomorphism
class of the holonomic family of curved L∞-algebras j∞Φ θ is independent of the
chosen trivialisation chart Φ (but does of course depend on its domain).

Although the proof of Theorem 5.1.1 is not complicated, it involves a num-
ber of lengthy computations. These computations make up Lemma 5.1.2 and
Lemma 5.1.3 below, and the proof is concluded on page 202. To prove that
j∞Φ is a morphism of graded Lie algebras, we need to show that j∞Φ [θ ,η] is
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equal to [ j∞Φ θ , j∞Φ η] for any two homogeneous pluriderivations θ and η on
E → M . The first lemma considers just the components of the restriction of
j∞Φ [θ ,η](u)|⊙(V 6=0) that are determined by the anchor of [θ ,η].

Lemma 5.1.2.
Given two homogeneous pluriderivations θ and η on E → M,

j∞Φ [θ ,η](u)(v{1,...,p}) = [ j
∞
Φ θ (u), j∞Φ η(u)](v{1,...,p})

for every u ∈ U and all v1, v2, . . . , vp ∈ V 6=0 such that
∑p

i=1|vi |= −|θ | − |η|.

Proof: We can assume without loss of generality that M is an open subset of
a Fréchet space, that the bundle E → M is trivial and that the trivialisation
chart Φ is tautological. Let V therefore be a Z-graded vector space of Fréchet
type and let U ⊆ V 0 be an open subset such that E = V 6=0 × U → U , and let
Φ = idE : E → V 6=0 × U . We shall suppress Φ in our notation from this point
onward.

Let θ =∇ρ + A and η =∇ρ′ + A′ be homogeneous pluriderivations on E → U ,
and let v1, v2, . . . , vp ∈ V 6=0 be such that

∑p
i=1|vi |= −|θ | − |η|. If we denote the

corresponding constant sections of E by e1, e2, . . . , ep ∈ E (U), so that ei(u) = vi
for every u ∈ U and i = 1, 2, . . . , p, then

j∞u [θ ,η](v{1,...,p}) = −ρ[θ ,η](e{1,...,p})(u)

for all u ∈ U .

Proposition 4.2.19 tells us that the left-hand side of this equation is given by

ρ[θ ,η](e{1,...,p}) =
∑

ItJ={1,...,p}

εI ,J

�

ρ(η(eI )� eJ )− (−1)|θ ||η|ρ′(θ (eI )� eJ )

+ (−1)|vI ||η| [ρ(eI ),ρ
′(eJ )]

�

.

When working out ρ(η(θJ )� eI ), ρ
′(θ (ηI )� eJ ) and [ρ(eI ),ρ

′(eJ )] for a given
decomposition ItJ = {1, . . . , p} there are two cases to consider. Since |e{1,...,p}|=
−|θ | − |η|, the decomposition is such that either |eI |= −|θ | and |eJ |= −|η|, or
|eI | 6= −|θ | and |eJ | 6= −|η|.
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(a) If |eI |= −|θ | and |eJ |= −|η|, then both ρ(θ(ηI )� eJ ) and ρ(η(θI )� eJ )
vanish due to homogeneity. The third term, however, is given by

[ρ(eI ),ρ
′(eJ )](u) =Lρ(eI )(u)

(ρ′(eJ ))−Lρ′(eI )(u)
(ρ(eJ ))

=Lρ(eI )(u)
(ρ′)(eJ )−Lρ′(eI )(u)

(ρ)(eJ ),

= j∞u η( j
∞
u θ (vI ))(vJ )− j∞u θ ( j

∞
u η(vJ ))(vI ).

Therefore,

(−1)|vI ||η|εI ,J [ρ(eI ),ρ
′(eJ )](u) = (−1)|θ ||η|εI ,J j∞u η( j

∞
u θ (vI ))(vJ )

−εJ ,I j∞u θ ( j
∞
u η(vJ ))(vI ).

(b) If |eI | 6= −|θ | and |eJ | 6= −|η|, then [ρ(eI ),ρ
′(eJ )] since both ρ(eI ) and

ρ′(eJ ) are trivial, while

ρ(η(eI )� eJ )(u) = ρ(A
′(eI )� eJ )(u),

= − j∞u θ
�

j∞u η(vI )� vJ

�

and, similarly,

ρ′(θ (eJ )� eI )(u) = − j∞u η
�

j∞u θ (vJ )� vI

�

.

Consequently,

εI ,J ρ(η(eI )� eJ )− (−1)|θ ||η|εJ ,I ρ
′(θ (eJ )� eI )

= (−1)|θ ||η|εI ,J j∞u η( j
∞
u θ (vI ))(vJ )− εJ ,I j∞u θ ( j

∞
u η(vJ ))(vI ).

By combining these expressions, we deduce that

j∞u [θ ,η](v{1,...,p}) =
∑

ItJ={1,...,p}

εJ ,I j∞u θ ( j
∞
u η(vJ ))(vI )

− (−1)|θ ||η|εI ,J j∞u η( j
∞
u θ (vI ))(vJ )

= [ j∞u θ , j∞u η](v{1,...,p}).

for all homogeneous v1, v2, . . . , vp ∈ V 6=0 such that
∑p

i=1|vi | = −|θ | − |η| and
every u ∈ U . �
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The second lemma deals with remaining components of j∞Φ [θ ,η](u)|⊙(V 6=0).

Lemma 5.1.3.
Given two homogeneous pluriderivations θ and η on E → M,

j∞Φ [θ ,η](u)(v{1,...,p}) = [ j
∞
Φ θ , j∞Φ η](u)(v{1,...,p})

for every u ∈ U and all v1, v2, . . . , vp ∈ V 6=0 such that
∑p

i=1|vi | 6= −|θ | − |η|.

Proof: We again assume, without loss of generality, that E = V 6=0 × U → U for
some Z-graded vector space V of Fréchet type and an open subset U ⊆ V 0. Let
the trivialisation Φ moreover be equal to the identity map idE : E → V 6=0×U , as
in the proof of Lemma 5.1.2.

Let θ =∇ρθ +Aθ and η=∇ρη+Aη be homogeneous pluriderivations on E → U ,

and let v1, v2, . . . , vp ∈ V 6=0 be such that
∑p

i=1|vi | 6= −|θ | − |η|. If we denote the
corresponding constant sections of E by e1, e2, . . . , ep ∈ E (U), so that ei(u) = vi
for every u ∈ U and i = 1, 2, . . . , p, then

j∞u [θ ,η](v{1,...,p}) = [θ ,η](e{1,...,p})(u)

for every u ∈ U , which is equal to
∑

ItJ={1,...,p}

εI ,J θ (η(eI )� eJ )(u)− (−1)|θ ||η|εJ ,I η(θ (eJ )� eI )(u).

This sum can then be split up into three parts: it is equal to S1(u)+S2(u)+S3(u)
for

S1 =
∑

|eI |6=−|η|
|eJ |6=−|θ |

εI ,J θ (η(eI )� eJ )− (−1)|θ ||η| εJ ,I η(θ (eJ )� eI ),

S2 =
∑

|eI |6=−|η|
|eJ |=−|θ |

εI ,J θ (η(eI )� eJ )− (−1)|θ ||η| εJ ,I η(θ (eJ )� eI )

and

S3 =
∑

|eI |=−|η|
|eJ |6=−|θ |

εI ,J θ (η(eI )� eJ )− (−1)|θ ||η| εJ ,I η(θ (eJ )� eI ).

We will work these out separately.
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S1: If both |eI | 6= −|η| and |eJ | 6= −|θ |, then ρη(eI ) = 0 and ρθ (eJ ) = 0. This
tells us that

θ (η(eI )� eJ )(u) = Aθ (Aη(eI )� eJ ) = j∞u θ
�

j∞u η(vI )� vJ

�

,

and that η(θ (eJ )� eI )(u) can be expressed similarly.

Consequently,

S1(u) =
∑

|eI |6=−|η|
|eJ |6=−|θ |

εI ,J j∞u θ
�

j∞u η(vI )� vJ

�

− (−1)|θ ||η| εJ ,I j∞u η
�

j∞u θ (vJ )� vI

�

.

S2: If |eJ | = −|θ | and |eI | 6= −|η|, then ρη(eI ) = 0, but ρθ (eJ ) might be
non-zero. Therefore, εI ,J θ (η(eI )� eJ ) is equal to

εI ,J

�

Aθ (Aη(eI )� eJ ) + (−1)|eJ |(|eI |+|η|)Lρθ (eJ )
(Aη ◦ eI )

�

= εI ,J Aθ (Aη(eI )� eJ ) + εJ ,I(−1)|θ ||η|
�

Lρθ (eJ )
Aη
�

◦ eI ,

which, when evaluated at a point u ∈ U , can be re-expressed as

εI ,J j∞u θ
�

j∞u η(vI )� vJ

�

− (−1)|θ ||η|εJ ,I j∞u η
�

j∞u θ (vJ )� vI

�

.

On the other hand, η(θ(eJ )� eI ) = 0 because |eJ | = −|θ |, which tells us
that

S2(u) =
∑

|eI |6=−|η|
|eJ |=−|θ |

εI ,J j∞u θ
�

j∞u η(vI )� vJ

�

− (−1)|θ ||η| εJ ,I j∞u η
�

j∞u θ (vJ )� vI

�

.

S3: If |eI |= −|η| and |eJ | 6= −|θ |, then the situation is completely analogous
to the previous case. Therefore,

S3(u) =
∑

|eI |=−|η|
|eJ |6=−|θ |

εI ,J j∞u θ
�

j∞u η(vI )� vJ

�

− (−1)|θ ||η| εJ ,I j∞u η
�

j∞u θ (vJ )� vI

�

.
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By combining the obtained expressions for S1(u), S2(u) and S3(u), we now
deduce that

j∞[θ ,η](u)(v{1,...,p}) = S1(u) + S2(u) + S3(u)

=
∑

ItJ={1,...,p}

εI ,J j∞u θ
�

j∞u η(vI )� vJ

�

− (−1)|θ ||η|εI ,J j∞u θ
�

j∞u η(vI )� vJ

�

= [ j∞u θ , j∞u η](v{1,...,p})

for all homogeneous v1, v2, . . . , vp ∈ V 6=0 such that
∑p

i=1|vi | 6= −|θ | − |η| and
every u ∈ U . �

With these lemmas at our disposal, the proof of Theorem 5.1.1 becomes relat-
ively straightforward.

Proof of Theorem 5.1.1: Every pluriderivation on E |U is of the form ∇ρ + A
for a unique vector bundle morphism A− ρ:

⊙

(E) → F ⊕ TU , which corres-
ponds to a unique smooth map ÃΦ − ρ̃Φ from φ(U) to L(

⊙

(V 6=0), V ) since Φ
describes an isomorphism from F ⊕ TU → U to V ×φ(U)→ φ(U). Similarly,
every holonomic map from φ(U) to L(

⊙

(V ), V ) is of the form j∞ l̃ for a unique
map l̃ from φ(U) to L(

⊙

(V 6=0), V ). Bijectivity of j∞Φ , as a map from Derb (E |U)
to C∞hol

�

U , L(
⊙

(V ), V )
�

, now follows from the observation that it relates a pluri-
derivations and a holonomic maps precisely when they correspond to the same
element of C∞(φ(U), L(

⊙

(V 6=0), V )).

We can use Lemma 5.1.2 and Lemma 5.1.3 to show that j∞Φ is a morphism of
graded Lie algebras. For any two homogeneous pluriderivations θ and η on
E → M , these lemmas together tell us that the restrictions

j∞Φ [θ ,η](u)|⊙(V 6=0) and [ j∞θ , j∞η](u)|⊙(V 6=0)

coincide for every u ∈ U . This implies that j∞Φ [θ ,η] = [ j∞Φ θ , j∞Φ η] because
both j∞Φ [θ ,η] and [ j∞Φ θ , j∞Φ η] are holonomic, and thus determined by these
restrictions. Since it is bijective, we conclude that j∞Φ is an isomorphism of
graded Lie algebras.

Because curved split L∞-algebroid structures on E |U are Maurer–Cartan ele-
ments for Derb (E |U) and holonomic families of curved L∞-algebras are Maurer–
Cartan elements for C∞hol

�

U , L(
⊙

(V ), V )
�

, the isomorphism j∞Φ provides a one-
to-one correspondence between objects of these respective types. �
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5.1. L∞-algebroids as holonomic families

All manifolds, bundles and maps in this section have been assumed smooth,
but analyticity could have been assumed instead. The following proposition
provides an analytic analogue of Theorem 5.1.1.

Proposition 5.1.4.
Let E → M be an analytic vector bundle of Fréchet type for which E0 = 0 and let
Φ= (Φ̃,φ): E |U → V 6=0 × V 0 be an analytic local trivialisation chart. A smooth
curved L∞-algebroid structure θ ∈MC(Derb (E |U), [ � , �]) is analytic if and only if
j∞Φ θ : φ(U)→ L(

⊙

(V ), V ) is.

If θ is analytic and (V ,`) = (V , j∞Φ (φ(x0))) is the L∞-algebra corresponding to
a fixed reference point x0 ∈ U, then (V ,`) is convergent and

(V ,`y) = (V , j∞Φ (φ(x0) + y))

for all y in a zero neighbourhood U ′ ⊆ V 0.

Proof: The proof of Theorem 5.1.1 can be repeated for analytic pluriderivations
and analytic families of linear maps without major modifications to show that
analytic curved L∞-algebroid structures are locally in one-to-one correspond-
ence with analytic holonomic families of curved L∞-algebras. References to
section 3.1.2 and appendix B.1.1 should be replaced by similar references to
section 3.1.3 and appendix B.1.3 respectively.

Once analyticity of the holonomic family j∞Φ θ is established, the final assertion
follows directly from Proposition 3.3.2. �

Unlike in the smooth case, we can directly relate zeros of θ0 : M → E1 to Maurer–
Cartan elements when analyticity is assumed. Similarly, homotopies in the
sense of Definition 2.4.6 locally correspond to homotopies in the sense of Defin-
ition 4.3.9.

Corollary 5.1.5.
Given the assumptions from Proposition 5.1.4, there exists an open neighbour-
hood U ′ ⊆ M of x0 such that φ restricts to a bijection

φ : MC(E ,θ ,ρ)∩ U ′ −→MC(V ,`)∩φ(U ′)

between a neighbourhood of x0 in the zero locus of θ0 and a zero neighbourhood
in the Maurer–Cartan locus of (V ,`). It also induces a bijection

Φ∗ : Γ 7→ φ ◦π ◦ Γ + Φ̃−1 ◦ Γ dt
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between the set of homotopies of Maurer–Cartan elements for (E |U ′ ,θ |U ′ ,ρ|U ′)
and the set of homotopies γ+ηdt for (V , j∞Φ (0)) for which γ([0,1]) ⊆ φ(U ′).

Proof: Proposition 5.1.4 tells us that the curvature of (V ,`φ(x)) with x ∈ U ′ is
given by `φ(x)0 = θ0(x). Consequently, φ(x) is a Maurer–Cartan element if and
only if θ0(x) vanishes.

The map Φ∗ is a bijection from C∞([0,1], E−1|U) to C∞([0,1], V 0 × V−1 dt)
because Φ is a trivialisation chart. The only thing that thus remains to be shown
is that π∗ ◦ Γ

′(t) = ρ ◦ Γ (t) if and only if γ+ ηdt = Φ∗Γ solves the equation
γ′(t)+`γ(t)1 (η(t)) = 0 for t ∈ [0, 1]. This follows from the fact that the left-hand
side of the latter equation can be expressed as

γ′(t) + `γ(t)1 (η(t)) = Dφ(π(Γ (t)))
�

π∗ ◦ Γ
′(t)−ρ ◦ Γ (t)

�

because `y
1 ◦Φ−1(v) = −Dφ(φ−1(y))◦ρ(v) for all y ∈ φ(U) and v ∈ E

φ−1(y)
. �

5.1.2. Infinite jets of morphisms

We will now describe how the correspondence between curved split L∞-alge-
broids and holonomic families of curved L∞-algebras described in Theorem 5.1.1
extends to morphisms. We will show that curved L∞-algebroid morphisms cor-
respond to fibre-preserving (resp. fibrewise linear) morphisms of holonomic fam-
ilies of curved L∞-algebras, and that splitting preserving morphisms of curved
L∞-algebroids correspond to fibrewise linear morphisms of holonomic families
of curved L∞-algebras.

Let E → M and F → N be Z-graded vector bundles of Fréchet type for which
E0 = 0 and F0 = 0, and assume that we are given two local trivialisation charts
Φ(eΦ,φ): E |U → V 6=0×V 0 and Φ′ = (eΦ′,φ′): F |U ′ →W 6=0×W 0. In terms of these
charts, a graded vector bundle morphism (α, f ) from

⊙

(E)|U to F |U ′ is described
by smooth maps f̃Φ′,Φ : φ(U)→W 0 and α̃Φ′,Φ : φ(U)→ L(

⊙

(V 6=0), W 6=0), which
are such that

φ′ ◦ f (x) = f̃Φ′,Φ ◦φ(x)
and

eΦ′ ◦αx(e{1,...,p}) = α̃Φ′,Φ(φ(x))
�
⊙p

i=1Φx(ei)
�
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5.1. L∞-algebroids as holonomic families

for every x ∈ U and all e1, e2, . . . , ep ∈ Ex . Since both f̃Φ′,Φ and α̃Φ′,Φ take
values in subspaces of L(

⊙

(V 6=0), W ), we can consider their sum, f̃Φ′,Φ + α̃Φ′,Φ
as a map from φ(U) to L(

⊙

(V 6=0), W ). We denote the set of homogeneous
vector bundle morphisms of degree 0 from

⊙

(E)|U → U to F |U ′ → U ′ by
Mor(

⊙

(E |U), F |U ′).

Proposition 5.1.6.
Let (E ,θ ,ρ) and (F ,θ ′,ρ′) be two curved split L∞-algebroids of Fréchet type and
let Φ: E |U → V 6=0 × V 0 and Φ′ : F |U ′ →W 6=0 ×W 0 be local trivialisation charts.
The map j∞

Φ′,Φ from Mor(
⊙

(E)|U , F |U ′) to C∞hol(φ(U), L(
⊙

(V ), W )) given by

j∞
Φ′,Φ(α, f ) = j∞(α̃Φ′,Φ + f̃Φ′,Φ)

restricts to a one-to-one correspondence between curved L∞-algebroid morph-
isms from (E |U ,θ |U ,ρ|U) to (F |U ′ ,θ

′|U ′ ,ρ
′|U ′) and fibre-preserving morphisms

of holonomic families of curved L∞-algebras from j∞Φ θ to j∞
Φ′
θ ′.

Proof: We can assume without loss of generality that both E → M and F → N
are trivial bundles over Fréchet domains and that the chosen trivialisation charts
are both tautological.

We thus assume that the graded vector bundles supporting (θ ,ρ) and (θ ′,ρ′)
are of the form E = V 6=0 × U → U and F = W 6=0 × U ′ → U ′ for two Z-graded
vector spaces V = V 6=0 ⊕ V 0 and W = W 6=0 ⊕W 0 of Fréchet type and open
subsets U ⊆ V 0 and U ′ ⊆W 0. We denote the corresponding holonomic families
of curved L∞-algebras, with respect to the tautological trivialisations Φ = idE
and Φ′ = idF , by l= j∞Φ (θ ,ρ) and l′ = j∞

Φ′
(θ ′,ρ′). Let A: U → L(

⊙

(E), E) and
A′ : U ′→ L(

⊙

(F ), F ) moreover be such that θ =∇Φρ + A and θ ′ =∇Φ
′

ρ′
+ A′.

We recall from Proposition 3.3.8 that a holonomic family of plurilinear maps
from V to W parametrised by U ⊆ V 0 is fibre-preserving precisely when it is of
the form j∞(g+ f0) for smooth maps f0 : U →W and g: U → L(

⊙

(V 6=0), W 6=0).
By construction, j∞

Φ′,Φ thus describes a one-to-one correspondence between vec-
tor bundle morphisms from

⊙

(E) to F and such fibre-preserving holonomic
families of plurilinear maps. We do still need to verify that compatibility of
j∞
Φ′,Φ(α, f ) with j∞Φ (θ ,ρ) and j∞

Φ′
(θ ′,ρ′) is equivalent to compatibility of (α, f )

with (θ ,ρ) and (θ ′,ρ′).

Let (α, f ):
⊙

(E) → F be a homogeneous smooth vector bundle morphism
and let f= j∞

Φ′,Φ(α, f ) denote the corresponding holonomic family of plurilinear
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maps. Then f is a morphism of holonomic families of curved L∞-algebras if and
only if it satisfies the equation f � l= l′ � f, or

∑

ItJ={1,...,p}

εI ,J f(u)
�

l(u)(vI )� vJ

�

=
∑

I1,...,Im

εI1,...,Im

1
m! l
′(f0(u))

�
⊙m

j=1 f(u)(vI j
)
�

(5.1.1)

for every u ∈ U and all homogeneous v1, v2, . . . , vp ∈ V . Since both l′ � f and f � l
are holonomic due to Proposition 3.2.11 and Proposition 3.2.7, it is sufficient
for this equation to hold for homogeneous elements of non-zero degree.

Let v1, v2, . . . , vp ∈ V 6=0 be homogeneous elements of V of non-zero degree.
When distinguish two cases when examining equation (5.1.1).

(a) If |v{1,...,p}| = −1, then many of the terms in equation (5.1.1) vanish be-
cause f is fibre preserving. This is demonstrated in Proposition 3.3.8, from
which we can deduce that equation (5.1.1) then reduces to

f(u)
�

l(u)(v{1,...,p})
�

=
∑

|vI1
|,...,|vIm

|6=0

εI1,...,Im

1
m! l
′(f0(u))

�
⊙m

j=1 f(u)(vI j
)
�

.

If we use holonomicity of f to replace the left-hand side of this equation
by Df0(u)

�

l(u)(v{1,...,p})
�

, we see that it states precisely that

−Tf0(u)(ρu(v{1,...,p})) = −ρ
′
f0(u)
�αu(v{1,...,p})

for all u ∈ U and all homogeneous v1, v2, . . . , vp ∈ Eu ' V 6=0. Note
that both sides of this equation vanish due to homogeneity whenever
|v{1,...,p}| 6= −1.

(b) If |v{1,...,p}| 6= −1, all of the terms in equation (5.1.1) are potentially non-
zero. The equation then reads

∑

ItJ={1,...,p}
|vI |=−1

εI ,JDf(u)
�

l(u)(vI )
�

(vJ ) +
∑

ItJ={1,...,p}
|vI |6=−1

εI ,J f(u)(l(u)(vI )� vJ )

=
∑

|vI1
|,...,|vIm

|6=0

εI1,...,Im

1
m! l
′(u)

�
⊙m

j=1 f(vI j
)
�

.

In terms of the vector bundle morphisms A, A′ and α, this becomes
∑

ItJ={1,...,p}

εI ,J

�

Lρ(vI )
α!
f

�

(u)(vJ ) +αf(l0(u)) � Al(u)(v{1,...,p})

= Al′(f0(u)) �αf(u)(v{1,...,p})
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5.1. L∞-algebroids as holonomic families

for u ∈ U and homogeneous v1, v2, . . . , vp ∈ V 6=0. Note that both sides of
this equation vanish if |v{1,...,p}|= −1 due to homogeneity.

When combined, these two cases tell us that the hypotheses of Corollary 4.3.32
are satisfied (or the trivial connections) precisely when f � l= l′ � f. Therefore,
j∞
Φ′,Φ(α, f ) is a morphism of holonomic families of curved L∞-algebras if and

only if (α, f ) is a morphism of curved L∞-algebroids. �

Proposition 5.1.7.
The map j∞

Φ′,Φ described in Proposition 5.1.6 restricts to a one-to-one corres-
pondence between splitting preserving morphisms of curved L∞-algebroids and
fibrewise linear morphisms of holonomic families of curved L∞-algebras.

Proof: This follows from the characterisation of fibrewise linear morphisms of
holonomic families provided by Proposition 3.3.10, since a morphism of curved
L∞-algebroids is splitting preserving precisely when it is described by a pair of
maps f̃ : U → U ′ and α̃: U → L(V , W ). �

As one might expect, the correspondence described in Proposition 5.1.6 is com-
patible with the composition of morphisms.

Proposition 5.1.8.
Let (α, f ): (E ,θ ,ρ)→ (F ,θ ′,ρ′) and (β , g): (F ,θ ′,ρ′)→ (G ,θ ′′,ρ′′) be two
morphisms of curved L∞-algebroids of Fréchet type, then

j∞
Φ′′,Φ

�

(β , g) � (α, f )
�

= j∞
Φ′′,Φ′(β , g) � j∞

Φ′,Φ(α, f ).

for any three local trivialisation charts Φ, Φ′ and Φ′′ on E |U , F |U ′ and G |U ′′
respectively such that f (U) ⊆ U ′ and g(U ′) ⊆ U ′′.

Moreover, j∞Φ,Φ(idE , idM ) is the identity morphism on (φ(U), V , j∞
Φ′,Φθ ).

Proof: As in the proof Proposition 5.1.8, we shall assume without loss of gener-
ality that all three graded vector bundles are trivial over open subsets of Fréchet
spaces and that this choice.

Both j∞
Φ′′,Φ

�

(β , g) � (α, f )
�

and j∞
Φ′′,Φ′(β , g) � j∞

Φ′,Φ(α, f ) are holonomic families of
plurilinear maps due to Proposition 3.2.11. To show that they are equal it thus
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suffices to show that they coincide when restricted to
⊙

(V 6=0) ⊆
⊙

(V ). We
observe that

j∞
Φ′′,Φ

�

(β , g) � (α, f )
�

(u)(1) = j∞
Φ′′,Φ′(β , g)(u′) � j∞

Φ′,Φ(α, f )(u)(1),

for any u ∈ φ(U) = U and u′ = f (u) ∈ φ′(U ′) = U ′, since both sides are equal
to g ◦ f (u). A simple computation moreover shows that

j∞
Φ′′,Φ

�

(β , g) � (α, f )
�

(u)(v{1,...,p}) = j∞
Φ′′,Φ′(β , g)(u′) � j∞

Φ′,Φ(α, f )(u)(v{1,...,p}),

for u and u′ as before and v1, v2, . . . , vp ∈ V 6=0 with p ≥ 1, since both sides of
this equation are equal to βu′ �αu(v{1,...,p}).

With respect to the trivialisation chart Φ, the identity morphism (idE , idM ) is rep-
resented by two maps, (eidM )Φ,Φ and (eidE )Φ,Φ(u), that are given by (eidM )Φ,Φ(u) =
u and (eidE )Φ,Φ(u) = idV 6=0 for u ∈ U . Consequently, j∞Φ,Φ(idE , idM ) = idU + idV is
the identity morphism. �

We had claimed that the holonomic family of curved L∞-algebras constructed
in Theorem 5.1.1 is independent of the chosen trivialisation chart (up to iso-
morphism). This is an immediate consequence of Proposition 5.1.6 and Propos-
ition 5.1.8.

Corollary 5.1.9.
For any curved split L∞-algebroid (E ,θ ,ρ) of Fréchet type and two local triviali-
sation charts Φ: E |U → V 6=0 × V 0 and Φ′ : E |U →W 6=0 ×W 0 on the same open
subset U ⊆ M, the map

j∞
Φ′,Φ(idE , idM ): (φ(U), V , j∞Φ θ ) −→ (φ

′(U), W , j∞
Φ′
θ )

is a fibrewise linear isomorphism of holonomic families of curved L∞-algebras.

Proof: It follows immediately from Proposition 5.1.6 that j∞
Φ′,Φ(idE , idM ) and

j∞
Φ,Φ′(idE , idM ) are both morphisms of holonomic families of curved L∞-algebras.

We can work out from Proposition 5.1.8 that these are mutually inverse. �

Remark 5.1.10.
Theorem 5.1.1 tells us that every curved split L∞-algebroid can locally be de-
scribed as a holonomic family of curved L∞-algebras, while Proposition 5.1.6
and Proposition 5.1.8 tell us that splitting-preserving morphisms correspond
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5.1. L∞-algebroids as holonomic families

to fibrewise linear morphisms of such holonomic families in a functorial fash-
ion. This allow us to obtain a curved split L∞-algebroid by gluing together
holonomic families of curved L∞-algebras using fibrewise linear morphisms.

4

5.1.3. Equivalence of categories

Section 5.1.1 and section 5.1.2 can be summarised rather concisely in the lan-
guage of categories.

To do this, we shall consider the category of curved L∞-algebroids of Fréchet
type endowed with a global trivialisation chart. An object in this category is a
pair ((E ,θ ,ρ),Φ) that consist of a curved L∞-algebroid (E ,θ ,ρ) of Fréchet type
and a trivialisation chart Φ: E → V 6=0×V 0. We define a morphism between two
such objects as a morphism between the underlying curved L∞-algebroids, and
require no compatibility with the trivialisation charts Φ and Φ′. Consequently,
any two objects ((E ,θ ,ρ),Φ) and ((E ,θ ,ρ),Φ′) in this category that only differ
by a choice of trivialisation chart are canonically isomorphic through the identity
morphism idE for (E ,θ ,ρ).

Theorem 5.1.11.
The category of curved split L∞-algebroids of Fréchet type endowed with global
trivialisation charts is equivalent to the category of holonomic families of curved
L∞-algebras of Fréchet type with fibre-preserving morphisms.

Proof: Consider the infinite jet functor which we have effectively studied in
section 5.1.1 and Section 5.1.2. It assigns to every pair ((E ,θ ,ρ),Φ) consisting
of a curved L∞-algebroid (E ,θ ,ρ) and a trivialisation chart Φ = (eΦ,φ): E →
V 6=0 × V 0, the holonomic family

j∞Φ (θ ,ρ): im(φ) −→ L(
⊙

(V ), V )

described by Theorem 5.1.1, and to a morphism (α, f ) from ((E ,θ ,ρ),Φ) to
((F ,θ ′,ρ′),Φ′) it similarly associates the morphism of holonomic families

j∞
Φ′,Φ(α, f ): im(φ) −→ L(

⊙

(V ), W )
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described by Proposition 5.1.6. Functoriality of this construction was in demon-
strated Proposition 5.1.8, and we have seen in Proposition 5.1.6 that j∞ is
bijective on morphisms, i.e. that it is both full and faithful.

Conversely, we can associate to every holonomic family l: U → L(
⊙

(V ), V ) of
curved L∞-algebras, a trivial Z-graded vector bundle El = V 6=0 × U → U for
which E0 = 0. Theorem 5.1.1 tells us that this bundle admits a unique curved
L∞-algebroid structure θl such that j∞id (θl) = l, which establishes surjectivity
of j∞. Since j∞ is fully faithful and essentially surjective, it describes a weak
equivalence of categories.

A weak inverse to j∞ is given by the functorΘ that assigns to a holonomic family
l of curved L∞-algebras the curved L∞-algebroid (El,θl,ρθl) described above,
and which assigns to a morphism f: l→ l′ of such holonomic families the unique
morphism Θ(f) from Θ(l) to Θ(l′) with the property that j∞(Θ(f)) = f. This
functor is by construction such that j∞ ◦Θ = id. A simple natural isomorphism
relating the other composition, Θ ◦ j∞, to the identity on its domain is the
one that sends a pair ((E ,θ ,ρ),Φ) to the trivialisation chart Φ: E ∼→ V 6=0 × U ,
viewed as a L∞-algebroid morphism from (E ,θ ,ρ) to the L∞-algebroid structure
Θ( j∞Φ θ ) on the trivial bundle V 6=0 × U → U . �

We observe that under the equivalence described in the proof of Theorem 5.1.11,
splitting-preserving morphisms of curved L∞-algebroids correspond to fibre-
wise linear morphisms of holonomic families of L∞-algebras, due to Proposi-
tion 5.1.7.

We can forget about the choice of trivialisation chart and talk about the category
of curved L∞-algebroids of Fréchet type that admit such charts. This category
is weakly equivalent to the category of curved L∞-algebroids of Fréchet type
endowed with a trivialisation chart because the forgetful functor from the latter
to the former is surjective and fully faithful. This directly leads to the following
corollary.

Corollary 5.1.12.
The category of curved L∞-algebroids that admit global trivialisation charts is
weakly equivalent to the category of holonomic families of curved L∞-algebras
with fibre-preserving morphisms.

In this sense, curved L∞-algebroids and holonomic families of curved L∞-alge-
bras are locally equivalent.
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Remark 5.1.13.
The proof of Theorem 5.1.11 could arguably have been concluded upon ob-
serving that j∞ is fully faithful and essentially surjective, since a weak inverse
to any such functor is ostensibly provided by the axiom of choice. The word
“weakly” could then similarly be removed of Corollary 5.1.12. Since none of
the categories discussed in this section is described as a set, however, whether
or not the axiom of choice can be applied in this circumstance depends on
one’s foundational approach to category theory. 4

5.2. Equivariant deformation problems

In this section, we will describe how an equivariant deformation problem of Fré-
chet type can be viewed as a special type of curved split L∞-algebroid. As such, it
will give rise to holonomic families of curved L∞-algebras whose members can be
said to formally control the deformations of the corresponding structures. In an
analytic setting, these L∞-algebras become slightly more meaningful since their
Maurer–Cartan elements then correspond to (integrable) structure and gauge
equivalence of these elements then implies gauge equivalence of the structures
they represent.

5.2.1. Deformation problems as L∞-algebroids

We will first demonstrate how every equivariant deformation problem can be
viewed as a special type of curved L∞-algebroid.

Although equivariant deformation problems were discussed in detail in chapter 1,
we shall briefly recall their definition here. An equivariant deformation problem
(M µ→E1 β→E2) α G of Fréchet type with (optional) Bianchi identity consists of the
following objects:

• a Fréchet manifold M ,

• a Fréchet Lie group G acting on M from the right by α: M × G→ M ,

• two equivariant vector bundles E1→ M and E2→ M of Fréchet type,

• an equivariant section µ: M → E1 of E1→ M , and
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• an equivariant vector bundle morphism β : E1→ E2 such that β ◦µ= 0.

When we write (M µ→E1 β→E2) α G, the letter α is understood to refer not only
to the right action of G on M explicitly described above, but also to the implicit
right actions of G on the equivariant vector bundles E1→ M and E2→ M . It is
thus an abbreviation for the triple (α,α1,α2) of right actions

α: M × G −→ M and αn : En × G −→ En

for n= 1, 2.

The inclusion of the vector bundle E2 and the Bianchi map β : E1 → E2 is op-
tional in the sense that one can always choose to set E2 = 0 and (thus necessarily)
β = 0. The Bianchi identity β ◦ µ = 0 is then automatically satisfied for any
µ ∈ E 1(M) and the unique (equivariant) vector bundle morphism β = 0 from
E1 to E2.

Infinitesimal actions

The right actions α and αn for n= 1, 2 can be differentiated to obtain Lie algebra
morphisms

α∗ : Lie(G) −→ X(M) and αn
∗ : Lie(G) −→ Der(En)

from Lie(G) to the Lie algebra of vector fields on M and the Lie algebras of
smooth derivations on E1 and E2 respectively. The first is given by

α∗(X )(x) = T(x ,eG)
α(X ),

for X ∈ Lie(G) and x ∈ M , and the second by

αn
∗(X )(e)(x) = Tx e

�

α∗(X )(x)
�

− T(e(x),eG)
αn(X ) ∈ TvEn

e(x) ' En
x

for any Lie algebra element X ∈ Lie(G) and any local section e ∈ E n(U) defined
on an open subset U ⊆ M of x ∈ M . These actions were also considered in
Example 4.2.7 and Example 4.2.26.

We shall consider the action algebroid corresponding to the Lie algebra action
described above, which we will denote by (E−1,¹ � , �º,ρ). It was defined in
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Example 4.2.22 and consists of the trivial bundle E−1 = Lie(G)×M → M , the
anchor

ρ: Lie(G)×M −→ TM , (X , x) 7→ α∗(X )(x) = T(x ,eG)
α(X ),

which describes the infinitesimal action of Lie(G), and a Lie bracket which is
determined by the property that ¹a, bº(x) = [a(x), b(x)] for any two constant
sections a, b ∈ E−1(M)' C∞(M , Lie(G)). The Lie bracket of two arbitrary local
sections a1, a2 ∈ E

−1(U) with U ⊆ M open is thus given by

¹a1, a2º(x) = [a1(x), a2(x)] +Lρ(a1(x))
a2 −Lρ(a2(x))

a1

for x ∈ U .

The infinitesimal actions of Lie(G) on E1 and E2 similarly give rise to two repres-
entations (E1,∇1) and (E2,∇2) of the action the Lie algebroid (E−1,¹ � , �º,ρ).
These representations are such that ∇n

a = α
n
∗(a) for any constant section a ∈

E−1(M)' C∞(M , Lie(G)), so that

∇n
ae(x) = Tx e(ρ(a(x)))− T(e(x),eG)

αn(a(x))

for two arbitrary local sections a ∈A (U) and e ∈ E n(U) with U ⊆ M open, for
x ∈ U and for n = 1,2. Since µ and β were equivariant for the original action
of G by assumption, they are also equivariant for this infinitesimal action.

This discussion is summarised by the following proposition.

Proposition 5.2.1.
Let (M µ→E1 β→E2) α G be an equivariant deformation problem of Fréchet type
with (optional) Bianchi identity and let E−1 denote the trivial vector bundle
E−1 = Lie(G)×M → M. If ρ, ¹ � , �º and ∇n for n= 1, 2 are as described above,
then:

1. (E−1,¹ � , �º,ρ) is a Lie algebroid:

For any local section a ∈ E−1(U) with U ⊆ M open, ¹a, �º: E−1|U →
E−1|U is a smooth derivation covering ρ(a), ρ is a vector bundle morphism,
and

Jac
¹

� , �º(a, b, c) := ¹¹a, bº, cº+ ¹¹b, cº, aº+ ¹¹c, aº, bº= 0

for any three local sections a, b, c ∈ E−1(U) with U ⊆ M open.
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2. (E1,∇1) and (E2,∇2) are representations of (E−1,¹ � , �º,ρ):
The operators ∇n for n = 1,2 are vector bundle morphisms in their first
arguments, ∇n

a : E n|U → E
n|U is a smooth derivation covering ρ(a) for

every local section a ∈ E−1(U) with U ⊆ M open, and

F∇n(a, b) := [∇n
a,∇n

b]−∇
n
¹a,bº = 0

for any two local sections a, b ∈ E−1(U) with U ⊆ M open and n= 1,2.

3. The section µ: E 1(M) is infinitesimally equivariant:

∇1µ= 0.

4. The vector bundle morphism β : E1→ E2 is infinitesimally equivariant:

∇2,1
a β :=∇2

a ◦ β − β ◦∇
1
a = 0

for any local section a ∈ E−1(U) with U ⊆ M open.

5. The Bianchi identity holds:

β ◦µ= 0.

Proof: Each of the above identities follows from an explicit computation. �

The associated L∞-algebroid

The section µ ∈ E 1(M), the vector bundle morphism β : E1→ E2 and the oper-
ators

¹

� , �º: E−1 �E−1 −→ E−1 and ∇n : E−1 ⊗E n −→ E n

for n= 1, 2 can be combined to form a curved split L∞-algebroid.

Proposition 5.2.2 (Equivariant deformation problems⇒ L∞-algebroids).
Let (M µ→E1 β→E2) α G be an equivariant deformation problem of Fréchet type
with (optional) Bianchi identity and let (E−1,¹ � , �º,ρ) and (En,∇n) for n= 1, 2
be as in Proposition 5.2.1, then

θα,µ,β = ¹ � , �º+µ+ β +∇
1 +∇2,

defines a curved split L∞-algebroid structure on E with anchor ρ.
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Proof: To prove that (E ,θ ,ρ) is a curved split L∞-algebroid we first need to
show that the components of θ are smooth multiderivations of degree 1 whose
symbols are determined by ρ. Homogeneity of θ follows from its construction,
so we only need to verify that

θ (e{1,...,p} � �): E |U −→ E |U

is a smooth derivation covering ρ(e{1,...,p}) for any sequence of homogeneous
local sections e1, e2, . . . , ep ∈ E (U) with U ⊆ M open.

Since it takes no arguments, there is effectively nothing to verify for the nullary
component θ0 = µ ∈ E

1 ' Der0(E)1, and the unary component θ1 = β is a
smooth derivation covering ρ(1) = 0 precisely because β is a vector bundle
morphism. For the binary component θ2 = ¹ � , �º+∇

1 +∇2 we need to verify
that

θ2(a� �) = ¹a, �º+∇1
a +∇

2
a : E −→ E

is a smooth derivation covering ρ(a) ∈ X(M) for every a ∈ E−1(U) with U ⊆ M
open, and that

θ2(e� �) = (−1)n∇ne: E−1 −→ E n

is a vector bundle morphism for every e ∈ E n(U) with n = 1,2 with U ⊆ M
open. Both of these conditions hold because (¹ � , �º,ρ) is a Lie algebroid struc-
ture and ∇1 and ∇2 are compatible Lie algebroid connections. Since θ has no
components of arity 3 or greater, we conclude that it is a smooth pluriderivation
of degree 1 on E and that ρ:

⊙

(E)→ TM is its anchor.

The Jacobiator of θ can be expressed in terms of the graded Lie bracket on
Derb (E) as Jac(θ ) = 1

2 [θ ,θ]. If we expand θ in terms of the components ¹ � , �º,
µ, β and ∇=∇1 +∇2, we thus the expression

1
2

�

¹

� , �º,¹ � , �º
�

+ [β ,µ] + [∇,µ] + [∇,β] +
��

∇,¹ � , �º
�

+ 1
2 [∇,∇]

�

.

for Jac(θ ). These five terms are the restrictions of Jac(θ ) to
⊙3(E−1),

⊙0(E ),
E−1, E−1 � (E 1 ⊕E 2) and

⊙2(E−1)� (E 1 ⊕E 2) respectively. For (E ,θ) to be a
curved L∞-algebra, all five of these components should vanish.

Each of these graded commutators are relatively simple to work out, provided
some care is taken when determining the appropriate signs. The first expression
is simply the Jacobiator of ¹ � , �º, since

1
2

�

¹

� , �º,¹ � , �º
�

(a, b, c) = ¹¹a, bº, cº+ ¹¹b, cº, aº+ ¹¹c, aº, bº
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for all a, b, c ∈ E−1(U)with U ⊆ M open. Going from left to right, the remaining
terms are given by

[β ,µ] = β ◦µ,

[∇,µ](a) = −∇aµ,

[∇,β](a, e) = −∇a(β(e)) + β(∇ae)

for a ∈ E−1(U) and e ∈ E 1(U) with U ⊆ M open, and
��

∇,¹ � , �º
�

+ 1
2 [∇,∇]

�

(a� b� e) =∇
¹a,bºe−∇a∇be+∇b∇ae.

for a, b ∈ E−1(U) and e ∈ E 1(U)⊕E 2(U) with U ⊆ M open.

All in all, we deduce that the Jacobiator of θ is given by

Jac(θ ) = Jac(¹ � , �º) + β ◦µ−∇µ−∇β − F∇,

where F∇ = F∇1 + F∇2 denotes the combined curvature of ∇=∇1 +∇2. Since
these six terms live in different components of Derb (E), the Jacobiator of θ
vanishes if and only if ¹ � , �º is a Lie bracket, the composition β ◦µ vanishes, µ
and β are equivariant and the curvature of∇ is zero. This allows us to conclude
that (E ,θ ,ρ) is indeed a curved split L∞-algebroid. �

We observe that each of components of the Jacobiator of θ corresponds to one
of the five identities featured in Proposition 5.2.1. The arguments in this proof
can thus be reversed to show that any curved split L∞-algebroid structure (θ ,ρ)
on E = E−1 ⊕ E1 ⊕ E2 which has no components of arity greater than 2 is of the
form

θ = ¹ � , �º+µ+ β +∇1 +∇2

where (¹ � , �º,ρ) is a Lie algebroid structure on E−1, ∇1 and ∇2 are flat Lie
algebroid connections on E1 and E2, µ is an equivariant section of E1 and β is
an equivariant vector bundle morphism from E1 to E2 with the property that
β ◦ µ = 0. This does not necessarily mean that it comes from an equivariant
deformation problem as defined in Definition 1.1.5 however, since not every Lie
algebroid is an action algebroid and not every (Fréchet) Lie algebra integrates
to a Lie group.

If G is a connected regular Fréchet Lie group, then the original deformation
problem is still fully described by the curved L∞-algebroid provided by Proposi-
tion 5.2.2 in the following sense.
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Proposition 5.2.3.
Let (M µ→E1 β→E2) α G be an equivariant deformation problem of Fréchet type
and let (E ,θ ,ρ) be its associated curved split L∞-algebroid, then

MC(E ,θ ,ρ) = µ−1(0).

If the Lie group G is regular (in the sense of Definition B.3.2), then two Maurer–
Cartan elements x , y ∈ MC(E ,θ ,ρ) are homotopic if and only if there exists a
group element g ∈ G0 in the identity component of G such that y = x · g.

Proof: The Maurer–Cartan locus of (E ,θ ,ρ) is defined as the zero locus of
the curvature θ0 ∈ E

1(M), which is equal to µ by construction. Therefore,
MC(E ,θ ,ρ) = µ−1(0).

If G is a regular Fréchet Lie group, then Corollary B.3.4 tells us that two points
x , y ∈ M are in the same orbit for the action of G0 if and only if there exist
two smooth paths η: [0,1] → Lie(G) and γ: [0,1] → M such that γ(0) = x ,
γ(1) = y and

d
dt γ(t) = α∗(η(t))(γ(t))

for all t ∈ [0,1]. Since α∗(η(t))(γ(t)) = ρ(η(t),γ(t)) for all t ∈ [0,1], this
equation states precisely that (γ,η): [0, 1]→ E−1 is a homotopy with endpoints
x and y , as defined in Definition 4.3.9. �

5.2.2. The associated curved L∞-algebra

We wish to associate a curved L∞-algebra to an arbitrary equivariant deform-
ation problem. Because we have just seen in section 5.2.1 that equivariant
deformation problems can be described as curved L∞-algebroids, we need only
apply the theory from section 5.1 to do this. This will provide a holonomic
family of L∞-algebras corresponding to different reference points.

Suppose we are given an equivariant deformation problem (M µ→E1 β→E2) α G of
Fréchet type and let (E ,θ ,ρ) denote the corresponding curved L∞-algebroid.
Assume moreover that we are given a trivialisation chart Φ = (Φ̃,ϕ): E |U →
V 6=0×V 0 centred at x0 ∈ U ⊆ M . We recall from section 5.1.1 that the associated
holonomic family of curved L∞-algebras was the family

j∞Φ θ = j∞Φ Aθ ,Φ − j∞Φ ρ: φ(U) −→ L(
⊙

(V ), V ),
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where Aθ ,Φ :
⊙

(E)|U → TU is a vector bundle morphism with the property that
θ |U =L

Φ
ρ + Aθ ,Φ, and the infinite jets j∞Φ Aθ ,Φ and j∞Φ ρ are as defined in Theo-

rem 5.1.1. Since the bundle E−1 = Lie(G)×M → M is trivial by construction,
we will assume that it is comes with its canonical trivialisation.

We can explicitly describe the curved L∞-algebra (V , j∞Φ θ(0)) in terms of the
original data, but the resulting expressions are not particularly appealing or
enlightening. Below, we shall use the notation

f (C , y)≈
∑

p∈N0

fp(C , y)

to say that a smooth function y 7→ f (C , y) from V 0 to another locally convex
vector space has

∑

p∈N0
fp(C , �) as its formal power series around 0.

Theorem 5.2.4 (Equivariant deformation problems⇒ L∞-algebras).
Let (M µ→E1 β→E2) α G be an equivariant deformation problem of Fréchet type.
Let V−1 = Lie(G) and let Φ1 = (eΦ1,ϕ): E1|U → V 1 × V 0 and (eΦ2,ϕ): E2|U →
V 2 × V 0 be two trivialisation charts that cover the same chart ϕ: U ⊆ M → V 0

centred at x0 ∈ M. The graded vector space

V−1 ⊕ V 0 ⊕ V 1 ⊕ V 2 ' Lie(G)⊕ Tx0
M ⊕ E1

x0
⊕ E2

x0

admits a topological curved L∞-algebra structure `:
⊙

(V )→ V which is deter-
mined by the following properties.

(i) The restriction of ` to
⊙

(V 0) is such that

eΦ1 ◦µ ◦ϕ
−1(y)≈

∑

p∈N0

1
p!
`p

�
⊙p y

�

. (5.2.1)

(ii) The restriction of ` to
⊙

(V 0)� V 1 is such that

eΦ2 ◦ β ◦Φ
−1
1 (v, y)≈

∑

p∈N0

1
p!
`p+1

�
⊙p y � v

�

(5.2.2)

for v ∈ V 1.

(iii) The restriction of ` to
⊙

(V 0)� V−1 � V−1 is given by

[a1, a2]≈
∑

p∈N0

1
p!
`p+2

�
⊙p y � a1 � a2

�

(5.2.3)

for all a1, a2 ∈ V−1 = Lie(G).
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(iv) The restriction of ` to
⊙

(V 0)� V−1 is such that

dϕ ◦Dα(ϕ−1(y), eG)(a)≈
∑

p∈N0

−
1
p!
`p+1

�
⊙p y � a

�

(5.2.4)

for a ∈ V−1 = Lie(G).

(v) The restriction of ` to
⊙

(V 0)� V i � V−1 with i = 1,2 is such that

deΦi ◦Dαi(Φ
−1
i (w, y), eG)(a)≈

∑

p∈N0

1
p!
`p+1

�
⊙p y � a�w

�

(5.2.5)

for all a ∈ V−1 = Lie(G) and all w ∈ V i .

(vi) All remaining coefficients of `:
⊙

(V )→ V vanish.

This curved L∞-algebra is uncurved if and only if µ(x0) = 0 and it coincides with
the curved L∞-algebra (V , j∞Φ θ(0)) described above. Its isomorphism class is
independent of the chosen trivialisation chart.

Proof: We have already seen that j∞Φ θ : ϕ(U)→ L(
⊙

(V ), V ) is a smooth fam-
ily of curved L∞-algebra in Remark 5.1.13. Independence of the L∞-algebra
structures j∞Φ θα,µ,β (φ(x)) on the chosen trivialisation chart, up to isomorphism,
was stated and proven in Corollary 5.1.9.

Proving that this L∞-algebra is given by the equations listed above amounts to
performing a series of explicit computations. These rely on the observations
that if θ =L Φρ + Aθ ,Φ, then

(i) Aθ ,Φ(x)(1) = µ(x) for any x ∈ U;

(ii) Aθ ,Φ(x)(e(x)) = β(e)(x) for any x ∈ U and any section e ∈ E 1(U);

(iii) Aθ ,Φ(x)(a(x), b(x)) = [a(x), b(x)] for any any x ∈ U and any two con-
stant sections a, b ∈ E−1(U);

(iv) ρ(x)(a(x)) = Dα(x , eG)(a) for any x ∈ U and any section a ∈ E−1(U);

(v) Aθ ,Φ(x)(a(x)� e(x)) = −Dαn(e(x), eG)(a) for any x ∈ U , any section a ∈
E−1(U) and any section e ∈ E n(U) such that Φ̃n ◦ e is constant (n= 1, 2).

(vi) all other components of Aθ ,Φ and ρ are trivial. �
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We have taken an equivariant deformation problem, along with a point in its
base, and associated a very explicit curved L∞-algebra to it. This in itself is not
very meaningful, since we have said nothing about whether or how this curved
L∞-algebra can tell us anything about the deformations of the corresponding
structure. Since it is obtained from the original deformation problem by taking
power series expansions, it can be viewed as the infinite jet of this problem.

In an analytic setting, the fact that the L∞-algebra described by Theorem 5.2.4
is convergent allows us to consider its Maurer–Cartan locus and compare it to
a neighbourhood of the reference structure in the space of structures µ−1(0) ⊆
M . These will of course coincide by construction, and something similar will
generally hold for the individual orbits if the these are defined appropriately.

Theorem 5.2.5 uses the following definitions:

• Given a convergent curved L∞-algebra (V ,`) of Fréchet type and an open
subset U ⊆ D` ⊆ V 0 of its domain of convergence, we call two Maurer–
Cartan elements x , y ∈MC(V ,`)∩U gauge equivalent within U whenever
there exists a smooth homotopy γ+ηdt such that γ(0) = x , γ(1) = y and
γ(t) ∈ U for every t ∈ [0,1].

• Given an equivariant deformation problem (M µ→E1 β→E2) α G and an open
subset U ⊆ M , we say that two are structures x , y ∈ µ−1(0) are equivalent
within U whenever there exists a path γ: [0, 1]→ G such that γ(0) = eG ,
x · γ(1) = y and x · γ(t) ∈ U for every t ∈ [0, 1].

Given this set-up, the following theorem becomes nearly tautological given what
we already know.

Theorem 5.2.5.
Let (M µ→E1 β→E2) α G be an analytic equivariant deformation problem of Fréchet
type and assume that the Lie group G is regular. Let x0 ∈ M be a fixed refer-
ence point, let Φ = (Φ̃,ϕ): E |U → V 6=0 × V 0 be an analytic trivialisation chart
centred at x0 and consider the associated curved L∞-algebra (V ,`) described in
Theorem 5.2.4.

There exists a neighbourhood U ′ ⊆ M of x0 such that the chart ϕ restricts to a
bijection

ϕ: µ−1(0)∩ U ′ ∼−→MC(V ,`)∩ϕ(U ′)

and two structures x , y ∈ µ−1(0)∩ U ′ are equivalent within U ′ precisely when
ϕ(x) and ϕ(y) are gauge equivalent within ϕ(U ′).
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Proof: That Maurer–Cartan elements for (V ,`) are in one-to-one correspond-
ence with zeros of θ0 was stated in Corollary 5.1.5, and Proposition 5.2.3 tells
us that these correspond to zeros of µ. Corollary 5.1.5 also asserts that homo-
topies of Maurer–Cartan elements within φ(U) ⊆ V 0 correspond homotopies
for (E |U ′ ,θ |U ′ ,ρ|U ′). By following the proof of Proposition 5.2.3, it can then
be shown that this is equivalent to the existence of a path in G as described
above. �
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APPENDIX A.

Functional analysis

This thesis uses a large number of results from functional analysis that many
of its readers are unlikely to be familiar with. Most of these can be found in
some form spread out over text books such as [Bou87],[Jar81], [Köt69; Köt79]
or [Trè67] or [Sch66], but are not always easy to find. The aim of this appendix
is therefore to provide a summary of relevant definitions and theorems that are
used throughout the other chapters. Proofs of a few results that were not found
in the literature, but are likely known, have also been included.

All definitions and assertions in this appendix are valid for both real and complex
vector spaces, as long as all vector spaces are consistently defined over the same
field. Whenever an explicit reference to this base field is necessary, we will
denote it by K rather than either R or C (even though we are mostly interested
in real vector spaces). All topological spaces, which includes topological vector
spaces, are assumed to be Hausdorff unless otherwise stated.

A.1. Locally convex vector spaces

A.1.1. Definitions

A topological vector space is a vector space V endowed with a topology for which
the maps m: K × V → V and a: V × V → V describing scalar multiplication
and addition are both continuous. Morphisms of topological vector spaces are
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continuous linear maps, and we denote the set of morphism from V to W by
L(V, W ).

Unless specifically stated otherwise, all topological vector spaces considered in
this thesis are assumed to be Hausdorff. Any non-Hausdorff topological vector
space V can be made Hausdorff by taking the quotient V / N by the closure
N = {0} ⊆ V of its origin.

Definition A.1.1.
A subset A⊆ V of a topological vector space is

• a zero neighbourhood if its 0 ∈ V is contained in its interior;

• bounded if for every zero neighbourhood N ⊆ V there exists a λ ∈ K such
that A⊆ λN ;

• precompact or totally bounded if for every zero neighbourhood N ⊆ V there
exists a finite subset F ⊆ V such that A⊆ F + N ;

• convex if t v + (1− t)w ∈ A for all t ∈ [0, 1] whenever v, w ∈ A;

• balanced if λA⊆ A for every λ ∈ K with |λ|< 1;

• absolutely convex if it is both balanced and convex;

• absorbing if for any point v ∈ V there exists a r > 0 such that λ v ∈ A for
every λ ∈ K with |λ| ≤ r;

• a barrel if it is absolutely convex, absorbing and closed.

It should be noted that the term “precompact” is somewhat ambiguous, since it
is often used as a synonym for “relatively compact”. For subsets of complete loc-
ally convex vector spaces, total boundedness (or precompactness) and relative
compactness are equivalent (cf. Proposition A.2.3).

Proposition A.1.2.
The closure A of a subset A ⊆ V with one of the properties described in Defin-
ition A.1.1 has the same property. The same is true for the absolutely convex
hull

hull(A) =
�∑n

i=1λi vi

�

� n ∈ N0, vi ∈ A and
∑n

i=1|λi | ≤ 1
	

⊆ V,

which is the smallest absolutely convex subset of V containing A, as well as for
its closure hull(A) ⊆ V .
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One can show that every zero neighbourhood is absorbing, and that the closure
of its absolutely convex hull is consequently a barrel.

Locally convex vector spaces arguably form the most important class of topolo-
gical vector spaces.

Definition A.1.3.
A locally convex vector space is a topological vector space V whose topology
admits a base consisting of convex subsets.

Since addition is continuous, any vector space topology on V is completely
determined by its collection of zero neighbourhoods. Local convexity is thus
equivalent to the existence of a basis of zero neighbourhoods that are convex.
In fact, every locally convex vector space admits a basis of zero neighbourhoods
that consists of open absolutely convex, absorbing subsets or, alternatively, of
barrels.

Locally convex vector spaces are often described as vector spaces endowed with
a (separated) collections of seminorms. A seminorm on a vector space V is a
function p: V → [0,∞) such that

p(v +w)≤ p(v) + p(w) and p(λ v) = |λ| p(v)

for all v, w ∈ V and all λ ∈ K. A collection P of such seminorms is separated
if for every v ∈ V there exists at least one p ∈ P such that p(v) > 0. The
vector space topology generated by a separated collection P of seminorms is
the coarsest vector space topology on V for which each p ∈ P is continuous. A
basis of zero neighbourhoods for it is given by the collection {Np,ε | p ∈ P ,ε > 0}
of subsets

Np,ε = {v ∈ V | p(v)< ε} ⊆ V

for p ∈ P and ε > 0. Since these subsets are (absolutely) convex, the resulting
topology is always locally convex. Conversely, every locally convex topology is
generated by the collection P (V ) of all continuous seminorms on this space.

There are many classes of topological vector spaces that have interesting or
useful properties. Some of the terms in Definition A.1.4 will be explained later.

Definition A.1.4.
A topological vector space V is:
• normable if its topology is generated by a single norm;
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• metrisable if it is metrisable as a topological space;
• complete if every Cauchy net (or every Cauchy filter) in V is convergent;
• Banach if it is complete and normable;
• Fréchet if it is locally convex, complete and metrisable;
• barrelled if every barrel in V is a zero neighbourhood;
• reflexive if it is isomorphic to its strong bidual;
• Montel if it is barrelled and has the Heine–Borel property: every closed and

bounded subset of V is compact.

Completeness is discussed in Definition A.2.1, reflexivity in Definition A.2.34.
Finite-dimensional vector spaces have all of the properties described in Defini-
tion A.1.4.

Banach spaces are often defined as complete vector spaces that come endowed
with a topology-inducing norm, rather than as a topological vector space whose
topology can be described in this way. What we call a Banach space is thus some-
times referred to as a Banachable space, but this distinction is rarely relevant.

Some of the properties listed in Definition A.1.4 are related.

Proposition A.1.5.
• Every Banach space is also a Fréchet space.
• Every Fréchet space is barrelled.
• Every locally convex Montel space is complete.
• Every barrelled nuclear space is Montel.
• Every normable Montel space is finite dimensional.
• Every reflexive space is barrelled.
• Every reflexive metrisable locally convex vector space is Fréchet.
• The strong dual of a Montel space is Montel.

Metrisability of a locally convex vector space can be characterised in several
equivalent ways.

Proposition A.1.6.
The following statements are equivalent for any locally convex vector space V :
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(i) V is metrisable;

(ii) V is first countable;

(iii) the topology on V is generated by a countable subset P ′ ⊆ P (V );

(iv) the topology on V is generated by a metric d : V × V → [0,∞) which is
translation invariant.

Some very important property of Fréchet spaces is spelled out by the open
mapping theorem and its corollaries.

Theorem A.1.7 (Open mapping theorem).
Let V and W be Fréchet spaces and let f : V → W be a continuous surjective
linear map, then f is open.

Most relevant to us will be the following corollary.

Corollary A.1.8.
Every continuous linear bijection f : V →W of Fréchet spaces is an isomorphism
of topological vector spaces.

A.2. Operations on locally convex vector spaces

In this section we will describe several ways to use collections of locally convex
vector spaces to construct new ones. We also state a number of important and
well-known theorems concerning the resulting objects, and prove a few that
should certainly be known but not as readily available in the literature.

The constructions that we consider are completions, products, direct sums, lin-
ear mapping spaces, topological duals, tensor products and finally multilinear
mapping spaces. While the spaces resulting from all of these constructions are
unambiguously defined as sets, a few can be topologised in (many) different
ways. The choices that have been made in this regard were very much made
with the intended application in mind.
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A.2.1. The completion

To define completeness for locally convex vector spaces that are not necessarily
metrisable we will need to work with either nets or filters.

A net in V is a map λ 7→ vλ from a directed set (Λ,≤) to V . The notation
(vλ)λ∈Λ is generally used, since sequences are just nets parametrised by N. It
is said to converge to an element v ∈ V if one can find an index λ0 ∈ Λ for
every neighbourhood U of v such that vλ ∈ U whenever λ ≥ λ0. It is called
Cauchy if one can find an index λ0 ∈ Λ for every zero neighbourhood N such
that vµ − vν ∈ U for all µ,P ≥ λ0. Every convergent net is Cauchy.

A filter basis on V is a non-empty collection F of subsets of V such that ∅ /∈ F
and such that for all A, B ∈ F there exists a C ∈ F such that C ⊆ A∩ B. A filter
basis F converges to v ∈ V if every neighbourhood of V is an element of F ,
and it is Cauchy if for every zero neighbourhood N ⊆ V there exists a set A∈ F
such that v −w ∈ N for all v, w ∈ A. Every convergent filter basis is Cauchy and
the set of all neighbourhoods of a given point in V is a filter basis converging to
this point.

Definition A.2.1.
A topological vector space V is complete if every Cauchy net (or equivalently,
every Cauchy filter basis) on V is convergent.

For metrisable vector spaces, completeness can be characterised using Cauchy
sequences instead of nets or filters.

The completion of a topological vector space V is morphism i : V → V from V to
a complete vector space V that is determined up to a unique isomorphism by the
universal property that every morphism f : V →W to another complete vector
space W factors through it. Every topological vector space admits a completion
and it can be characterised, in more mundane terms, as follows.

Definition A.2.2.
The completion of a topological vector space V is a complete topological vector
space V along with a linear topological embedding i : V ,→ V such that i(V ) ⊆
V is dense.

Precompactness of subsets of V and of subsets of V are strongly related.
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Proposition A.2.3.
For any subset A⊆ V of a locally convex vector space V , the following statements
are equivalent:

(i) A is precompact as a subset of V ;

(ii) A is precompact as a subset of V ;

(iii) the closure of A in V is compact.

It is not true that every compact subset of V arises as the closure of a subset
of V , but if V is metrisable we can get close to this statement. The following
lemma corresponds to Theorem 9.4.2 in [Jar81] and Corollary 1 on page IV.25
of [Bou87].

Lemma A.2.4.
Let V be a metrisable locally convex vector space and let K ⊆ V be a precompact
subset, then there exists a null sequence (xn)n∈N in V such that K is contained in
the completion of hull({xn | n ∈ N}) ⊆ V .

Note that the points of any convergent sequence (xn)n∈N in V form a precompact
subset {xn | n ∈ N} ⊆ V , and that precompactness of the closed convex hull
described in Lemma A.2.4 thus follows from Proposition A.1.2.

Corollary A.2.5.
Let V be a metrisable locally convex vector space, then a subset A ⊆ V is pre-
compact if and only if it is contained in the completion of a precompact subset
K ⊆ V .

It is possible to define the integrals of a continuous function from a compact
interval to an arbitrary locally convex vector space if one allows it to take values
in the completion of that space. There are multiple ways to define such integrals,
and the corresponding notion of integrability, but the details of these construc-
tions are largely inconsequential to us since they all apply to continuous maps
and yield the same values.

Proposition A.2.6.
For every locally convex vector space V and all a, b ∈ R, integration describes a
linear map

∫ b

a

: C0([a, b], V ) −→ V , f 7→
∫ b

a

f =

∫ b

a

f (t)dt,
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where [a, b] = hull({a, b}) denotes the smallest closed interval containing both
a and b. It has the following properties:

1. if f ∈ C0([a, b],R), then
∫ b

a f coincides with the usual (Lebesgue or
Riemann) integral of f from a to b;

2. if A: V →W is a continuous linear map, then
∫ b

a A◦ f = A
�∫ b

a f
�

for every
f ∈ C0([a, b], V );

3. if f ∈ C0(hull({a, b, c}), V ), then
∫ c

a f =
∫ b

a f +
∫ c

b f ;

4. the mean value theorem holds: if f ∈ C0([a, b], V ), then
∫ b

a f is an element
of the closure of (b− a)hull( f ([a, b])) in V ;

5. if f ∈ C0([a, b], V ), then F : t 7→
∫ t

a f is a differentiable function from
[a, b] to V with F(a) = 0 and F ′(t) = f (t) for all t ∈ [a, b];

6. it is continuous for the compact-open topology on C0([a, b], V ).

Integration of continuous functions is uniquely characterised by properties 1
and 2, as well as by properties 3 and 4 or by just property 5. A detailed discussion
about integrals with values in locally convex vector spaces can for instance be
found in Appendix A.2 of [Kel74].

A.2.2. Products and projective limits

Let (Vi)i∈I be a collection of locally convex vector spaces indexed by i ∈ I and
let V =

∏

i∈I Vi denote their (algebraic) direct product.

Definition A.2.7.
The product topology on V =

∏

i∈I Vi is the coarsest topology for which each
of the canonical projection maps πi : V � Vi is continuous.

The topology described in Definition A.2.7 is just the usual topology on the
product of topological spaces. When endowed with this topology, the product
∏

i∈I Vi is a locally convex vector space.

Given a finite subset A ⊆ I and zero neighbourhoods Ni for Vi with i ∈ A, the
inverse image of the canonical projection maps πA:

∏

i∈I Vi →
∏

i∈A Vi is a
zero neighbourhood for

∏

i∈I Vi . Such neighbourhoods form a basis of zero
neighbourhoods for the product topology. If Pi is a generating collection of
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seminorms for Vi for every i ∈ I , then a generating collection of seminorms is
given by the maps

max
i∈A

pi :
∏

i∈I

Vi −→ [0,∞), (vi)i∈I 7→max
i∈A

pi(vi)

where A ranges over the finite subsets of I and (pi)i∈A ∈
∏

i∈APi .

Proposition A.2.8 (Universal property).
If fi : W → Vi is a morphism of locally convex vector spaces for every i ∈ I and
let V =

∏

i∈I . There exists exactly one continuous linear map f : W → V such
that πi ◦ f = fi for all i ∈ I .

The locally convex vector space V and the morphisms πi : V → Vi are uniquely
determined by this property up to a unique isomorphism.

We deduce from Proposition A.2.8 that for any collection (Vi)i∈I of locally convex
vector spaces and any other locally convex vector space W , the map

L
�

W,
∏

i∈I Vi

�

−→
∏

i∈I

L(W, Vi), f 7→ (πi ◦ f )i∈I

is a linear bijection. We will see in Proposition A.2.25 that this map is itself an
isomorphism of locally convex vector spaces if its domain and codomain are
topologised appropriately. While there exists a canonical inclusion map

⊕

i∈I

L(Vi , W ) ,−→ L
�∏

i∈I Vi , W
�

, ( fi)i∈A 7→
∑

i∈A

fi ,

the spaces
⊕

i∈I L(Vi , W ) and L
�∏

i∈I Vi , W
�

are generally not even algebraically
isomorphic unless W is finite-dimensional.

A subset B ⊆
∏

i∈I Vi is bounded (or precompact) if and only if πi(B) ⊆ Vi is
bounded (resp. precompact) for every i ∈ I .

Definition A.2.9.
A (closed) linear subspace W ⊆ V of a locally convex vector space V is comple-
mented if there exists another (closed) subspace W ′ ⊆ V such that V =W×W ′

as a topological vector space.

The requirement that the spaces W and W ′ both be closed in Definition A.2.9 is
optional since this also follows from the condition that V =W ×W ′.
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A projective system of locally convex vector spaces indexed by a directed set (I ,≤
) consists of a collection (Vi)i∈I of locally convex vector spaces and a collection
(gi, j)i≤ j of morphism gi, j : Vj → Vi of locally convex vector spaces for i ≤ j ∈ I
with the following properties:

1. gi,i = idVi
for every i ∈ I , and

2. gi,k = gi, j ◦ g j,k for all i, j, k ∈ I with i ≤ j ≤ k.

Definition A.2.10.
The projective limit of a projective system

�

(Vi)i∈I , (gi, j)i≤ j

�

is the (closed)
subspace

lim←−
i∈I

Vi =
�

(vi)i∈I

�

� vi = gi, j(v j) whenever i ≤ j
	

⊆
∏

i∈I

Vi .

It comes with the canonical maps πi : lim←− j∈I
Vj → Vi for i ∈ I .

Note that if the relation ≤ on I is such that i � j for all i, j ∈ I , then lim←−i∈I
Vi is

simply equal to the product
∏

i∈I Vi .

The projective limit is determined up to isomorphism by the following universal
property.

Proposition A.2.11 (Universal property).
Let

�

(Vi)i∈I , (gi, j)i≤ j

�

be a projective system of locally convex vector spaces and
let V = lim←−i∈I

Vi . For any collection ( fi)i∈I of morphisms fi : Vi → W of locally
convex vector spaces such that f j = fi ◦ gi, j whenever i ≤ j, there exists a unique
morphism f : V →W such that fi = f ◦πi for every i ∈ I .

The locally convex vector space V and the morphisms πi : V → Vi for i ∈ I are
uniquely determined by this property up to a unique isomorphism.

Many properties of locally convex vector spaces are inherited by their products
and projective limits.

Proposition A.2.12 (Heredity).
Let V either denote the product

∏

i∈I Vi of locally convex vector spaces Vi for i ∈ I ,
or the projective limit lim←−i∈I

Vi of a projective system
�

(Vi)i∈I , (gi, j)i≤ j

�

.

(i) If each of the spaces Vi is complete, then so is V .

(ii) If I is finite and each of the spaces Vi is normable, then so is V .
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(iii) If I is countable and each of the spaces Vi is metrisable, then so is V .

(iv) If each of the spaces Vi is barrelled, then so is V .

(v) If I is countable and each of the spaces Vi is Fréchet, then so is V .

(vi) If each of the spaces Vi is reflexive, then so is V .

(vii) If each of the spaces Vi is nuclear, then so is V .

(viii) If each of the spaces V has the approximation property, then so does V .

(ix) If each of the spaces Vi is Montel, then so is V .

A.2.3. Locally convex direct sums

Let (Vi)i∈I be a collection of locally convex vector spaces indexed by i ∈ I and
let V =

⊕

i∈I Vi denote their (algebraic) direct sum.

Definition A.2.13.
The locally convex direct sum topology on V =

⊕

i∈I Vi is the finest locally
convex topology for which each of the canonical inclusion maps ıi : Vi ,→ V is
continuous.

Unless specifically stated otherwise, the direct sum
⊕

i∈I Vi of locally convex
vector spaces Vi will always come with the locally convex direct sum topology.
Instead of this topology, the finest vector space topology for which the inclu-
sions vi ,→ V are continuous is sometimes used, e.g. in [Jar81] and [Trè67].
This topology is sometimes called the box topology and it not generally locally
convex.

The locally convex direct sum topology is uniquely characterised by the following
universal property.

Proposition A.2.14 (Universal property).
Let fi : Vi →W be a morphism of locally convex vector spaces for every i ∈ I and
let V =

⊕

i∈I Vi . There exists a unique continuous linear map f : V → W such
that f ◦ ıi = fi for every i ∈ I .

The locally convex vector space V and the morphism ıi : Vi → V are uniquely
determined by this property up to a unique isomorphism.
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We deduce from Proposition A.2.14 that for any collection (Vi)i∈I of locally
convex vector spaces and any other locally convex vector space W , the canonical
map

L
�
⊕

i∈I Vi , W
�

−→
∏

i∈I

L(Vi , W ), f 7→ ( f |Vi
)i∈I

is a linear bijection. We will see in Proposition A.2.25 this map is in fact itself an
isomorphism of locally convex vector spaces if its domain and codomain are to-
pologised appropriately. Unless V is finite-dimensional, the spaces L(V,

⊕

i∈I Wi)
and

⊕

i∈I L(V, Wi) are not generally isomorphic (even algebraically).

While general inductive limits exist in the category of possibly non-Hausdorff
locally convex vector spaces, these will not be discussed here.

Given a collection (Ni)i∈I zero neighbourhoods Ni ⊆ Vi , the absolutely convex
hull of their union,

hull
�⋃

i∈I Ni

�

=
�∑

i∈Aλi vi

�

� A⊆ I finite, vi ∈ Ni and
∑

i∈A|λi | ≤ 1
	

is a zero neighbourhood for
⊕

i∈I Vi . Such neighbourhoods form a basis of zero
neighbourhoods for the locally convex direct sum topology.

A seminorm on
⊕

i∈I Vi is continuous if and only if its restriction to Vi is con-
tinuous for every i ∈ I . Given a collection (pi)i∈I ∈

∏

i∈I P (Vi) of seminorms
on each of the spaces Vi , we consider the seminorm

∑

i∈I
pi :

⊕

i∈I

Vi −→ [0,∞),
∑

i∈A
vi 7→

∑

i∈A
pi(vi).

If Pi is a generating collection of seminorms for Vi for i ∈ I , then the topology
on
⊕

i∈I Vi is generated by the seminorms
∑

i∈I pi for all (pi)i∈I ∈
∏

i∈I Pi .

A subset B ⊆
⊕

i∈I Vi is bounded (or precompact) if and only if there exists a
finite subset A ⊆ I and bounded (resp. precompact) subsets Bi ⊆ Vi for each
i ∈ A such that B ⊆ hull

�⋃

i∈A Bi

�

.

Many properties of locally convex vector spaces are inherited by their locally
convex direct sums and inductive limits.

Proposition A.2.15 (Heredity).
Let (Vi)i∈I be a collection of locally convex vector spaces and let V =

⊕

i∈I Vi

(i) If each of the spaces Vi is complete, then so is V .

234



A.2. Operations on locally convex vector spaces

(ii) If each of the spaces Vi is metrisable and nontrivial, then V is metrisable if
and only if I is finite.

(iii) If I is finite and each of the spaces Vi is normable, then so is V .

(iv) If each of the spaces Vi is Fréchet and I is finite, then also V is Fréchet.

(v) If each of the spaces Vi is barrelled, then so is V .

(vi) If each of the spaces Vi is reflexive, then so is V .

(vii) If each of the spaces Vi is nuclear and I is countable, then also V is nuclear.

(viii) If each of the spaces V has the approximation property, then so does V .

(ix) If each of the spaces Vi is Montel, then so is V .

Proposition A.2.16.
For any collection (Vi)i∈I of locally convex vector spaces, the canonical inclusion
map

⊕

i∈I

Vi ,−→
∏

i∈I

Vi

is continuous. It is an isomorphism of topological vector spaces if I is finite.

We will need the following proposition in several places in this document to
prove the continuity of certain maps between locally convex vector direct sums.

Proposition A.2.17.
Let f :

⊕

i∈I Vi →
⊕

j∈J Wj be a linear map between locally convex direct sums
such that there exists a finite subset Ai ⊆ J for every i ∈ I such that f (Vi) ⊆
⊕

j∈Ai
Wj . Then f is continuous if and only if the composition

f j,i = π j ◦ f ◦ ıi : Vi −→Wj ,

of f with the canonical maps ıi : Vi ,→
⊕

i′∈I Vi′ and π j :
⊕

j′∈J Wj′ � Wj is
continuous for every i ∈ I and every j ∈ J.

Proof: Because of the universal property from Proposition A.2.14, f is con-
tinuous if and only if the restriction f |Vi

= f ◦ ıi is continuous for every i ∈ I .
Since f (Vi) is contained in

⊕

j∈Ai
Wj '

∏

j∈Ai
Wj , the universal property from

Proposition A.2.8 now tells us that f ◦ ıi is continuous if and only if π j ◦ f ◦ ıi is
continuous for every j ∈ J . �
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Proposition A.2.17 has an analogue for products, which is just as simple to
prove.

Proposition A.2.18.
Let f :

∏

i∈I Vi →
∏

j∈J Wj be a linear map between locally convex direct sums
such that for every j ∈ J there exists a finite subset A j ⊆ I such that π j ◦ f factors
through the projection map πA j

:
∏

i∈I →
∏

i∈A j
Vi . Then f is continuous if and

only if the composition
f j,i = π j ◦ f |Vi

is continuous for every i ∈ I and every j ∈ J.

Proof: Due to the universal property from Proposition A.2.8, f is continuous
if and only if the composition π j ◦ f is continuous for every j ∈ I , which is
equivalent to continuity to the restriction to

∏

i∈A j
Vi . Since this product is finite

it is isomorphic to the corresponding locally convex direct sum, this restriction
is continuous if and only if the restriction of π j ◦ f |Vi

is continuousfor all i ∈ A j
(as well as all i /∈ A j since f |Vi

= 0 for those). �

A.2.4. Spaces of morphisms

Given two locally convex vector spaces V and W , there are many inequivalent
ways to topologise the space L(V, W ) of morphism from the former to the latter.
We will exclusively be working with the topology of precompact convergence
subsets, which is defined below, but shall also briefly mention the topology of
simple convergence and the topology of bounded convergence.

Definition A.2.19.
Let V and W be locally convex vector spaces and let S be a collection of
bounded subsets that covers V . The topology of uniform convergence on sets in
S is the vector space topology on L(V, W ) for which the subsets

N (A, N) = {α ∈ L(V, W ) | α(A) ⊆ N} ⊆ L(V, W ),

for A ∈ S and zero neighbourhoods N ⊆ V , form a basis of zero neighbour-
hoods. When endowed with this topology, we denote the space of continuous
linear maps from V to W by LS(V, W ).

236



A.2. Operations on locally convex vector spaces

Some additional conditions are usually imposed on the collection S in Defini-
tion A.2.19, but these are not required to obtain a locally convex topology. Note
that the topology of uniform convergence on sets of S does not change if one
replaces S by either the set of closures of elements of S or by the set of abso-
lutely convex hulls of elements of S. The topology of uniform convergence on
sets of S is locally convex, and it is generated by seminorms of the form

pB : α 7→ sup
v∈B

p(α(v))

for p ∈ P (W ) and B ∈S.

Definition A.2.20.
The topology of uniform convergence on sets in S is called:
• the topology of simple convergence if S is the collection Ss(V ) of all finite

subsets of V ;
• the topology of precompact convergence if S is the collection Spc(V ) of all

precompact subsets of V ;
• The topology of bounded convergence if S is collection Sb(V ) of all bounded

subsets of V .

When endowed with one of these topologies, we denote the space of morph-
isms from V to W by Ls(V, W ), Lpc(V, W ) or Lb(V, W ) respectively.

Since every finite subset is precompact and every precompact subset is bounded,
these topologies are presented in order of increasing granularity. Unless other-
wise indicated, we will always endow the space L(V, W ) with the topology of
precompact convergence.

Any morphism α: V → W of locally convex vector spaces can be extended
uniquely to a continuous linear map ᾱ: V →W between their completions. Al-
gebraically, the spaces L(V, W ) and L(V , W ) are therefore isomorphic whenever
W is complete.

Proposition A.2.21.
For any metrisable locally convex vector space V and any complete locally convex
vector space W, the restriction maps

Lpc(V , W ) −→ Lpc(V, W ), and Lb(V , W ) −→ Lb(V, W ),

are isomorphisms of topological vector spaces.
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The following proposition combines Corollaries 2 and 4 on pages 344 and 345
of [Trè67] and uses that the the preceding proposition.

Proposition A.2.22.
Let V and W be locally convex vector spaces. If V is metrisable and W is complete,
then both Lb(V, W ) and Lpc(V, W ) are complete.

Proposition A.2.23.
Let V , W and Z be three locally convex vector spaces and consider the composition
map

◦: L(W, Z)× L(V, W ) −→ L(V, Z), (β ,α) 7→ β ◦α.

This map is (separately) continuous in both of its arguments if all three spaces
of morphisms are endowed with the same topology from Definition A.2.20.

Proposition A.2.23 follows simply from the fact that continuous linear maps
map finite, precompact and bounded subsets to subsets of the same type and
the pre-image of an zero neighbourhood is a zero neighbourhood.

Corollary A.2.24.
Let V and W be locally convex vector spaces and consider the evaluation map

ev: L(V, W )× V −→W, (α, v) 7→ α(v)

This map is separately continuous in each of its arguments separately if L(V, W )
is endowed with any of the topologies from Definition A.2.20.

The space L(V, W ) admits no vector space topology for which the corresponding
evaluation map is jointly continuous unless either V is normable or W = 0.

Proposition A.2.25.
Let (Vi)i∈I be a collection of locally convex vector spaces and let W be another
locally convex vector space. The canonical bijections

Lpc

�

W,
∏

i∈I Vi

�

−→
∏

i∈I

Lpc(W, Vi), f 7→ (πi ◦ f )i∈I

and

Lpc

�
⊕

i∈I Vi , W
�

−→
∏

i∈I

Lpc(Vi , W ), f 7→ ( f ◦ ıi)i∈I

are isomorphisms of topological vector spaces. The same is true for the topologies
of simple and bounded convergence.
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Note that due to Proposition A.2.16, the product of a finite number of locally
convex vector spaces is identical to the locally convex sum of these spaces.

The author is not aware of a reference for the following lemma, but its proof is
relatively straightforward.

Lemma A.2.26.
Let V and W be locally convex vector spaces, then

KL(KV ) = {α(v) | α ∈ KL, v ∈ KV } ⊆W

is precompact for any two precompact subsets KV ⊆ V and KL ⊆ Lpc(V, W ).

Proof: We need to show that there exists a finite subset F N
W ⊆ W for every

absolutely convex zero neighbourhood N ⊆W such that f (KX )(KV ) ⊆ F N
W + N .

Let N ⊆W be an absolutely convex zero neighbourhood.

Because KL ⊆ Lpc(V, W ) is precompact by assumption, we can choose a finite
subset F N

L ⊆ L(V, W ) such that KL ⊆ F N
L +N (KV , 1

2 N). For every α ∈ L(V, W ),
precompactness of α(KV ) ⊆W moreover allows us to choose finite subsets FαW
such that α(KV ) ⊆ FαW +

1
2 N . Let F N

W =
⋃

α∈F N
L

FαW ⊆W , and note that this set is
finite.

For every pair (α, v) ∈ KL × KV we can now choose a morphism β ∈ F N
L such

that α ∈ β +N (KV , 1
2 N) and thus α(v) ∈ β(v) + 1

2 N . Since β(v) ∈ FβW +
1
2 N ,

it now follows that α(v) ∈ F N
W + N . We deduce that KL(KV ) ⊆ F N

W + N . �

We will occasionally need the Uniform boundedness principle and Banach–
Steinhaus theorem, which can be derived from it.

Theorem A.2.27 (Uniform boundedness principle).
Let V be a barrelled locally convex vector space and let W be an arbitrary locally
convex vector space, then every bounded subset H ⊆ Ls(V, W ) is equicontinuous.

Theorem A.2.28 (Banach–Steinhaus theorem).
Let V be a barrelled space and let W be a locally convex vector space. Let (αn)n∈N
be a sequence of continuous linear maps αn ∈ L(V, W ) and let α: V →W be such
that αn(v)→ α(v) for every v ∈ V . Then α ∈ L(V, W ) and αn → α as n→∞
for the topology of precompact convergence.
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The Banach–Steinhaus theorem can be used to prove that any continuous map
from a metrisable space X to Ls(V, W ) is also continuous as a map to Lpc(V, W )
whenever V is barrelled.

Corollary A.2.29.
Let V and W be locally convex vector spaces and assume that V is barrelled and
let X be a metrisable space. Let α: X \ {x0} → L(V, W ) be a function defined on
the complement of a point x0 ∈ X such that α(x)(v) converges to some element
α0(v) ∈W as x → x0 for every v ∈ V . Then α0 : V →W is a continuous linear
map and limx→x0

α(x) = α0 with respect to the topology of uniform convergence
of precompact subsets of V .

A.2.5. Topological duals

The topological dual of a locally convex vector space V is the space ˇV = L(V,K)
of continuous linear K-valued linear maps on V . Depending on how this space
is topologised, we denote it by either

ˇVs = Ls(V,K), ˇVpc = Lpc(V,K), or ˇVb = Lb(V,K).

The space ˇVb and ˇVs are usually called the strong dual and the weak dual of V
respectively. We will usually work with the precompact dual ˇVpc, however.

Proposition A.2.30.
Let α: V →W be a morphism of locally convex vector spaces, then its transpose

α̌ : ˇW −→ ˇV , ξ 7→ ξ ◦α

is a continuous map if both topological duals are endowed with the topology of
simple, precompact or bounded convergence.

Transposition describes a continuous linear map from Lpc(V, W ) to Lpc( ˇWpc, ˇVpc)
if W is barrelled.

Proof: Continuity of the transpose α̌ is a special case of Proposition A.2.23,
but continuity of the operation α 7→ α̌ is a little more involved. The spaces
ˇV , ˇW , L(V, W ) and L( ˇW , ˇV ) are all endowed with the topology of precompact

convergence below.
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Subsets of the form N (K ˇW ,N (KV )) ⊆ L( ˇW , ˇV ) for precompact subsets KV ⊆ V
and K ˇW ⊆ ˇW form a basis of zero neighbourhoods for the topology of precom-
pact convergence on L( ˇW , ˇV ). We need to show that any such neighbourhood
contains the image of a zero neighbourhood in L(V, W ).

Let KV and K ˇW be as described above and consider the subset

NW := 1
2

⋂

ξ∈K ˇW

ξ−1([−1,1]) ⊆W,

which we claim is a zero neighbourhood. Since W is barrelled, we can show
that NW is open by demonstrating that it is a barrel. It is clearly closed and
absolutely convex, so we only need to show that it is absorbing.

Let w ∈W be an arbitrary point and let U ˇW = {ξ ∈ ˇW | |ξ(w)| < 1}. This is a
non-empty open subset of ˇW , so the fact that K ˇW is precompact informs us that
we can find a finite subset A⊆ ˇW such that K ˇW ⊆ A+ U ˇW . It follows that K ˇW ⊆
(2λ+ 1)U ˇW with λ = maxξ∈A|ξ(w)|, and consequently that w ∈ (4λ+ 2)NW .
Since the point w ∈W was arbitrary, we deduce that NW is absorbing and that
it is therefore a zero neighbourhood.

Now let α be an element of the zero neighbourhood N (KV , NW ) ⊆ L(V, W )
determined by the subsets described above. The transpose α̌ is such that for
any ξ ∈ K ˇW and any v ∈ KV , α̌(ξ)(v) = ξ(α(v)) is an element of ξ(NW ), which
is a subset of (−1,1) because of how NW was constructed. From this, we can
conclude that α̌ is an element ofN (K ˇW ,N (KV )) and that the assignment α 7→ α̌
is in fact continuous. �

Proposition A.2.31 (Hahn–Banach theorem).
Let p be a seminorm on a vector space V and let W ⊆ V be a linear subspace.
Any linear form ξ: F → K for which |ξ| ≤ p|F can be extended to a linear form
ξ̃: V → K such that |ξ̃| ≤ p.

Corollary A.2.32.
Let V be a locally convex vector space and let W ⊆ V be a linear subspace. Every
continuous linear form ξ ∈ ˇW extends to a continuous linear form ξ̃ ∈ ˇW .

Corollary A.2.33.
For any locally convex vector space V and any v ∈ V \ {0} there exists a form
ξ ∈ ˇV such that ξ(v) = 1.
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Every element v ∈ V of a locally convex vector space V induces a form evv : ξ 7→
ξ(v) on its topological dual. This functional is continuous for all three of the
aforementioned topologies due to Corollary A.2.24. Corollary A.2.33 moreover
tells us that the map

ev
�
: V −→ ˇ( ˇV ) , v 7→ evv

is injective if ˇV is endowed with any of the three topologies described above.

Definition A.2.34.
The locally convex vector space V is reflexive if the map

ev
�
: V −→ ˇ( ˇVb)b, v 7→ (evv : ξ 7→ ξ(v))

from V to its bidual is an isomorphism of topological vector spaces.

We call V semi-reflexive if the map ev
�

from Definition A.2.34 is merely a biject-
ion, rather than a isomorphism.

A.2.6. The projective tensor product

We are interested in the tensor product
⊗n

i=1 Vi = V1 ⊗ V2 ⊗ · · · ⊗ Vn of locally
convex vector spaces V1, V2, . . . , Vn. Although there are many natural ways to
topologise this space, the following is most suitable for our purposes.

Definition A.2.35.
The projective topology topology on the tensor product

⊗n
i=1 Vi of locally convex

vector spaces V1, V2, . . . , Vn is the coarsest locally convex topology for which
the multilinear map

χ :
n
∏

i=1

Vi −→
n
⊗

i=1

Vi , (vi)
n
i=1 7→

⊗n
i=1 vi = v1 ⊗ · · · ⊗ vn

is continuous.

When endowed with this topology, the space
⊗n

i=1 Vi is called the projective
tensor product, and it is often denoted by V1 ⊗π V2 ⊗π · · · ⊗π Vn to distinguish it
from other topological tensor products. The tensor product of a collection zero
spaces,

⊗

i∈∅ V , is simply the base field K and it comes with its usual topology.
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Given zero neighbourhoods Ni ⊆ Vi for i = 1,2, . . . , n, one may obtain a zero
neighbourhood in

⊗n
i=1 Vi by taking the absolutely convex hull

⊗n
i=1 Ni = hull

��
⊗n

i=1 vi

�

� vi ∈ Ni for i = 1, 2, . . . , n
	�

of the image of χ(
∏n

i=1 Ni) ⊆
⊗n

i=1 Vi . The collection of such sets is a basis of
zero neighbourhoods for the projective tensor product.

It is also possible to construct a continuous seminorm
⊗n

i=1 pi on
⊗n

i=1 Vi from
a sequence (pi)

n
i=1 of continuous seminorms pi ∈ P (Vi). This seminorm is given

by
�
⊗n

i=1 pi

�

(z) = inf
�∑r

j=1 p1(v j,1) · · · pn(v j,n)
�

� z =
∑r

j=1 v j,1 ⊗ · · · ⊗ v j,n

	

where the infimum is over all ways in which z can be written as a linear com-
bination z =

∑r
j=1 v j,1 ⊗ · · · ⊗ v j,n of decomposable elements. The projective

topology on
⊗n

i=1 VI is generated by these seminorms.

More relevant to us, however, is the fact that the projective tensor product has
the following universal property.

Proposition A.2.36 (Universal property).
Let (Va)a∈A be a finite collection of locally convex vector spaces and define Z =
⊗

a∈A Va. Any multilinear map f :
∏

a∈A Va →W of locally convex vector spaces
is continuous if and only if there exists a continuous linear map g :

⊗

a∈A Va such
that f = g ◦χ.

The locally convex vector space Z and the continuous map χ :
∏

a∈A Va → Z are
uniquely determined by this property up to a unique isomorphism.

For a sequence V1, V2, . . . , Vn of locally convex vector spaces, let Ln

�∏n
i=1 Vi , W

�

denote the set of continuous multilinear maps from
∏n

i=1 Vi to another locally
convex vector space W . Proposition A.2.36 implies that there exists a canonical
bijection

Ln

�∏n
i=1 Vi , W

� ∼−→ L
�
⊗n

i=1 Vi , W
�

, α 7→ α ◦χ

between this space and the space of continuous linear maps from
⊗n

i=1 Vi to
W .

Given bounded (or precompact) subsets Bi ⊆ Vi for i = 1,2, . . . , n, the image
⊗n

i=1 Bi and its absolutely convex hull in
⊗n

i=1 Vi are again bounded (resp.
precompact). The converse statement is generally false. For precompact subsets
of metrisable vector spaces we do however have the following proposition.
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Proposition A.2.37.
If each of the spaces V1, V2, . . . , Vn is metrisable, then a subset K ⊆

⊗n
i=1 Vi is

precompact if and only if there exist precompact subsets Ki ⊆ Vi for i = 1, 2, . . . , n
such that K ⊆ hull(

⊗n
i=1 Ki).

Morphisms of locally convex vector spaces induce morphisms between their
tensor products. The following proposition is a corollary to Proposition A.2.37.

Proposition A.2.38.
Let V1, V2, . . . , Vn and W1, W2, . . . , Wn be locally convex vector spaces and let
fi : Vi → Wi be a morphism of topological vector spaces for i = 1,2, . . . , n. The
induced map

⊗n
i=1αi :

⊗n
i=1 Vi −→

⊗n
j=1 Wj ,

⊗n
i=1 vi 7→

⊗n
i=1αi(vi)

is continuous. If Vi is metrisable for i = 1,2, . . . , n, then the multilinear map

⊗:
n
∏

i=1

Lpc(Vi , Wi) −→ Lpc

�
⊗n

i=1 Vi ,
⊗n

j=1 Wj

�

, (αi)i∈I 7→
⊗n

i=1αi

is continuous as well.

The universal property from Proposition A.2.36 moreover tells us that the oper-
ator ⊗ from can be viewed as a continuous linear map from

⊗n
i=1 Lpc(Vi , Wi) to

Lpc

�
⊗n

i=1 Vi ,
⊗n

j=1 Wj

�

. The following corollary can be thought of as a special
case, but can also be proven by simpler means.

Corollary A.2.39.
For any two locally convex vector spaces V and W, the canonical inclusion map

ˇVpc ⊗W ,−→ Lpc(V, W ) ξ⊗w 7→ (v 7→ ξ(v)w)

is a continuous linear embedding.

Unlike Proposition A.2.38, Corollary A.2.39 remains true if the topology of
bounded or simple convergence is used instead of the topology of precompact
convergence. Elements of the image of ˇV ⊗W in L(V, W ) are the so-called
finite rank operators. While they form a dense subset for the topology of simple
convergence, the same is not generally true for other topologies of uniform
convergence.
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Definition A.2.40.
A locally convex vector space V has the approximation property if one of the
following equivalent conditions hold:

(i) ˇV ⊗ V is dense in Lpc(V, V );
(ii) ˇV ⊗W is dense in Lpc(V, W ) for any locally convex vector space W ;

(iii) idV ∈ L(V, V ) is the limit of a net in ˇV ⊗ V ⊆ L(V, V ).

The approximation property is highly desirable because it allows one approx-
imate arbitrary continuous operators on a space by operators of finite-rank. All
Banach spaces that admit a Schauder basis have the approximation property, as
do all Hilbert spaces and all nuclear spaces. This in particular includes spaces
of smooth sections of finite-dimensional vector bundles.

Given a complete locally convex vector space V , ˇV ⊗V ⊆ Lb(V, V ) is dense if and
only if V has the approximation property and the Heine–Borel property (which
states that every bounded subset is precompact).

Proposition A.2.41.
If each of the spaces V1, V2, . . . , Vn is metrisable, then every element z of the tensor
product

⊗n
i=1 Vi (or its completion) can be be written as the limit of a series

z =
∑

n∈N

λn v(1)n ⊗ v(2)n ⊗ · · · ⊗ v(n)n

for some absolutely summable sequence (λn)n∈N ∈ KN and bounded sequences
(x (i)n )n∈N in Vi for i = 1, 2, . . . , n.

Remark A.2.42.
When considering complete locally convex vector spaces such as Banach spaces
or Fréchet spaces, it makes sense to consider the completed tensor product. This
is the completion

⊗n
i=1 Vi = V1 ⊗̄ V2 ⊗̄ · · · ⊗̄ Vn :=

⊗n
i=1 Vi .

of the projective tensor product as it was defined in Definition A.2.35, and it
is often simply referred the projective tensor product.

Since every continuous linear map can be extended to the completion of
its domain, the spaces, there is a canonical bijection between the spaces
Lpc

�
⊗n

i=1 Vi , W
�

and Lpc

�
⊗n

i=1 Vi , W
�

. This is an isomorphism of topological
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vector spaces if Vi is metrisable for i = 1,2, . . . , n due to Proposition A.2.21.
Within the category of complete locally convex vector spaces, the completed
projective tensor product is also uniquely determined by the universal property
described in Proposition A.2.36. 4

Proposition A.2.43 (Heredity).
Let V =

⊗n
i=1 Vi denote the projective tensor product of the locally convex vector

spaces V1, V2, . . . , Vn, and let V =
⊗n

i=1 Vi denote its completion.

(i) V is complete if and only if either at most one one of the spaces Vi for
i = 1, 2, . . . , n is finite dimensional or at least one of them is trivial.

(ii) If each of the spaces Vi is normable, then so is V .

(iii) If each of the spaces Vi is metrisable, then so is V .

(iv) If each of the spaces Vi is both metrisable and barrelled, then so is V .

(v) If I is countable and each of the spaces Vi is Fréchet, then so is V .

(vi) If each of the spaces Vi is nuclear, then so is V .

(vii) If each of the spaces Vi is metrisable and has the approximation property,
then so does V .

(viii)

On the n-fold tensor product
⊗n V of a locally convex vector space V , we may

define the symmetrisation operator

s:
⊗n V −→

⊗n V,
⊗n

i=1 vi 7→
1
n!

∑

σ∈Sn

⊗n
j=1 vσ( j), (A.2.1)

and the anti-symmetrisation operator

a:
⊗n V −→

⊗n V,
⊗n

i=1 vi 7→
1
n!

∑

σ∈Sn

sgn(σ)
⊗n

j=1 vσ( j).

Both s and a are continuous projection maps and thus induce decompositions
⊗n V = ker(s)⊕

⊙n V or
⊗n V = ker(a)⊕∧n V,

where
⊙n V = im(s)'

⊗n V / ker(s) and ∧n V = im(a)'
⊗n V / ker(a).

The space
⊙n V is called the n-fold symmetric tensor product of V , and ∧n V

is called the n-th exterior power of V . These spaces have universal properties
similar to the one described in Proposition A.2.36.
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Proposition A.2.44 (Universal property).
Any continuous multilinear map f :

∏n V →W of locally convex vector spaces
that is either symmetric or alternating factors through

χ
s = s ◦χ :

n
∏

V −→
⊙n V or χ

a = a ◦χ :
n
∏

V −→∧n V

respectively.

The spaces
⊙n V and ∧n V and the continuous multilinear maps χ s and χa are

uniquely determined by this property up to a unique isomorphism.

A.2.7. Multilinear maps

We are also interested in continuous multilinear maps between locally convex
vector spaces. These are continuous maps

α:
n
∏

i=1

Vi = V1 × V2 × · · · × Vn −→W

from the product of locally convex vector spaces V1, V2, . . . , Vn to another such
space W that are linear in each argument separately. We denote the set of such
maps by L(V1, V2, . . . , Vn; W ).

It is sometimes sufficient to verify that a multilinear map is continuous in each
of its arguments separately. The following lemma for instance applies if each of
the spaces Vi is Fréchet. The bilinear case corresponds to Theorem 11.6 from
[Jar81], where its proof was left as an exercise to the reader.

Lemma A.2.45.
Let V1, V2, . . . , Vn be a barrelled metrisable locally convex vector spaces and let W
be a locally convex vector space. For any n ∈ N, every multilinear α:

∏n
i=1 Vi →

W that is continuous in each of its arguments separately is (jointly) continuous.

Proof: Assume that the conclusion of this lemma is false and let n ∈ N be the
smallest positive integer for which it fails. Then n ≥ 2 since the case n = 1 is
tautological.
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Let α:
∏n

i=1 Vi →W be a counter-example, i.e. a multilinear map that is separ-
ately continuous but not (jointly) continuous. Then there exists a zero neigh-
bourhood UW and sequences (vi, j) j∈N that converge to 0 ∈ Vi for i = 1, 2, . . . , n
such that α(v1, j , . . . , vn, j) /∈ UW for every j ∈ N. We can assume without loss of
generality that UW is convex, balanced and closed.

Because α is continuous and linear in its first argument, the inverse images
α(v1, j , . . . , yn−1, j , �)

−1(UW ) are again convex, balanced and closed for every j ∈
N, as is the intersection UVn

:=
⋂∞

j=1α(v1, j , . . . , vn−1, j , �)
−1(UW ) of V . We claim

that it is also absorbing, which would make it a barrel.

Let u ∈ Vn, then the multilinear map α( � , . . . , � , u):
∏n−1

i=1 Vi → W is (jointly)
continuous because we had chosen the smallest n which the lemma fails. Con-
sequently, α(v1, j , . . . , vn−1, j , u) converges to 0 as j→∞ and we can choose an
j0 ∈ N such that α(v1, j , . . . , vn−1, j , u) ∈ UW whenever j > j0. If we moreover pick
some number λ ≥ 1 such that α(v1, j , . . . , vn−1, j , u) ∈ λUW for j = 1,2, . . . , j0,
then α(v1, j , . . . , vn−1, j , u) ∈ λUW , and thus u ∈ λUVn

, for every j ∈ N. In this
manner, we can find a λ > 0 for any u ∈ Vn such that u ∈ λVn, so UVn

is indeed
absorbing.

Since Vn is a barrelled space and UVn
⊆ Vn is a barrel, the latter is in fact a

zero neighbourhood. There thus exists an j1 ∈ N such that vn, j ∈ UVn
for every

j > j1, which implies that α(v1, j , . . . , vn, j) ∈ UW for all such j. We have arrived
at a contradiction since the neighbourhood UW and the sequences (vi, j) j∈N for
i = 1,2, . . . , n had been chosen precisely such that α(v1, j , . . . , vn, j) /∈ UW for
every j ∈ N.

We conclude that this lemma must hold for every n ∈ N. �

The space L(V1, . . . , Vn, W ) of multilinear maps can be topologised in the same
way as spaces morphisms using topologies of uniform convergence. We shall
only consider the topology of precompact convergence, which has the subsets

N
�∏n

i=1 Ki , N
�

=
�

α ∈ L(V1, . . . , Vn; W )
�

� α
�∏n

i=1 Ki

�

⊆ N
	

for precompact Ki ⊆ Vi and zero neighbourhoods N ⊆ W as a basis of zero
neighbourhoods.

We recall from Proposition A.2.36 that the projective tensor product is char-
acterised by the fact that every continuous multilinear map factors through
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it. The following proposition is obtained by combining this universal property
with the characterisation of precompact subsets of tensor products from Corol-
lary A.2.5.

Proposition A.2.46.
If V1, V2, . . . , Vn are metrisable locally convex vector spaces and W is an arbitrary
locally convex vector space, then the canonical bijection

Lpc(V1, . . . , Vn; W ) ∼−→ Lpc

�
⊗n

i=1 Vi , W
�

, α 7→ α ◦χ

is an isomorphisms of topological vector spaces.

We will often identify the spaces Lpc(V1, . . . , Vn;W ) and Lpc

�
⊗n

i=1 Vi , W
�

, and
use the term “multilinear map” to refer to either a multilinear map or to the
linear map on the corresponding tensor product.

The decompositions
⊗n V = ker(s)⊕

⊙n V and
⊗n V = ker(a)⊕∧n V of the

n-fold tensor product of a locally convex vector space V induce a similar decom-
position

Lpc(
⊗n V, W ) = Lpc(ker(s), W )⊕ Lpc(

⊙n V, W )
and

Lpc(
⊗n V, W ) = Lpc(ker(a), W )⊕ Lpc(∧n V, W )

of the space of n-linear maps from V to W (cf. Proposition A.2.25 and the
remark just below it). The spaces Lpc(

⊙n V, W ) and Lpc(∧n V, W ) of symmetric
and alternating n-linear maps are topologised accordingly.

Proposition A.2.47.
Let V1, V2, . . . , Vn and W be locally convex vector space and let p, q ∈ N0 be such
that p+ q = n, then there exists a canonical embedding

Lpc(V1, . . . , Vn; W ) ,−→ Lpc(V1, . . . , Vp; Lpc(Vp+1, . . . , Vn; W )),

α 7→
�

(v1, . . . , vp) 7→ α(v1, . . . , vp, � , . . . , �)
�

and the same is true for the topologies of simple and bounded convergence.

These maps are isomorphisms of topological vector spaces for the topologies of
precompact and bounded convergence whenever each of the spaces Vi is metrisable,
and also for the topologies of simple convergence if these spaces are moreover
barrelled.

249



Appendix A. Functional analysis

The following corollary combines Proposition A.2.46 and Proposition A.2.47.

Corollary A.2.48.
Let V and W be locally convex vector space and define the spaces Lk(V, W ) for
k ∈ N0 recursively as

Ll(V, W ) = L(V, Ll−1(V, W )) and L0(V, W ) =W.

for l ∈ N. If V is metrisable, then the spaces

Lk
pc(V, W ), Lpc(V, . . . , V

︸ ︷︷ ︸

k copies

; W ), and Lpc

�
⊗k V, W

�

are canonically isomorphic
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Differential calculus

In addition to functional analysis, we will also need some amount of differential
calculus, mainly on Fréchet spaces, although we will consider maps whose
codomains are arbitrary locally convex vector spaces. The overall message is
that many of the definitions and results that one usually employs in the context
of finite-dimensional geometry continue to work, but that some amount of care
is required.

Not everything that works for finite-dimensional or Banach spaces can be gen-
eralised to Fréchet spaces, however. Most notable amongst these are probably
the inverse function theorem and the existence and uniqueness theorem for
ordinary differential equations, and many results that rely on either of these are
consequently false as well.

The for us relevant notions of (continuous) differentiability and analyticity are
discussed in appendix B.1, and the spaces of such maps are topologised in
appendix B.2. Finally, appendix B.3 contains a brief discussion of regular Fréchet
Lie groups.

B.1. Smoothness and analyticity

The purpose of this appendix is to provide definitions for smoothness and ana-
lyticity for functions from a Fréchet space to a locally convex vector space, since
such maps are used throughout this thesis. We will additionally briefly consider
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continuous polynomials, as well as jets and formal power series of smooth (or
analytic) functions.

B.1.1. Differentiability and smoothness

Although there are many inequivalent ways to define what it means for such
maps to be k times continuously differentiable for any k ∈ N, most give rise
to the same notion of smoothness because all maps that are of class Ck+1 in
one sense are also of class Ck in the others. Since we are mostly interested
in smooth calculus, the choice of one notion of differentiability over another
therefore turns out to be largely inconsequential and we can use the definition
that is most convenient for our purposes. An overview of some of these notions
of continuous differentiability, as well as their relations, can be found in [Kel74].
The notion of k-fold continuous differentiability described here corresponds to
what is called “differentiability of class Ck

pk in the aforementioned reference. It is
equivalent to the definition used in [Ham82]whenever the domain is metrisable
(cf. Proposition B.1.4 below).

Throughout this appendix we will be considering maps that are parametrised
by a Fréchet domain, by which we mean an open subset X ⊆ T of some Fréchet
space T . We say that a function f : X → V to a locally convex vector space V
is weakly differentiable at a point x ∈ X if there exists a continuous linear map
D f (x) ∈ L(T, V ) such that

lim
t→0

1
t

�

f (x + t ẋ)− f (x)
�

= D f (x)( ẋ),

in which case D f (x) is called the derivative of f at x .

Throughout this document, we shall endow the space L(T, V ) of continuous
linear maps from T to V with the topology of precompact convergence from
Definition A.2.20. We therefore say that f is continuously differentiable, or of
class C1, if it is weakly differentiable and the map D f : X → L(T, V ) is continuous
for this topology. In [Kel74], f would be said to be of class C1

pk, and it is shown
there that this is equivalent to the existence this is equivalent to the existence
of a continuous map δ f : X × T → V such that D f (x)(v) = δ f (x , v) for all
(x , v) ∈ X × T .
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We define the spaces Lk(T, V ) recursively by starting with L0(T, V ) = V and
setting Ll+1 := L(T, Ll(T, V )) for every l ∈ N0. Whenever T is metrisable, Corol-
lary A.2.48 provides canonical isomorphisms

Lk(T, V )' L(T, . . . , T
︸ ︷︷ ︸

k copies

, V )' L
�
⊗k T ; V

�

of topological vector spaces between this space, the space L(T, . . . , T, V ) of con-
tinuous multilinear maps and the space L

�
⊗k T, V

�

of continuous linear maps
from the k-fold (projective) tensor product of T .

We say that f is of class C2 whenever it is continuously differentiable and its
derivative, D f : X → L(T, V ), is continuously differentiable as well. We then
refer to D2 f := D(D f ): X → L2(T, V ) as its second order derivative. Higher
order derivatives can be defined by repeating this process.

Definition B.1.1.
Let T be a metrisable locally convex vector space, let V be a locally convex
vector space and let X ⊆ T be an open subset. A continuous map f : X → V is
of class Ck for some k ∈ N0 if there exist (unique) continuous maps Dl f : X →
Ll(T, V ) for l = 0,1, . . . , k such that D0 f = f and

lim
t→0

1
t

�

Dl−1 f (x + t ẋ)−Dl−1 f (x)
�

= Dl f (x)( ẋ).

for all x ∈ X , ẋ ∈ T and l = 1,2, . . . , k. We say that f is smooth, or of class
C∞, whenever it is of class Ck for every k ∈ N0.

Below, we state a number of important results for such maps. Versions of each
of these lemmas can be found in [Kel74]

Proposition B.1.2.
If f : X ⊆ T → V is of class Ck for some k ∈ N0 ∪ {∞}, then the derivatives
Dl f : X → Ll(T, V ) for l ∈ N0 with l ≤ k are symmetric in the sense that

Dl f (x)( ẋ1, ẋ2, . . . , ẋ l) = Dl f (x)( ẋσ(1), ẋσ(2), . . . , ẋσ(l))

for any permutation σ ∈ Sl .

Proposition B.1.2 is an immediate consequence of e.g. Theorem 2.4.0 from
[Kel74].
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We call a map f : X ×Y → V continuously partially differentiable if both f |X×{y}
and f |{x}×Y are continuously differentiable for every x ∈ X and every y ∈ Y . The
following proposition essentially states that continuous partial differentiability
implies continuous differentiability.

Proposition B.1.3.
Let S and T be metrisable locally convex vector spaces, let V be a locally convex
vector space and let X ⊆ S and Y ⊆ T be open subsets. Let f : X × Y → V be a
continuous function with the following properties for a fixed k ∈ N0 ∪ {∞}:

1. the restriction f |X×{y} is of class Ck for every y ∈ Y ;

2. for any p ∈ N0 such that p ≤ k and every x ∈ X , the partial derivatives
Dp

1 f are such that the restriction

Dp
1 f |{x}×Y : {x} × Y −→ Lp(S, V )

is of class Ck−p.

3. for any pair (p, q) ∈ N0 ×N0 such that p+ q ≤ l, the map

Dq
2Dp

1 f : X × Y −→ Lq(T, Lp(S, V )) ⊆ Lp+q(S ⊕ T, V )

is continuous.

Then f is of class Ck and its derivatives are given by

Dp+q f (x , y)(̇ ẋ{1,...,p} � y{1,...,q}) = (D
q
2Dp

1 f )(x , y)( ẋ{1,...,p})( ẏ{1,...,q})

for all x , y ∈ X × Y , all ẋ1, ẋ2, . . . , xp ∈ S and ẏ1, ẏ2, . . . , ẏq ∈ T for which
p+ q ≤ k.

Proposition B.1.3 can be proven using the same methods one might apply in the
finite-dimensional case, which in particular includes the mean value theorem
from Proposition A.2.6.

The characterisation of continuous differentiability provided by the next pro-
position is often used as a definition. This is for instance the how continuous
differentiability is defined in [Ham82].

Proposition B.1.4.
Let T be a metrisable locally convex vector space, let V be a locally convex vector
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space and let X ⊆ T be an open subset. Given some k ∈ N0 ∪{∞}, a continuous
map f : X ⊆ T → V is of class Ck if and only if there exists a continuous map

δp f : X ×
∏p T −→ V

for every p ∈ N0 with p ≤ k, where δ0 f = f , such that

δp f (x; ẋ1, . . . , ẋp) = lim
t→0

1
t

�

δk−1 f (x+t ẋ1)( ẋ2, . . . , ẋp)−δ
k−1 f (x)( ẋ2, . . . , ẋp)

�

for all x ∈ X and all ẋ1, . . . , ẋp ∈ T. The derivatives Dp f and δp f are related by

δp f (x; ẋ1, . . . , ẋp) = Dp f (x)( ẋ1, . . . , ẋp)

for x ∈ X and ẋ1, ẋ2, . . . , ẋp ∈ T.

As they should, the usual differentiation rules are valid in the present context.

Proposition B.1.5 (Sum rule).
Let T be a metrisable locally convex vector space and let V be an arbitrary locally
convex vector space. If f : X → V and g : X → V are both of class Ck for some
k ∈ N0∪{∞}, then so is f +g. Its derivatives are given by Dp( f +g) = Dp f +Dp g.

The chain rule can be proven by applying Corollary 1.3.4 from [Kel74] repeatedly,
and one obtains expression for the derivatives through diligent bookkeeping.

Proposition B.1.6 (Chain rule).
Let T and V be metrisable locally convex vector spaces, let Z be a locally convex
vector space and let X ⊆ T and Y ⊆ V be open subsets. Given two maps α: X → V
and β : Y → Z of class Ck for some k ∈ N0 ∪ {∞} that are such that α(X ) ⊆ Y ,
also the composition β ◦α: X → Z is of class Ck. Its derivatives are given by

Dp(g ◦ f )(x)( ẋ1, . . . , ẋp) =
∑

I1,...,Im

1
m! Dm g( f (x))

�
⊙m

j=1 D#I j f (x)( ẋ I j
)
�

for all x ∈ X and all ẋ1, ẋ2, . . . , ẋp ∈ T with p ∈ N0. Here, summation is over
all m ∈ N0 and all ordered partitions of {1,2, . . . , p} into non-empty pairwise
disjoint subsets I1, I2, . . . , Im.

Proposition B.1.7 below is a generalisation of the usual product rule for real-
valued functions that uses the projective tensor product, which is described in
Definition A.2.35.

255



Appendix B. Differential calculus

Proposition B.1.7 (Product rule).
Let X ⊆ T be an open subset of a metrisable locally convex vector space T , and
let V1, V2, . . . , Vq be locally convex vector spaces. The tensor product

ei ⊗ · · · ⊗ eq : X −→
⊗q

i=1 Vi , x 7→ e1(x)⊗ · · · ⊗ eq(x)

of maps ei ∈ Ck(X , Vi) for i = 1, 2, . . . , q and k ∈ N0 ∪{∞} is of class Ck and its
derivatives are given by

Dp(e1 ⊗ · · · ⊗ eq)(x)( ẋ1, . . . , ẋp) =
∑

I1,...,Iq

⊗q
i=1 D#Ii ei(x)( ẋ Ii

)

for x ∈ X and ẋ1, ẋ2, . . . , ẋp ∈ T with p ∈ N0 such that p ≤ k.

Proof: We can assume without loss of generality that q = 2 since the general
case can be derived from this case by a simple recursive argument.

Let e1 : X → V1 and e2 : X → V2 be continuous and let N ⊆ V1 ⊗ V2 be a zero
neighbourhood. We can then pick absolutely convex zero neighbourhoods N1 ⊆
V1 and N2 ⊆ V2 such that hull(N1 ⊗ N2) ⊆

1
3 N and choose κ,λ ≥ 1 such that

e1(x) ∈ κN1 and e2(x) ∈ λN2. Now choose a neighbourhood U ⊆ X of x such
that e1(y) ∈ e1(x) + λ

−1 N1 and e2(y) ∈ e2(x) + κ
−1 N2 for all y ∈ U . Then

(e1 ⊗ e2)(y)− (e1 ⊗ e2)(x) can be written as the sum of

e1(x)⊗ (e2(y)− e2(x)) ∈ (κN1) ⊗ (κ
−1 N2) ⊆ N1 ⊗ N2,

(e1(y)− e1(x))⊗ e2(x) ∈ (λ
−1 N1)⊗ (λN2) ⊆ N1 ⊗ N2

and

(e1(y)− e1(x))⊗ (e2(y)− e2(x)) ∈ (κ
−1 N1)⊗ (λ

−1 N2) ⊆ N1 ⊗ N2

and is therefore an element of 3hull(N1 ⊗ N2) ⊆ N . This shows that e1 ⊗ e2 is
continuous whenever e1 and e2 are.

It follows from a very similar argument that e1 ⊗ e2 is weakly differentiable
with derivative De1 ⊗ e2 + e1 ⊗ De2 : X → L(T, V1 ⊗ V2) whenever e1 and e2
are differentiable. The general case follows from an inductive argument using
Proposition A.2.38. �

One can prove, using essentially the same arguments as in the finite-dimensional
case, that integrals of continuously differentiable functions are continuously
differentiable.
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Lemma B.1.8.
Let X ⊆ T be a Fréchet domain, let V be a complete locally convex vector space
and assume we are given a map f : [0, 1]× X → V which is of class Ck for some
k ∈ N0 ∪ {∞}. The function

F : X −→ V, x 7→
∫ 1

0

f (t, x)dt

is of class Ck, and its derivatives are given by Dp F(x) =
∫ 1

0 Dp f (t, x)dt ∈
L(
⊙p(T ), V ) for every x ∈ X and any p ∈ N0 such that p ≤ k.

Proof: We will first show that F is continuous and then demonstrate differ-
entiability whenever f is of class C1. The general case then follows from an
inductive argument.

Let x ∈ X be arbitrary and pick an absolutely convex zero neighbourhood NV ⊆
V . The continuity of f and the compactness of the interval [0,1] allow us to
choose a neighbourhood UX ⊆ X such that f (t, y) ∈ f (t, x) + 1

2 NY for every
t ∈ [0,1] and every y ∈ UX . Due to the mean value theorem from part 4 of
Proposition A.2.6, this in turn implies that

F(y)− F(x) =

∫ 1

0

f (t, y)− f (t, x)dt ∈ 1
2 NY ⊆ NY

for every y ∈ UY . Continuity of F follows.

Assume that f is of class C1. To show that F is weakly differentiable in the direc-
tion ẋ ∈ T at a point x ∈ X , we use the fact that f is continuously differentiable
to write

F(x + t ẋ)− F(x) =

∫ 1

0

f (s, x + t ẋ)− f (s, x)ds

=

∫ 1

0

∫ 1

0

D f (s, x + r t h)(t ẋ)dr ds.

Now let NV ⊆ V be an arbitrary zero neighbourhood. Because D f (s, x)( ẋ)
depends continuously on (s, x) ∈ [0,1] × X and [0,1] is compact, we can
now choose a convex neighbourhood UX of x ∈ X such that D f (s, y)( ẋ) ∈
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D f (s, x)( ẋ) + 1
2 NV for all y ∈ UX and all s ∈ [0,1]. If again follows from

the mean value theorem that for these choices and for any t ∈ R such that
x + t ẋ ∈ UX ,

1
t

�

F(x + t ẋ)− F(x)
�

−
∫ 1

0

D f (s, x)( ẋ)ds

=

∫ 1

0

∫ 1

0

D f (s, x + t ẋ)( ẋ)−D f (s, x)( ẋ)dr ds

is an element of 1
2 NV ⊆ NV . We deduce that F is weakly differentiable and

that, due to part 2 of Proposition A.2.6, its derivative is given by DF(x) =
∫ 1

0 D f (s, x)ds.

Continuity of DF can be demonstrated by essentially repeating the argument
used to prove the continuity of F , and one can then go on to prove that DF is in
fact differentiable whenever f is of class C2. The general case for k > 1 follows
by induction. �

With Lemma B.1.8, we can now prove an infinite-dimensional analogue of
Hadamard’s lemma for smooth functions.

Proposition B.1.9.
Let X ⊆ T be a convex Fréchet domain and let V be a locally convex vector space.
For any smooth map f : X → V and any x0 ∈ X there exists a smooth function
F : X → L(T, V ) such that

f (x) = f (x0) + F(x)(x − x0)

for all x ∈ X

Proof: Let f and x0 be as described above. The fundamental theorem of cal-
culus, in the form of part 5 of Proposition A.2.6, tells us that because f is
continuously differentiable it is of the aforementioned form for the function

F : X −→ L(T, V ), x 7→
∫ 1

0

D f (x0 + t (x − x0))dt.

We can deduce from from Proposition A.2.22 that L(T, V ) is the completion of
L(T, V ), and Lemma B.1.8 tells us that F is smooth. �
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All it really takes to be able to be able to define smooth manifolds modelled
on Fréchet spaces is the chain rule from Proposition B.1.6. Although they are
defined in exactly the same way as in the finite-dimensional case, we will recall
the definition for the sake of completeness.

A continuous chart on a topological space M of Fréchet type is a homeomorphism
map ϕ: U → ϕ(U) ⊆ V from an open subset U ⊆ M onto a Fréchet domain
ϕ(U) ⊆ V . A collection {ϕλ}λ∈Λ of such charts ϕλ : Uλ → Vλ whose domains
cover M is called an atlas and we call this atlas smooth whenever the transition
functions

ϕκ,λ := ϕλ ◦ϕκ : ϕκ(Uκ ∩ Uλ) −→ ϕλ(Uκ ∩ Uλ)

are smooth for any two indices κ,λ ∈ Λ. We call two smooth atlases (smoothly)
equivalent whenever their union is a smooth atlas as well, and we refer to an
equivalence class of smooth atlases as a smooth structure.

Definition B.1.10.
A (smooth) Fréchet manifold is a Hausdorff space endowed with a smooth
structure.

A morphism of Fréchet manifolds from (M , [(ϕλ)λ∈Λ]) to (N , [(ψκ)κ∈K]) is a
function f : M → N such that the composition

ϕλ ◦ f ◦ψ−1
κ : ψκ(Uκ ∩ Uλ) −→ ϕλ(Uκ ∩ Uλ)

is smooth for all κ ∈ K and all λ ∈ Λ. This is independent of the atlases chosen
to represent the smooth structures on M and N . We will usually just refer to
such morphism as smooth maps and call f : M → N a diffeomorphism if it is a
bijection and its inverse, f −1 : N → M , is smooth as well. Also smooth vector
bundles and fibre bundles of Fréchet can be defined exactly as they would in
the finite-dimensional case.

All finite-dimensional manifolds considered in this thesis will be assumed to be
second countable. Since the types of Fréchet spaces we are interested in are
separable (and therefore also second countable), it is actually reasonable to
impose the same condition on Fréchet manifolds as well.
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B.1.2. Polynomials and jets

Polynomials on locally convex vector spaces can be characterised using symmet-
ric multilinear maps. This topic is discussed in detail in [BS71b].

Definition B.1.11.
Let V and W be locally convex vector spaces. A continuous function fk : V →W
is a homogeneous polynomial of degree k ∈ N if there exists a continuous
symmetric multilinear map f̄ :

⊗k V →W such that f (x) = 1
k! f̄k(x , . . . , x) for

all x ∈ V .

The factor 1
k! in Definition B.1.11 was included for compatibility with existing

conventions for L∞-algebras.

Given a homogeneous polynomial fk, the corresponding multilinear map 1
k! f̄k is

referred to as the polarisation of fk. It is uniquely determined by fk, and it can
be obtained through one of several polarisation identities, such as

2k f̄k(v1 ⊗ · · · ⊗ vk) =
∑

ε1,...,εk∈{±1}

ε1 · · ·εk fk

�

ε1 v1 + · · ·+ εk vk

�

.

For any two locally convex vector spaces V and W this describes a one-to-one
correspondence fk ↔ f̄k between homogeneous polynomials of degree k and
symmetric continuous k-multilinear maps from the former to the latter. We will
henceforth use these two concepts interchangeably and will generally use the
same symbol to denote both the function homogeneous polynomial f : V →W
and its polarisation.

It was not necessary to require continuity of both the function f and its po-
larisation f̄ in Definition B.1.11 since continuity of the former is equivalent
to continuity of the latter. We denote the space of homogeneous polynomials
of degree k on V with values in W by Polyk(V, W ) ⊆ C0(V, W ) and note that
it is canonically isomorphic to L(

⊙k(V ), W ) whenever V is metrisable due to
Proposition A.2.44.

Definition B.1.12.
Let V and W be locally convex vector spaces. A continuous polynomial of
degree at most k with k ∈ N0 from V to W is a function f : V →W of the form
f = f0 + f1 + · · ·+ fk with fi ∈ Polyi(V, W ) for i = 0, 1,2, . . . , k.
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We denote the space of all continuous polynomials from V to W of degree at most
k by Poly≤k(V, W ) '

∏k
p=0 Polyp(V, W ) and endow it with the corresponding

product topology. Note that Proposition A.2.44 and Proposition A.2.25 tells us
that whenever V is metrisable,

Poly≤k(V, W )'
k
∏

i=1

L
�
⊙p(V ), W

�

' L
�
⊕k

p=0

⊙p(V ), W
�

as topological vector spaces. We denote the space of all polynomials from V to
W by Poly(V, W ) =

⋃

p∈N Poly≤p(V, W ) and endow it with the subspace topology

for the inclusion into
∏k

p=0 Polyp(V, W ).

The sum f + g of two continuous polynomials f ∈ Poly≤k(V, W ) and g ∈
Poly≤l(V, W ) of degree at most k and l respectively is a continuous polyno-
mial of degree at most max(k, l). Its homogeneous components are polarised
by ( f + g)p = fp + gp.

The product f ⊗ g of two continuous polynomials f ∈ Poly≤l(V, W ) and g ∈
Poly≤l(V, Z) of degree at most k and l respectively is a continuous polynomial of
degree at most k+ l with values in W⊗Z . Its is polarised by the multilinear maps
( f ⊗ g)p =

∑

r+s=p

�p
r

�

( fr⊗gs)◦s for p ∈ N0, where s denotes the symmetrisation
operator from

⊗r V ⊗
⊗s V to

⊗p V .

The composition h= g ◦ f of two continuous polynomials f =
∑k

i=1 fi : V →W
and g =

∑l
i=1 : W →W of degree at most k and l respectively is a continuous

polynomial of degree at most k l. Its homogeneous component hp of degree p
is polarised by the multilinear form h̄p :

⊗p V → Z given by

h̄p(v1, v2, . . . , vp) =
∑

I1,...,Im

1
m! ḡm

�

f̄#I1
(vI1
), . . . , f̄#Im

(vIm
)
�

where summation is over all partitions of {1, 2, . . . , p} by non-empty subsets and
vI j

denotes the tensor product
⊗

i∈Im
vi .

Proposition B.1.13.
Any continuous polynomial f =

∑k
i=0 fi : V → W from a Fréchet space to a

locally convex vector space W is smooth and its derivatives at x ∈ V are given by

Dp f (x)(X1, . . . , X p) =
k−p
∑

i=0

1
i! f̄p+i

�

(
⊗i x)⊗ X1 ⊗ · · · ⊗ X p

�
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for p = 0,1, . . . , k and X1, X2, . . . , X p ∈ V , and by Dp f = 0 if p > k.

We can now provide a definition for a formal power series on V with values
in W . The following definition differs slightly from Definition 5.1 in [BS71a],
where homogeneous continuous polynomials were not required to be continu-
ous. What we call a formal power series is called a formal series with continuous
terms there.

Definition B.1.14.
Let V be a Fréchet space and let W be a locally convex vector space. A formal
power series on V with values in W is a formal sum f =

∑∞
k=0 fk of homoge-

neous continuous polynomials fk ∈ Polyk(V, W ).

The space of formal power series is the product
∏k

p=0 Polyk(V, W ) and is topo-
logised as such. If V is metrisable, it is consequently isomorphic to

∏

p∈N0

L
�
⊙p(V ), W

�

' L
�
⊕

p∈N0

⊙p(V ), W
�

as a topological vector space. The composition g ◦ f of two formal power series
makes sense if the zeroth component f0 ∈ L(

⊙0(V ), W )'W is trivial.

Example B.1.15 (Taylor series).
Let f : U ⊆ V →W be a smooth map from a Fréchet domain U ⊆ V to another
locally convex vector space W . The Taylor series of f at x is the formal power
series

∑

k∈N0

fx ,k with f̄x ,k = Dk f (x).

We will write f (x + h)≈
∑

k≥0 fk(x)(h) to indicate that
∑

k∈N0
fk is the Taylor

series of f at x . ◊

Very closely related to formal power series is the notion of a jet.

Definition B.1.16 (Jets).
Let X ⊆ T be a Fréchet domain, let V be a locally convex vector space and let
k ∈ N0. A k-jet from X to V at x ∈ X is an equivalence class

jkx f = [ f ] ∈ Jk
x(X , V ) = Ck(X , V )

�

∼
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of the set of maps of class Ck from X to V , where f ∼ g whenever Dp f (x) =
Dp g(x) for p = 0,1, . . . , k. An∞-jet is an element

f̃x ∈ J∞x (V, W ) = lim←−
p

Jk
x(V, W )

of the limit of the projective system which consists of the canonical projection
maps πl,k : Jk

x(V, W )→ Jl
x(V, W ) with l ≤ k ∈ N0.

For finite k, every k-jet from X to V at an a point x ∈ X can be uniquely repres-
ented as the jet of a polynomial of degree at most k. We thus obtain a canonical
bijection

Poly≤k(T, V ) ∼−→ Jk(T, V ) f 7→ jkx f ,

which we declare to be a topological isomorphism. We endow the space of
∞-jets with the limit topology for the projective system defining it, so that

J∞x (X , V )'
k
∏

p=0

L
�
⊙p(T ), V

�

' L
�
⊕k

p=0

⊙p(T ), V
�

as a topological vector space. We will generally identify these spaces and their
elements.

Theorem B.1.17 (Borel’s Theorem).
If T is finite dimensional and V is a Fréchet space, then the map

j∞x : C∞(X , V ) −→ J∞x (X , V ), f 7→ j∞x f

is surjective for any open subset X ⊆ T and x ∈ X .

Borel’s theorem is generally false if T is infinite-dimensional or if V is replaced
by a locally convex vector space that not metrisable or not complete.

Given a function f : X → V of class Ck from a Fréchet domain X ⊆ T to a locally
convex vector space V , the k-jet of f is the function

jk f : X −→ L
�
⊕k

p=0

⊙p(T ), V
�

. x 7→ jkx f

which assigns to every x ∈ X the k-jet jkx ∈ Jk
x(X , V )' L

�
⊕k

p=0

⊙p(T ), V
�

. This
function is smooth for any k ∈ N0 ∪ {∞} if f assumed to be smooth.

Definition B.1.18.
A continuous function f̃ : X → Jk(T, V ) is holonomic if it is of the form jk f for
some f ∈ Ck(T, V ).
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B.1.3. Analyticity

Let D ⊆ T be a Fréchet domain and let V be a locally convex vector space. We say
that the formal power series

∑∞
k=0 fk converges on D if the sequence (Fk(x))k∈N0

of partial sums Fk(x) =
∑k

p=0 fp(x) of partial sums converges for every x ∈ D.
In this case, we identify the series it with its limit f : X → T . The largest open
subset D ⊆ T on which f converges is called the domain of convergence of f .

Proposition B.1.19.
The domain of convergence of a formal power series

∑∞
k=0 fk from a Fréchet space

T to a locally convex vector space V is either empty or a zero neighbourhood.

In light of Proposition B.1.20 below, an equivalent definition would have been
obtained if convergence of partial sums had been replaced by either absolute
convergence or unconditional convergence. This proposition is part of Proposi-
tion 5.3 in [BS71a].

Proposition B.1.20 (Absolute convergence).
Let D ⊆ T be a Fréchet domain and let f =

∑

n∈N0
fn be a formal power series

with values in a locally convex vector space V that converges on D. For any
continuous seminorm q on V , the series

∑∞
n=0 q( fn(x)) then converges in R.

A function is analytic if it can locally be described as the limit of convergent
power series.

Definition B.1.21.
Let X ⊆ T be a Fréchet domain and let V be a locally convex vector space. A
continuous function f : X → V is analytic if for every point x ∈ X there exists
a formal power series

∑∞
k=0 fk,x from T to V and a neighbourhood U ⊆ X of

x such that

f (x + h) =
∞
∑

k=0

fk,x(h)

for all h ∈ T such that x + h ∈ U .

The following proposition states that any convergent power series defines an
analytic function. It coincides with Theorem 5.2 in [BS71a].
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Proposition B.1.22.
If
∑∞

i=0 fi is a formal power series from a Fréchet space T to a complete locally
convex vector space V which converges on an open subset U ⊆ T, then the function
f : U → V given by f (x) =

∑∞
k=0 fk(x) is analytic.

The statements up to this point have been valid for both real and complex vector
spaces. Although we are mainly interested in real analytic maps, it will be useful
to also consider their complex analytic extensions. Every real formal power
series

∑

n∈N0
fn with fn ∈ L(V, W ) can be extended to a complex power series

∑

n∈N0
f̃n with coefficient f̃n ∈ L(V ⊗C, W ⊗C) given by f̃n(v ⊗ z) = fn(v)⊗ z.

The following proposition is Theorem 7.1 in [BS71a].

Proposition B.1.23.
Let X ⊆ T be a real Fréchet domain and let f : X → V be an analytic map with
values in the complete real locally convex vector space V . There exists a complex
analytic map f̃ : X̃ → V ⊗ C defined on a complex Fréchet domain X̃ ⊆ T ⊗ C
with X ⊆ X̃ such that f = f̃ |X .

Like in the finite-dimensional case, complex analytic functions can be charac-
terised in different ways. The following proposition combines Theorem 6.3 and
Theorem 3.1 from [BS71a].

Proposition B.1.24.
Let X ⊆ T be a complex Fréchet domain and let f : X → V be a function to a
complete complex locally convex vector space V . The following statements are
equivalent:

(i) f is analytic;

(ii) f is continuous and weakly complex differentiable: for every z ∈ X and
every ż ∈ T, the limit of 1

τ ( f (z +τ ż)− f (z)) for τ→ 0 ∈ C exists.

(iii) f is continuous and weakly differentiable as a map between real vector
spaces and satisfies the Cauchy–Riemann equation D f ◦ J = J ◦D f , where
J : V → V describes multiplication by i.

Analytic functions are smooth and locally given by their Taylor series. The
following proposition is obtained by combining Corollary 5.1, Theorem 7.1 and
Proposition 6.4 in [BS71a].
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Proposition B.1.25.
Let X ⊆ T be a Fréchet domain and let f : X → V be an analytic function to a
complete locally convex vector space V . Then f is smooth and for every x ∈ X
there exists a neighbourhood Ux of x ∈ X such that

f (x + h) =
∞
∑

k=0

1
k!

Dk f (x)(h, . . . , h)

for all h ∈ T such that x + h ∈ Ux . Moreover, the functions

X ×
k
∏

T −→ V, (x , h1, . . . , hk) 7→ Dk f (x)(h1, . . . , hk)

are analytic for every k ∈ N.

It follows that analytic maps with connected domains are uniquely determined
by their Taylor series at a single point.

Corollary B.1.26.
Let X ⊆ T be a Fréchet domain containing a point x ∈ X and let V be a locally
convex vector space. Two analytic functions f , g : X → V are equal if and only
j∞x f = j∞x g.

Proposition B.1.27.
For any Fréchet domain X ⊆ T containing 0 and any x ∈ X there exists a zero
neighbourhood N ⊆ T such that for any power series

∑

n fn that converges on X ,
the function f : h 7→

∑

n fn(x + h) is given by a power series which converges on
x + N.

Analytic maps can be composed to obtain new analytic maps.

Proposition B.1.28.
Sums, products and compositions of analytic maps are analytic:
• Given a Fréchet domain X and a locally convex vector space V , the sum f +

g : X → V of two analytic functions from X to V is analytic.
• Given a Fréchet domain X and locally convex vector spaces V and W, the

product f ⊗ g : X → V ⊗W of two analytic functions from X to V and W
respectively is analytic.
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• Given Fréchet domains X and Y and a locally convex vector space V , the com-
position g ◦ f : X → V of analytic functions f : X → Y and g : Y → Z is
analytic.

Showing that the sum of two analytic functions is analytic is straightforward and
analyticity of the composition g◦ f is proven in Theorem 6.4 (complex case) and
Theorem 7.3 (real case) of [BS71a]. To prove the latter fact, Proposition B.1.24
is used in the complex case and the real case is deduced from this through
Proposition B.1.23. Analyticity of the product f ⊗ g in Proposition B.1.28 can
be demonstrated in a similar fashion by also employing Proposition B.1.7.

Analytic manifolds modelled on Fréchet spaces can be defined similarly to how
smooth manifolds were defined in Definition B.1.10. An atlas (ϕλ)λ∈Λ is called
analytic whenever the transition functionsϕκ,λ = ϕλ◦ϕ

−1
κ are analytic functions

and two such atlases are considered equivalent whenever their union is an
analytic atlas as well. An analytic structure can now be defined as an equivalence
class of analytic atlases.

Definition B.1.29.
An analytic Fréchet manifold is a Hausdorff space endowed with an analytic
structure.

Analytic maps between analytic manifolds are now defined as functions f : M →
N for which the composition ϕ ◦ f ◦ψ−1 is analytic for any two analytic charts
ϕ and ψ on M and N respectively.

B.2. Mapping spaces

In this section we introduce topologies on the spaces of maps of class Ck from a
Fréchet domain X ⊆ T to an arbitrary locally convex vector spaces with k ∈ N.
A number of properties of these spaces are discussed.

B.2.1. Spaces of continuous maps

Given two topological spaces X and Y , we endow the space C0(X , Y ) of continu-
ous maps from X to Y with the compact-open topology. We note that C0(X , Y )
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is a locally convex vector space whenever Y is a locally convex vector space and
that its topology coincides with the topology of uniform convergence on com-
pact subsets of X . A basis of zero neighbourhoods for this topology is formed
by the subsets

N (KX , UY ) =
�

f ∈ C0(X , Y )
�

� f (KX ) ⊆ UY

	

⊆ C0(X , Y ),

for KX ⊆ X compact and UY ⊆ Y an (absolutely convex) zero neighbourhood.

Given two locally convex vector spaces V and W , we endow the space L(V, W )
of continuous linear maps from V to W with the topology of uniform conver-
gence on precompact subsets. This topology is generated by the zero neighbour-
hoods

N (KV , UW ) =
�

f ∈ C0(V, W )
�

� f (KV ) ⊆ UW

	

for KV ⊆ V precompact and UW ⊆ W an (absolutely convex) zero neighbour-
hood.

The canonical inclusion map L(V, W ) → C0(V, W ) is always continuous, but
that the aforementioned topology on L(V, W ) is generally finer than the associ-
ated subspace topology. In light of Proposition A.2.3, these two topologies do
however coincide whenever V is complete.

Proposition B.2.1 (The exponential law).
Let X and Y be metrisable spaces and let V be a locally convex vector space.
Given any map f from X × Y to V (not necessarily continuous), the following
statements are equivalent:

(i) the map f : X × Y → V is continuous;

(ii) there exists a (unique) continuous map fX : X → C0(Y, V ) which is given
by fX (x)(y) = f (x , y) for all (x , y) ∈ X × Y .

The correspondence f ↔ fX describes an isomorphism of topological vector spaces
between C0(X × Y, V ) and C0(X , C0(Y, V )).

Proof: Once existence is established, uniqueness of fX is immediate because it
is explicitly defined in terms of f .

Assume that f is continuous and let fX : X → C0(Y, V ) be given by fX (x) =
f (x , �). To demonstrate that fX is continuous, pick a point x ∈ X and let
N (KY , UV ) ⊆ C0(Y, V ) be a zero neighbourhood that is determined by some
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compact subset KY ⊆ Y and an absolutely convex open zero neighbourhood
UV ⊆ V .

Continuity of f tells us that we can find a neighbourhood U y
X × U y

Y ⊆ X × Y
of (x , y) for every y ∈ KY such that f (U y

X × U y
Y ) ⊆ f (x , y) + 1

2 UV . Since KY is
compact, we can pick elements y1, y2, . . . , yN ∈ KY for some N ∈ N0 such that
KY ⊆

⋃N
i=1 U yi

Y . Let UX :=
⋂N

i=1 U yi
X denote the intersection of the corresponding

neighbourhoods in X .

Given x ′ ∈ UX and y ∈ KY , let i ∈ {1, 2, . . . , N} be such that y ∈ U yi
Y . Both (x , y)

and (x ′, y) are then elements U yi
X × U yi

Y , from which we infer that
�

fX (x
′)− fX (x)

�

(y) =
�

f (x ′, y)− f (x , yi)
�

+
�

f (x , yi)− f (x , y)
�

is an element of 1
2 UV +

1
2 UV ⊆ UV . Consequently, fX (x

′)− fX (x) ∈ N (KY , UV )
for all x ′ ∈ UX . Since x ∈ X was arbitrary and any neighbourhood of fX (x)
contains one of the form fX (x) +N (KY , UV ), continuity of fX follows.

To prove the converse, assume that fX exists and is continuous, and let (xn, yn)n∈N
be a convergent sequence in X ×Y with limit (x , y). Let UV ⊆ V be a zero neigh-
bourhood in V and let KY = {yn |n ∈ N} ∪ {y}. Because KY ⊆ Y is compact,
we can find an index n0 ∈ N such that fX (xn) − fX (x) ∈ N (KY , 1

2 UV ) for all
n ≥ n0, which in particular implies that f (xn, yn)− f (x , yn) ∈

1
2 UV for such n.

Continuity of fX (x) moreover tells us that we can choose an n1 ≥ n0 such that
fX (x)(yn)− fX (x)(y) ∈

1
2 UV whenever n≥ n1. Now, given n ∈ N,

f (xn, yn)− f (x , y) =
�

f (xn, yn)− f (x , yn)
�

+
�

f (x , yn)− f (x , y)
�

,

which is an element of 1
2 UV +

1
2 UV ⊆ UV if n≥ n1. The neighbourhood UV was

arbitrary, so f (xn, yn) in fact converges to f (x , y) as n→∞. Because X × Y is
metrisable and f sends convergent sequences in X × Y to convergent sequences
in V , we deduce that f is indeed continuous.

We thus obtain a canonical bijection between C0(X , C0(Y, V )) and C0(X × Y, V ).
It is a topological isomorphism because the topologies on these spaces are gen-
erated by the open subsets N (KX ,N (KY , UV )) ⊆ C0(X , C0(Y, V )) and N (KX ×
KY , UV ) for KX ⊆ X and KY ⊆ Y compact and UV ⊆ V open, and these are
identified by this correspondence. �

Proposition B.2.1 will be used frequently in appendix B.2.2 or section 3.1.
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B.2.2. Spaces of continuously differentiable maps

Let X ⊆ T be a Fréchet domain and let f : X → V be function of class Ck from X
to a locally convex vector space V . The k-jet of f is a continuous map from

Definition B.2.2.
The compact-open Ck-topology on the space Ck(X , V ) of Ck maps is the initial
topology for the canonical inclusion map

jk : Ck(X , V ) ,−→ C0(X , Jk(T, V )), f 7→ jk f

where C0(X , Jk(T, V )) is endowed with the compact-open topology.

Note that since J0(T, V )' V , the C0-topology described by Definition B.2.2 co-
incides with the compact-open topology on C0(T, V ), which was described in
appendix B.2.1. Since Jk(T, V )'

∏k
p=0 L(

⊙p T, V ) and L(
⊙p T, V ) is an embed-

ded subspace of Lp(T, V )' L(
⊗p T, V ), the Ck-topology is also characterised by

the fact that the canonical inclusion map

Ck(X , V ) ,−→
p
∏

i=1

C0(X , Lp(T, V )), f 7→ (Dp f )kp=0

is an embedding of topological vector spaces.

It is not difficult to show that for any collection (Vi)i∈I of locally convex vector
spaces, the spaces

Ck
�

X ,
∏

i∈I Vi

�

'
∏

i∈I

Ck(X , Vi)

are canonically isomorphic. We can moreover use results from Appendix A to
demonstrate continuity of several canonical maps between such mapping spaces
when this topology is used.

The sum rule follows simply from the fact that Ck(X , V ) is a topological vector
space.

Proposition B.2.3.
For any k ∈ N0 ∪ {∞}, addition describes a morphism

Ck(X , V )×Ck(X , V ) −→ Ck(X , V ) ( f1, f2, ) 7→ f1 + f2.

of topological vector spaces
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One can moreover show that postcomposition by a morphism of locally convex
vector spaces is a continuous operation. The following lemma is generalised by
Proposition 3.1.8.

Lemma B.2.4.
Postcomposition by a continuous multilinear map α ∈ L(V1, . . . , Vq; W ) of locally
convex vector spaces describes a morphism

α∗ :
q
∏

i=1

Ck(X , Vi) −→ Ck(X , W ), ( f1, . . . , fq) 7→ α ◦ ( f1, . . . , fq)

of topological vector spaces for every k ∈ N0 ∪ {∞}.

Proof: The case k = 0 is easy to verify. For the general case we note that α∗ is
part of a commuting diagram

Ck(X , V ) Ck(X , W )

∏k
p=0 C0

�

X , L(
⊗p T, V )

� ∏k
p=0 C0

�

X , L(
⊗p T, W )

�

,

α∗

jk jk

a

where a is such that a( f̃ )(x)( ẋ{1,...,p}) = α( f̃ (x)( ẋ{1,...,p})). This map is continu-
ous because it can be described using the k = 0 case of this lemma applied to the
continuous linear maps from C0

�

X , L(
⊗p T, V )

�

to C0
�

X , L(
⊗p T, W )

�

induced
by α through Proposition A.2.23.

Continuity of α∗ now follows from continuity of a and the fact that both of the
maps labelled jk are embeddings. �

Lemma B.2.4 can be used to show that differentiation defines a continuous
operatorc.

Proposition B.2.5.
For any k ∈ N∪ {∞} and any l ∈ N0 with l ≤ k, the map

Dl : Ck(X , V ) −→ Ck−l
�

X , Ll(T, V )
�

, f 7→ Dl f

describing l-fold differentiation is a morphism of topological vector spaces.
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Proof: The derivative Dl is part of a commuting diagram

Ck(X , V ) Ck−l(X , Ll(T, V ))

∏k
p=0 C0(X , Lp(T, V ))

∏k
p=l C0

�

X , Lp−l(T, Ll(T, V ))
�

,

Dl

jk jk−l

d∗

where d∗ is given by d∗( f̃ )(x)( ẋ{1,...,l})( ẋ{l+1,...,l+p}) = f̃ (x)( ẋ{1,...,l+p}). It is in-
duced by the canonical isomorphisms d : Lp(T, V )→ Ll(T, Lp−l(T, V )) for p ∈ N0
with l ≤ p ≤ k and the zero morphism on Lp(T, V ) for p < l. Now Lemma B.2.4
allows us to conclude that also d∗ is continuous and continuity of Dl then follows
from the fact that jk and jk−l are topological embeddings. �

The product rule Proposition B.1.7 between mapping spaces that we can now
show is continuous for the chosen topology.

Proposition B.2.6 (Product rule).
For any k ∈ N0 ∪ {∞} and any sequence V1, V2, . . . , Vq of locally convex vector
spaces, the product map

⊗:
q
∏

i=1

Ck(X , Vi) −→ Ck
�

X ,
⊗q

i=1 Vi

�

( f1, f2, . . . , fq) 7→
⊗q

i=1 fi

is continuous.

Proof: This follows simply from Lemma B.2.4 and continuity of the tensor
product map ⊗:

∏q
i=1 Vi →

⊗q
i=1 Vi . �

The following corollary is a direct consequence of Proposition B.2.3 and Propos-
ition B.2.6.

Corollary B.2.7.
For any k ∈ N0 ∪ {∞}, pointwise multiplication describes a topological algebra
structure on Ck(X ,R) and a topological Ck(X ,R)-module structure on Ck(X , V ).

Rather importantly, we can show that precomposition by a smooth map is a
continuous operation.
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Proposition B.2.8 (Precomposition).
Let X ⊆ S and Y ⊆ T be Fréchet domains and let V be an arbitrary locally
convex vector space. Precomposition by a map f : X → Y of class Ck describe a
morphisms

f ∗ : Ck(Y, V ) −→ Ck(X , V ), g 7→ g ◦ f

of topological vector spaces.

Proof: For k = 0, continuity of f ∗ follows from the fact f ∗(N ( f (KX ), UV )) is
contained in N (KX , UV ) for any compact subset KX ⊆ X and any open subset
UV ⊆ V , and the fact that f (KX ) ⊆ Y is also compact.

The general case now follows from the fact that the composition jk ◦ f ∗ can be
written as a composition F ◦ f ∗ ◦ jk:

Ck(Y, V ) Ck−l(X , V )

C0(Y, Jk(T, V )) C0(X , Jk(T, V )) C0(X , Jk(S, V )).

f ∗

jk jk

f ∗ F

Here f ∗ again denotes precomposition by f and F is the function given by
F(h̃)(x) = h̃(x) � jpx f , so that

F(h̃)(x)( ẋ1, . . . , ẋp) =
∑

I1,...,Im

1
m! h̃(x)

�
⊙m

j=1 D#I j f (x)( ẋ I j
)
�

for h̃ ∈ C0(X , Jk(T, V )), x ∈ X and ẋ1, ẋ2, . . . , ẋp ∈ S. That precomposition by f
is continuous follows from the case k = 0, and continuity of F can be derived
from Proposition 3.1.3. �

The analogue of Proposition B.2.8 for postcomposition by a map g : Y → V of
class Ck also holds if k = 0, but it is generally false for k > 0.

One reason to care about Proposition B.2.8 is the following corollary.

Corollary B.2.9.
Let X ⊆ S and Y ⊆ T be Fréchet domains, let V be an arbitrary locally convex
vector space and let f : X → Y be a diffeomorphism. The maps

f ∗ : C∞(Y,R) −→ C∞(X ,R) and f ∗ : C∞(Y, V ) −→ C∞(X , V )
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describe an isomorphism between the topological C∞(X ,R)-module C∞(X , V )
and the topological C∞(Y,R)-module C∞(Y, V ).

B.3. Regular Fréchet Lie groups

Another topic that we should briefly mention is regular Fréchet Lie groups.
The definition of a Fréchet Lie group is, unsurprisingly, the same as its finite-
dimensional analogue, but some complication arise if one attempts to set up Lie
theory for Fréchet Lie groups. This is mainly due to the fact that paths in the
Lie algebra of a Fréchet Lie group are not guaranteed to integrate to a path in
the group itself due to the failure of the existence and uniqueness theorem for
ordinary differential equations on Fréchet manifolds. Regular Fréchet Lie group
are those Fréchet Lie groups for which this is possible.

Definition B.3.1.
A Fréchet Lie group is a smooth Fréchet manifold G endowed with a group
structure for which multiplication m: G × G→ G and inversion i : G→ G are
smooth maps. A group morphism between two Fréchet Lie groups is a called
a Lie group morphism whenever it is smooth.

Suppose we are given a Fréchet Lie group G and an interval I of positive length.
Any smooth path γ: I → G in the Lie group G can be differentiated to obtain a
path in its Lie algebra,

δγ: I −→ Lie(G), t 7→ L∗γ(t)γ
′(t) = d

dsγ(t)
−1γ(t + s)

�

�

s=0,

which is called the (left) logarithmic derivative of γ. Right logarithmic derivatives
can be defined similarly, but will not be discussed.

One can ask whether a given a path ξ: I → Lie(G) in the Lie algebra of G can be
integrated to a path γ: I → G in the Lie group, i.e. if there exists a path γ that
has ξ as its logarithmic derivative. If such a path exists, one can show that it is
unique up to multiplication by a (fixed) group element (see e.g. Lemma 7.4 in
[Mil84], or the second half of the proof of Lemma B.3.3 below). Any two paths
γ0,γ1 : [0,1]→ G integrating ξ: [0,1]→ Lie(G) that both start at the identity
element eG thus necessarily coincide.
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Definition B.3.2.
A Fréchet Lie group G is regular if for every path ξ: [0, 1]→ Lie(G), the initial
value problem

ξ(t) = L∗γ(t)γ
′(t), γ(0) = eG

has a (unique) solution γξ : [0, 1]→ G, and the evolution map

evolG : C∞([0,1], Lie(G)) −→ G ξ 7→ γξ(1),

is smooth.

Note that if a solution γξ exists, it is automatically unique as a consequence of
Lemma B.3.3 below, so requiring this as part of the definition is optional.

The concept of regularity for Lie groups was first introduced by Omori, Maeda,
Yoshioka and Kobayashi in [OMYK82], although their definition is somewhat
stronger than the one provided here. Definition B.3.2 is due to Milnor [Mil84]
and can also be found in e.g. [KM97a] or [Nee06]. While Regular Lie groups
have some of the nice properties of finite-dimensional Lie groups, many other
elementary results for finite-dimensional Lie groups fail. For example: while
there is a one-to-one correspondence between morphisms of simply connected
regular Fréchet Lie groups and morphisms of their Lie algebras (cf. Theorem 8.1
in [Mil84]), it is not true that every closed Lie subalgebra of the Lie algebra of
a regular Fréchet Lie group is the Lie algebra of an immersed Lie subgroup (or
of any Lie group for that matter).

We think of evolG(ξ) as a (left) product integral of the curve ξ and note that it
coincides with the usual integral when G is a Fréchet space (endowed with the
associated Abelian Lie group structure). Although regularity was defined using
left logarithmic derivatives, right logarithmic derivatives could have been used
instead and the resulting definition would be equivalent.

Regularity of a Lie group G also implies the existence of an indefinite version of
the evolution map,

EvolG : C∞([0,1], Lie(G)) −→ C∞([0,1], G), ξ 7→ γξ.

Since the curve s 7→ γ(t s) solves the differential equation δγ(t s) = t ξ(t s), the
indefinite evolution map can also be expressed through the identity

EvolG(ξ)(t) = evolG(s 7→ t ξ(t s)),

275



Appendix B. Differential calculus

which one can use to prove that EvolG is smooth whenever evolG is. It is in
fact a diffeomorphism from the space of smooth paths in Lie(G) to the space of
smooth paths in G that start at the identity element.

We observe that regularity of G in particular implies the existence of a exponen-
tial map expG : Lie(G)→ G, which assigns to any Lie algebra element X ∈ Lie(G)
the integral evolG(X ) of the constant curve t 7→ X . Although regularity of G
does imply smoothness of expG and one can easily verify that T0 expG = idLie(G),
this exponential map may not be local diffeomorphism near 0 ∈ Lie(G) since the
inverse function theorem cannot be applied in this setting. A simple counter-
example is the diffeomorphism group of the circle, for which one can in fact
show that the image of the exponential map does not contain a neighbourhood
of the identity element (see e.g. Counterexample 5.5.2 in [Ham82] for more
details).

It is not known whether any non-regular Fréchet Lie groups exist and this ques-
tion has been an open problem since the concept was first introduced. While
there is a priori little reason to expect the initial value problem (B.3.2) to always
admit a solution, finding a counter-example and then proving the non-existence
of such solutions is not an easy task. Most (infinite-dimensional) Fréchet Lie
groups that arise in (finite-dimensional) differential geometry are known to
be regular. Such groups are often related to diffeomorphism groups or Lie
group(oid)-valued mapping spaces, which allows their evolution maps to be
constructed using the flow of appropriate vector fields on the underlying finite-
dimensional spaces.

We shall be interested in smooth right actions

α: M × G −→ G

and the corresponding infinitesimal action, which is the Lie algebra morphism

α∗ : Lie(G) −→ X(M), α∗(X )(x) = T(x ,eG)
α(X ).

obtained through differentiation.

Lemma B.3.3.
Let G be a regular Fréchet Lie group and let α: M × G → M be a smooth right
action. For any smooth path ξ: I → Lie(G) such that 0 ∈ I and any x0 ∈ M, the
initial value problem

d
dt x(t) = α∗(ξ(t))(x(t)), x(0) = x0
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for x : I → M is uniquely solved by x(t) = x0 · γξ(t).

Proof: That t 7→ x0 ·γξ(t) solves the initial value problem follows from a direct
computation:

d
dt (x0 · γξ(t)) =

d
ds (x0 · γξ(t)) ·

�

γξ(t)
−1 · γξ(t + s)

��

�

s=0

= T(x0·γξ(t),eG)
α
�

d
dsγξ(t)

−1γξ(t + s)
�

�

s=0

�

= α∗(ξ(t))(x0 · γξ(t)).

To show that this solution is unique, assume that we are given another solution
x : I → M . If we act on this solution by the inverse of γξ(t) for every t ∈ I , we
obtain a path in M whose derivative is given by

d
dt (x(t) · γξ(t)

−1) = d
ds x(t + s) · γξ(t)

−1
�

�

s=0 +
d
ds x(t) · γξ(t + s)−1

�

�

s=0

= d
ds x(t + s) · γξ(t)

−1
�

�

s=0

+ d
ds

�

x(t) ·
�

γξ(t)
−1 γξ(t + s)

�−1� · γξ(t)
−1
�

�

s=0

= T(x(t),γξ(t)−1)α
�

α∗(ξ(t))(x(t))
�

+ T(x(t),γξ(t)−1)α ◦ T(x(t),eG)
α ◦ TeG

i(ξ(t))

for all t ∈ I . These two terms cancel because T(x ,eG)
α(X ) is equal to α∗(X )(x)

by definition and one can readily verify that TeG
i = −idLie(G). We thus conclude

that x(t) · γξ(t)
−1 is constant and, since γξ(0) = eG and x(0) = x0, hence that

x(t) is equal to x0 · γξ(t), for all t ∈ I . �

Corollary B.3.4.
Let G be a connected regular Fréchet Lie group and let α: M × G → M be a
smooth right action. Two points x0, x1 ∈ M are in the same orbit if and only if
there exists a pair (ξ, x) of smooth paths ξ: [0, 1]→ Lie(G) and x : [0, 1]→ M
such that x(0) = x0, x(1) = x1 and

d
dt x(t) = α∗(ξ(t))(x(t)), (B.3.1)

for all t ∈ [0, 1].
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Proof: If x0 and x1 are in the same orbit, then we can find a smooth path
γ: [0, 1]→ G such that γ(0) = eG and x0 ·γ(1) = x1 since G is (path) connected.
The path x : t 7→ x0 · γ(t) in M is now such that x(0) = x0 and x(1) = x1,
and it solves the differential equation (B.3.1) for ξ= δγ. Because G is regular,
Lemma B.3.3 tells us that every solution to this differential equation is of this
form. �
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